000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains C code routines that are called by the SQLite parser 000013 ** when syntax rules are reduced. The routines in this file handle the 000014 ** following kinds of SQL syntax: 000015 ** 000016 ** CREATE TABLE 000017 ** DROP TABLE 000018 ** CREATE INDEX 000019 ** DROP INDEX 000020 ** creating ID lists 000021 ** BEGIN TRANSACTION 000022 ** COMMIT 000023 ** ROLLBACK 000024 */ 000025 #include "sqliteInt.h" 000026 000027 #ifndef SQLITE_OMIT_SHARED_CACHE 000028 /* 000029 ** The TableLock structure is only used by the sqlite3TableLock() and 000030 ** codeTableLocks() functions. 000031 */ 000032 struct TableLock { 000033 int iDb; /* The database containing the table to be locked */ 000034 Pgno iTab; /* The root page of the table to be locked */ 000035 u8 isWriteLock; /* True for write lock. False for a read lock */ 000036 const char *zLockName; /* Name of the table */ 000037 }; 000038 000039 /* 000040 ** Record the fact that we want to lock a table at run-time. 000041 ** 000042 ** The table to be locked has root page iTab and is found in database iDb. 000043 ** A read or a write lock can be taken depending on isWritelock. 000044 ** 000045 ** This routine just records the fact that the lock is desired. The 000046 ** code to make the lock occur is generated by a later call to 000047 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 000048 */ 000049 static SQLITE_NOINLINE void lockTable( 000050 Parse *pParse, /* Parsing context */ 000051 int iDb, /* Index of the database containing the table to lock */ 000052 Pgno iTab, /* Root page number of the table to be locked */ 000053 u8 isWriteLock, /* True for a write lock */ 000054 const char *zName /* Name of the table to be locked */ 000055 ){ 000056 Parse *pToplevel; 000057 int i; 000058 int nBytes; 000059 TableLock *p; 000060 assert( iDb>=0 ); 000061 000062 pToplevel = sqlite3ParseToplevel(pParse); 000063 for(i=0; i<pToplevel->nTableLock; i++){ 000064 p = &pToplevel->aTableLock[i]; 000065 if( p->iDb==iDb && p->iTab==iTab ){ 000066 p->isWriteLock = (p->isWriteLock || isWriteLock); 000067 return; 000068 } 000069 } 000070 000071 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 000072 pToplevel->aTableLock = 000073 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 000074 if( pToplevel->aTableLock ){ 000075 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 000076 p->iDb = iDb; 000077 p->iTab = iTab; 000078 p->isWriteLock = isWriteLock; 000079 p->zLockName = zName; 000080 }else{ 000081 pToplevel->nTableLock = 0; 000082 sqlite3OomFault(pToplevel->db); 000083 } 000084 } 000085 void sqlite3TableLock( 000086 Parse *pParse, /* Parsing context */ 000087 int iDb, /* Index of the database containing the table to lock */ 000088 Pgno iTab, /* Root page number of the table to be locked */ 000089 u8 isWriteLock, /* True for a write lock */ 000090 const char *zName /* Name of the table to be locked */ 000091 ){ 000092 if( iDb==1 ) return; 000093 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 000094 lockTable(pParse, iDb, iTab, isWriteLock, zName); 000095 } 000096 000097 /* 000098 ** Code an OP_TableLock instruction for each table locked by the 000099 ** statement (configured by calls to sqlite3TableLock()). 000100 */ 000101 static void codeTableLocks(Parse *pParse){ 000102 int i; 000103 Vdbe *pVdbe = pParse->pVdbe; 000104 assert( pVdbe!=0 ); 000105 000106 for(i=0; i<pParse->nTableLock; i++){ 000107 TableLock *p = &pParse->aTableLock[i]; 000108 int p1 = p->iDb; 000109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 000110 p->zLockName, P4_STATIC); 000111 } 000112 } 000113 #else 000114 #define codeTableLocks(x) 000115 #endif 000116 000117 /* 000118 ** Return TRUE if the given yDbMask object is empty - if it contains no 000119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 000120 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 000121 */ 000122 #if SQLITE_MAX_ATTACHED>30 000123 int sqlite3DbMaskAllZero(yDbMask m){ 000124 int i; 000125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 000126 return 1; 000127 } 000128 #endif 000129 000130 /* 000131 ** This routine is called after a single SQL statement has been 000132 ** parsed and a VDBE program to execute that statement has been 000133 ** prepared. This routine puts the finishing touches on the 000134 ** VDBE program and resets the pParse structure for the next 000135 ** parse. 000136 ** 000137 ** Note that if an error occurred, it might be the case that 000138 ** no VDBE code was generated. 000139 */ 000140 void sqlite3FinishCoding(Parse *pParse){ 000141 sqlite3 *db; 000142 Vdbe *v; 000143 int iDb, i; 000144 000145 assert( pParse->pToplevel==0 ); 000146 db = pParse->db; 000147 assert( db->pParse==pParse ); 000148 if( pParse->nested ) return; 000149 if( pParse->nErr ){ 000150 if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM; 000151 return; 000152 } 000153 assert( db->mallocFailed==0 ); 000154 000155 /* Begin by generating some termination code at the end of the 000156 ** vdbe program 000157 */ 000158 v = pParse->pVdbe; 000159 if( v==0 ){ 000160 if( db->init.busy ){ 000161 pParse->rc = SQLITE_DONE; 000162 return; 000163 } 000164 v = sqlite3GetVdbe(pParse); 000165 if( v==0 ) pParse->rc = SQLITE_ERROR; 000166 } 000167 assert( !pParse->isMultiWrite 000168 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 000169 if( v ){ 000170 if( pParse->bReturning ){ 000171 Returning *pReturning = pParse->u1.pReturning; 000172 int addrRewind; 000173 int reg; 000174 000175 if( pReturning->nRetCol ){ 000176 sqlite3VdbeAddOp0(v, OP_FkCheck); 000177 addrRewind = 000178 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 000179 VdbeCoverage(v); 000180 reg = pReturning->iRetReg; 000181 for(i=0; i<pReturning->nRetCol; i++){ 000182 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 000183 } 000184 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 000185 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 000186 VdbeCoverage(v); 000187 sqlite3VdbeJumpHere(v, addrRewind); 000188 } 000189 } 000190 sqlite3VdbeAddOp0(v, OP_Halt); 000191 000192 /* The cookie mask contains one bit for each database file open. 000193 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 000194 ** set for each database that is used. Generate code to start a 000195 ** transaction on each used database and to verify the schema cookie 000196 ** on each used database. 000197 */ 000198 assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 000199 sqlite3VdbeJumpHere(v, 0); 000200 assert( db->nDb>0 ); 000201 iDb = 0; 000202 do{ 000203 Schema *pSchema; 000204 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 000205 sqlite3VdbeUsesBtree(v, iDb); 000206 pSchema = db->aDb[iDb].pSchema; 000207 sqlite3VdbeAddOp4Int(v, 000208 OP_Transaction, /* Opcode */ 000209 iDb, /* P1 */ 000210 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 000211 pSchema->schema_cookie, /* P3 */ 000212 pSchema->iGeneration /* P4 */ 000213 ); 000214 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 000215 VdbeComment((v, 000216 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 000217 }while( ++iDb<db->nDb ); 000218 #ifndef SQLITE_OMIT_VIRTUALTABLE 000219 for(i=0; i<pParse->nVtabLock; i++){ 000220 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 000221 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 000222 } 000223 pParse->nVtabLock = 0; 000224 #endif 000225 000226 #ifndef SQLITE_OMIT_SHARED_CACHE 000227 /* Once all the cookies have been verified and transactions opened, 000228 ** obtain the required table-locks. This is a no-op unless the 000229 ** shared-cache feature is enabled. 000230 */ 000231 if( pParse->nTableLock ) codeTableLocks(pParse); 000232 #endif 000233 000234 /* Initialize any AUTOINCREMENT data structures required. 000235 */ 000236 if( pParse->pAinc ) sqlite3AutoincrementBegin(pParse); 000237 000238 /* Code constant expressions that were factored out of inner loops. 000239 */ 000240 if( pParse->pConstExpr ){ 000241 ExprList *pEL = pParse->pConstExpr; 000242 pParse->okConstFactor = 0; 000243 for(i=0; i<pEL->nExpr; i++){ 000244 assert( pEL->a[i].u.iConstExprReg>0 ); 000245 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 000246 } 000247 } 000248 000249 if( pParse->bReturning ){ 000250 Returning *pRet = pParse->u1.pReturning; 000251 if( pRet->nRetCol ){ 000252 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 000253 } 000254 } 000255 000256 /* Finally, jump back to the beginning of the executable code. */ 000257 sqlite3VdbeGoto(v, 1); 000258 } 000259 000260 /* Get the VDBE program ready for execution 000261 */ 000262 assert( v!=0 || pParse->nErr ); 000263 assert( db->mallocFailed==0 || pParse->nErr ); 000264 if( pParse->nErr==0 ){ 000265 /* A minimum of one cursor is required if autoincrement is used 000266 * See ticket [a696379c1f08866] */ 000267 assert( pParse->pAinc==0 || pParse->nTab>0 ); 000268 sqlite3VdbeMakeReady(v, pParse); 000269 pParse->rc = SQLITE_DONE; 000270 }else{ 000271 pParse->rc = SQLITE_ERROR; 000272 } 000273 } 000274 000275 /* 000276 ** Run the parser and code generator recursively in order to generate 000277 ** code for the SQL statement given onto the end of the pParse context 000278 ** currently under construction. Notes: 000279 ** 000280 ** * The final OP_Halt is not appended and other initialization 000281 ** and finalization steps are omitted because those are handling by the 000282 ** outermost parser. 000283 ** 000284 ** * Built-in SQL functions always take precedence over application-defined 000285 ** SQL functions. In other words, it is not possible to override a 000286 ** built-in function. 000287 */ 000288 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 000289 va_list ap; 000290 char *zSql; 000291 sqlite3 *db = pParse->db; 000292 u32 savedDbFlags = db->mDbFlags; 000293 char saveBuf[PARSE_TAIL_SZ]; 000294 000295 if( pParse->nErr ) return; 000296 if( pParse->eParseMode ) return; 000297 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 000298 va_start(ap, zFormat); 000299 zSql = sqlite3VMPrintf(db, zFormat, ap); 000300 va_end(ap); 000301 if( zSql==0 ){ 000302 /* This can result either from an OOM or because the formatted string 000303 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 000304 ** an error */ 000305 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 000306 pParse->nErr++; 000307 return; 000308 } 000309 pParse->nested++; 000310 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 000311 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 000312 db->mDbFlags |= DBFLAG_PreferBuiltin; 000313 sqlite3RunParser(pParse, zSql); 000314 db->mDbFlags = savedDbFlags; 000315 sqlite3DbFree(db, zSql); 000316 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 000317 pParse->nested--; 000318 } 000319 000320 /* 000321 ** Locate the in-memory structure that describes a particular database 000322 ** table given the name of that table and (optionally) the name of the 000323 ** database containing the table. Return NULL if not found. 000324 ** 000325 ** If zDatabase is 0, all databases are searched for the table and the 000326 ** first matching table is returned. (No checking for duplicate table 000327 ** names is done.) The search order is TEMP first, then MAIN, then any 000328 ** auxiliary databases added using the ATTACH command. 000329 ** 000330 ** See also sqlite3LocateTable(). 000331 */ 000332 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 000333 Table *p = 0; 000334 int i; 000335 000336 /* All mutexes are required for schema access. Make sure we hold them. */ 000337 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 000338 if( zDatabase ){ 000339 for(i=0; i<db->nDb; i++){ 000340 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 000341 } 000342 if( i>=db->nDb ){ 000343 /* No match against the official names. But always match "main" 000344 ** to schema 0 as a legacy fallback. */ 000345 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 000346 i = 0; 000347 }else{ 000348 return 0; 000349 } 000350 } 000351 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 000352 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 000353 if( i==1 ){ 000354 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 000355 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 000356 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 000357 ){ 000358 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 000359 LEGACY_TEMP_SCHEMA_TABLE); 000360 } 000361 }else{ 000362 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 000363 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 000364 LEGACY_SCHEMA_TABLE); 000365 } 000366 } 000367 } 000368 }else{ 000369 /* Match against TEMP first */ 000370 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 000371 if( p ) return p; 000372 /* The main database is second */ 000373 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 000374 if( p ) return p; 000375 /* Attached databases are in order of attachment */ 000376 for(i=2; i<db->nDb; i++){ 000377 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 000378 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 000379 if( p ) break; 000380 } 000381 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 000382 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ 000383 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); 000384 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ 000385 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 000386 LEGACY_TEMP_SCHEMA_TABLE); 000387 } 000388 } 000389 } 000390 return p; 000391 } 000392 000393 /* 000394 ** Locate the in-memory structure that describes a particular database 000395 ** table given the name of that table and (optionally) the name of the 000396 ** database containing the table. Return NULL if not found. Also leave an 000397 ** error message in pParse->zErrMsg. 000398 ** 000399 ** The difference between this routine and sqlite3FindTable() is that this 000400 ** routine leaves an error message in pParse->zErrMsg where 000401 ** sqlite3FindTable() does not. 000402 */ 000403 Table *sqlite3LocateTable( 000404 Parse *pParse, /* context in which to report errors */ 000405 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 000406 const char *zName, /* Name of the table we are looking for */ 000407 const char *zDbase /* Name of the database. Might be NULL */ 000408 ){ 000409 Table *p; 000410 sqlite3 *db = pParse->db; 000411 000412 /* Read the database schema. If an error occurs, leave an error message 000413 ** and code in pParse and return NULL. */ 000414 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 000415 && SQLITE_OK!=sqlite3ReadSchema(pParse) 000416 ){ 000417 return 0; 000418 } 000419 000420 p = sqlite3FindTable(db, zName, zDbase); 000421 if( p==0 ){ 000422 #ifndef SQLITE_OMIT_VIRTUALTABLE 000423 /* If zName is the not the name of a table in the schema created using 000424 ** CREATE, then check to see if it is the name of an virtual table that 000425 ** can be an eponymous virtual table. */ 000426 if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){ 000427 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 000428 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 000429 pMod = sqlite3PragmaVtabRegister(db, zName); 000430 } 000431 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 000432 testcase( pMod->pEpoTab==0 ); 000433 return pMod->pEpoTab; 000434 } 000435 } 000436 #endif 000437 if( flags & LOCATE_NOERR ) return 0; 000438 pParse->checkSchema = 1; 000439 }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){ 000440 p = 0; 000441 } 000442 000443 if( p==0 ){ 000444 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 000445 if( zDbase ){ 000446 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 000447 }else{ 000448 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 000449 } 000450 }else{ 000451 assert( HasRowid(p) || p->iPKey<0 ); 000452 } 000453 000454 return p; 000455 } 000456 000457 /* 000458 ** Locate the table identified by *p. 000459 ** 000460 ** This is a wrapper around sqlite3LocateTable(). The difference between 000461 ** sqlite3LocateTable() and this function is that this function restricts 000462 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 000463 ** non-NULL if it is part of a view or trigger program definition. See 000464 ** sqlite3FixSrcList() for details. 000465 */ 000466 Table *sqlite3LocateTableItem( 000467 Parse *pParse, 000468 u32 flags, 000469 SrcItem *p 000470 ){ 000471 const char *zDb; 000472 if( p->fg.fixedSchema ){ 000473 int iDb = sqlite3SchemaToIndex(pParse->db, p->u4.pSchema); 000474 zDb = pParse->db->aDb[iDb].zDbSName; 000475 }else{ 000476 assert( !p->fg.isSubquery ); 000477 zDb = p->u4.zDatabase; 000478 } 000479 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 000480 } 000481 000482 /* 000483 ** Return the preferred table name for system tables. Translate legacy 000484 ** names into the new preferred names, as appropriate. 000485 */ 000486 const char *sqlite3PreferredTableName(const char *zName){ 000487 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 000488 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ 000489 return PREFERRED_SCHEMA_TABLE; 000490 } 000491 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ 000492 return PREFERRED_TEMP_SCHEMA_TABLE; 000493 } 000494 } 000495 return zName; 000496 } 000497 000498 /* 000499 ** Locate the in-memory structure that describes 000500 ** a particular index given the name of that index 000501 ** and the name of the database that contains the index. 000502 ** Return NULL if not found. 000503 ** 000504 ** If zDatabase is 0, all databases are searched for the 000505 ** table and the first matching index is returned. (No checking 000506 ** for duplicate index names is done.) The search order is 000507 ** TEMP first, then MAIN, then any auxiliary databases added 000508 ** using the ATTACH command. 000509 */ 000510 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 000511 Index *p = 0; 000512 int i; 000513 /* All mutexes are required for schema access. Make sure we hold them. */ 000514 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 000515 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 000516 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 000517 Schema *pSchema = db->aDb[j].pSchema; 000518 assert( pSchema ); 000519 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 000520 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 000521 p = sqlite3HashFind(&pSchema->idxHash, zName); 000522 if( p ) break; 000523 } 000524 return p; 000525 } 000526 000527 /* 000528 ** Reclaim the memory used by an index 000529 */ 000530 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 000531 #ifndef SQLITE_OMIT_ANALYZE 000532 sqlite3DeleteIndexSamples(db, p); 000533 #endif 000534 sqlite3ExprDelete(db, p->pPartIdxWhere); 000535 sqlite3ExprListDelete(db, p->aColExpr); 000536 sqlite3DbFree(db, p->zColAff); 000537 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 000538 #ifdef SQLITE_ENABLE_STAT4 000539 sqlite3_free(p->aiRowEst); 000540 #endif 000541 sqlite3DbFree(db, p); 000542 } 000543 000544 /* 000545 ** For the index called zIdxName which is found in the database iDb, 000546 ** unlike that index from its Table then remove the index from 000547 ** the index hash table and free all memory structures associated 000548 ** with the index. 000549 */ 000550 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 000551 Index *pIndex; 000552 Hash *pHash; 000553 000554 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 000555 pHash = &db->aDb[iDb].pSchema->idxHash; 000556 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 000557 if( ALWAYS(pIndex) ){ 000558 if( pIndex->pTable->pIndex==pIndex ){ 000559 pIndex->pTable->pIndex = pIndex->pNext; 000560 }else{ 000561 Index *p; 000562 /* Justification of ALWAYS(); The index must be on the list of 000563 ** indices. */ 000564 p = pIndex->pTable->pIndex; 000565 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 000566 if( ALWAYS(p && p->pNext==pIndex) ){ 000567 p->pNext = pIndex->pNext; 000568 } 000569 } 000570 sqlite3FreeIndex(db, pIndex); 000571 } 000572 db->mDbFlags |= DBFLAG_SchemaChange; 000573 } 000574 000575 /* 000576 ** Look through the list of open database files in db->aDb[] and if 000577 ** any have been closed, remove them from the list. Reallocate the 000578 ** db->aDb[] structure to a smaller size, if possible. 000579 ** 000580 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 000581 ** are never candidates for being collapsed. 000582 */ 000583 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 000584 int i, j; 000585 for(i=j=2; i<db->nDb; i++){ 000586 struct Db *pDb = &db->aDb[i]; 000587 if( pDb->pBt==0 ){ 000588 sqlite3DbFree(db, pDb->zDbSName); 000589 pDb->zDbSName = 0; 000590 continue; 000591 } 000592 if( j<i ){ 000593 db->aDb[j] = db->aDb[i]; 000594 } 000595 j++; 000596 } 000597 db->nDb = j; 000598 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 000599 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 000600 sqlite3DbFree(db, db->aDb); 000601 db->aDb = db->aDbStatic; 000602 } 000603 } 000604 000605 /* 000606 ** Reset the schema for the database at index iDb. Also reset the 000607 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 000608 ** Deferred resets may be run by calling with iDb<0. 000609 */ 000610 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 000611 int i; 000612 assert( iDb<db->nDb ); 000613 000614 if( iDb>=0 ){ 000615 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 000616 DbSetProperty(db, iDb, DB_ResetWanted); 000617 DbSetProperty(db, 1, DB_ResetWanted); 000618 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 000619 } 000620 000621 if( db->nSchemaLock==0 ){ 000622 for(i=0; i<db->nDb; i++){ 000623 if( DbHasProperty(db, i, DB_ResetWanted) ){ 000624 sqlite3SchemaClear(db->aDb[i].pSchema); 000625 } 000626 } 000627 } 000628 } 000629 000630 /* 000631 ** Erase all schema information from all attached databases (including 000632 ** "main" and "temp") for a single database connection. 000633 */ 000634 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 000635 int i; 000636 sqlite3BtreeEnterAll(db); 000637 for(i=0; i<db->nDb; i++){ 000638 Db *pDb = &db->aDb[i]; 000639 if( pDb->pSchema ){ 000640 if( db->nSchemaLock==0 ){ 000641 sqlite3SchemaClear(pDb->pSchema); 000642 }else{ 000643 DbSetProperty(db, i, DB_ResetWanted); 000644 } 000645 } 000646 } 000647 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 000648 sqlite3VtabUnlockList(db); 000649 sqlite3BtreeLeaveAll(db); 000650 if( db->nSchemaLock==0 ){ 000651 sqlite3CollapseDatabaseArray(db); 000652 } 000653 } 000654 000655 /* 000656 ** This routine is called when a commit occurs. 000657 */ 000658 void sqlite3CommitInternalChanges(sqlite3 *db){ 000659 db->mDbFlags &= ~DBFLAG_SchemaChange; 000660 } 000661 000662 /* 000663 ** Set the expression associated with a column. This is usually 000664 ** the DEFAULT value, but might also be the expression that computes 000665 ** the value for a generated column. 000666 */ 000667 void sqlite3ColumnSetExpr( 000668 Parse *pParse, /* Parsing context */ 000669 Table *pTab, /* The table containing the column */ 000670 Column *pCol, /* The column to receive the new DEFAULT expression */ 000671 Expr *pExpr /* The new default expression */ 000672 ){ 000673 ExprList *pList; 000674 assert( IsOrdinaryTable(pTab) ); 000675 pList = pTab->u.tab.pDfltList; 000676 if( pCol->iDflt==0 000677 || NEVER(pList==0) 000678 || NEVER(pList->nExpr<pCol->iDflt) 000679 ){ 000680 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; 000681 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); 000682 }else{ 000683 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); 000684 pList->a[pCol->iDflt-1].pExpr = pExpr; 000685 } 000686 } 000687 000688 /* 000689 ** Return the expression associated with a column. The expression might be 000690 ** the DEFAULT clause or the AS clause of a generated column. 000691 ** Return NULL if the column has no associated expression. 000692 */ 000693 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ 000694 if( pCol->iDflt==0 ) return 0; 000695 if( !IsOrdinaryTable(pTab) ) return 0; 000696 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; 000697 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0; 000698 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; 000699 } 000700 000701 /* 000702 ** Set the collating sequence name for a column. 000703 */ 000704 void sqlite3ColumnSetColl( 000705 sqlite3 *db, 000706 Column *pCol, 000707 const char *zColl 000708 ){ 000709 i64 nColl; 000710 i64 n; 000711 char *zNew; 000712 assert( zColl!=0 ); 000713 n = sqlite3Strlen30(pCol->zCnName) + 1; 000714 if( pCol->colFlags & COLFLAG_HASTYPE ){ 000715 n += sqlite3Strlen30(pCol->zCnName+n) + 1; 000716 } 000717 nColl = sqlite3Strlen30(zColl) + 1; 000718 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); 000719 if( zNew ){ 000720 pCol->zCnName = zNew; 000721 memcpy(pCol->zCnName + n, zColl, nColl); 000722 pCol->colFlags |= COLFLAG_HASCOLL; 000723 } 000724 } 000725 000726 /* 000727 ** Return the collating sequence name for a column 000728 */ 000729 const char *sqlite3ColumnColl(Column *pCol){ 000730 const char *z; 000731 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; 000732 z = pCol->zCnName; 000733 while( *z ){ z++; } 000734 if( pCol->colFlags & COLFLAG_HASTYPE ){ 000735 do{ z++; }while( *z ); 000736 } 000737 return z+1; 000738 } 000739 000740 /* 000741 ** Delete memory allocated for the column names of a table or view (the 000742 ** Table.aCol[] array). 000743 */ 000744 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 000745 int i; 000746 Column *pCol; 000747 assert( pTable!=0 ); 000748 assert( db!=0 ); 000749 if( (pCol = pTable->aCol)!=0 ){ 000750 for(i=0; i<pTable->nCol; i++, pCol++){ 000751 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); 000752 sqlite3DbFree(db, pCol->zCnName); 000753 } 000754 sqlite3DbNNFreeNN(db, pTable->aCol); 000755 if( IsOrdinaryTable(pTable) ){ 000756 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); 000757 } 000758 if( db->pnBytesFreed==0 ){ 000759 pTable->aCol = 0; 000760 pTable->nCol = 0; 000761 if( IsOrdinaryTable(pTable) ){ 000762 pTable->u.tab.pDfltList = 0; 000763 } 000764 } 000765 } 000766 } 000767 000768 /* 000769 ** Remove the memory data structures associated with the given 000770 ** Table. No changes are made to disk by this routine. 000771 ** 000772 ** This routine just deletes the data structure. It does not unlink 000773 ** the table data structure from the hash table. But it does destroy 000774 ** memory structures of the indices and foreign keys associated with 000775 ** the table. 000776 ** 000777 ** The db parameter is optional. It is needed if the Table object 000778 ** contains lookaside memory. (Table objects in the schema do not use 000779 ** lookaside memory, but some ephemeral Table objects do.) Or the 000780 ** db parameter can be used with db->pnBytesFreed to measure the memory 000781 ** used by the Table object. 000782 */ 000783 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 000784 Index *pIndex, *pNext; 000785 000786 #ifdef SQLITE_DEBUG 000787 /* Record the number of outstanding lookaside allocations in schema Tables 000788 ** prior to doing any free() operations. Since schema Tables do not use 000789 ** lookaside, this number should not change. 000790 ** 000791 ** If malloc has already failed, it may be that it failed while allocating 000792 ** a Table object that was going to be marked ephemeral. So do not check 000793 ** that no lookaside memory is used in this case either. */ 000794 int nLookaside = 0; 000795 assert( db!=0 ); 000796 if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 000797 nLookaside = sqlite3LookasideUsed(db, 0); 000798 } 000799 #endif 000800 000801 /* Delete all indices associated with this table. */ 000802 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 000803 pNext = pIndex->pNext; 000804 assert( pIndex->pSchema==pTable->pSchema 000805 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 000806 if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){ 000807 char *zName = pIndex->zName; 000808 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 000809 &pIndex->pSchema->idxHash, zName, 0 000810 ); 000811 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 000812 assert( pOld==pIndex || pOld==0 ); 000813 } 000814 sqlite3FreeIndex(db, pIndex); 000815 } 000816 000817 if( IsOrdinaryTable(pTable) ){ 000818 sqlite3FkDelete(db, pTable); 000819 } 000820 #ifndef SQLITE_OMIT_VIRTUALTABLE 000821 else if( IsVirtual(pTable) ){ 000822 sqlite3VtabClear(db, pTable); 000823 } 000824 #endif 000825 else{ 000826 assert( IsView(pTable) ); 000827 sqlite3SelectDelete(db, pTable->u.view.pSelect); 000828 } 000829 000830 /* Delete the Table structure itself. 000831 */ 000832 sqlite3DeleteColumnNames(db, pTable); 000833 sqlite3DbFree(db, pTable->zName); 000834 sqlite3DbFree(db, pTable->zColAff); 000835 sqlite3ExprListDelete(db, pTable->pCheck); 000836 sqlite3DbFree(db, pTable); 000837 000838 /* Verify that no lookaside memory was used by schema tables */ 000839 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 000840 } 000841 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 000842 /* Do not delete the table until the reference count reaches zero. */ 000843 assert( db!=0 ); 000844 if( !pTable ) return; 000845 if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return; 000846 deleteTable(db, pTable); 000847 } 000848 void sqlite3DeleteTableGeneric(sqlite3 *db, void *pTable){ 000849 sqlite3DeleteTable(db, (Table*)pTable); 000850 } 000851 000852 000853 /* 000854 ** Unlink the given table from the hash tables and the delete the 000855 ** table structure with all its indices and foreign keys. 000856 */ 000857 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 000858 Table *p; 000859 Db *pDb; 000860 000861 assert( db!=0 ); 000862 assert( iDb>=0 && iDb<db->nDb ); 000863 assert( zTabName ); 000864 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 000865 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 000866 pDb = &db->aDb[iDb]; 000867 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 000868 sqlite3DeleteTable(db, p); 000869 db->mDbFlags |= DBFLAG_SchemaChange; 000870 } 000871 000872 /* 000873 ** Given a token, return a string that consists of the text of that 000874 ** token. Space to hold the returned string 000875 ** is obtained from sqliteMalloc() and must be freed by the calling 000876 ** function. 000877 ** 000878 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 000879 ** surround the body of the token are removed. 000880 ** 000881 ** Tokens are often just pointers into the original SQL text and so 000882 ** are not \000 terminated and are not persistent. The returned string 000883 ** is \000 terminated and is persistent. 000884 */ 000885 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ 000886 char *zName; 000887 if( pName ){ 000888 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); 000889 sqlite3Dequote(zName); 000890 }else{ 000891 zName = 0; 000892 } 000893 return zName; 000894 } 000895 000896 /* 000897 ** Open the sqlite_schema table stored in database number iDb for 000898 ** writing. The table is opened using cursor 0. 000899 */ 000900 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 000901 Vdbe *v = sqlite3GetVdbe(p); 000902 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); 000903 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 000904 if( p->nTab==0 ){ 000905 p->nTab = 1; 000906 } 000907 } 000908 000909 /* 000910 ** Parameter zName points to a nul-terminated buffer containing the name 000911 ** of a database ("main", "temp" or the name of an attached db). This 000912 ** function returns the index of the named database in db->aDb[], or 000913 ** -1 if the named db cannot be found. 000914 */ 000915 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 000916 int i = -1; /* Database number */ 000917 if( zName ){ 000918 Db *pDb; 000919 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 000920 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 000921 /* "main" is always an acceptable alias for the primary database 000922 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 000923 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 000924 } 000925 } 000926 return i; 000927 } 000928 000929 /* 000930 ** The token *pName contains the name of a database (either "main" or 000931 ** "temp" or the name of an attached db). This routine returns the 000932 ** index of the named database in db->aDb[], or -1 if the named db 000933 ** does not exist. 000934 */ 000935 int sqlite3FindDb(sqlite3 *db, Token *pName){ 000936 int i; /* Database number */ 000937 char *zName; /* Name we are searching for */ 000938 zName = sqlite3NameFromToken(db, pName); 000939 i = sqlite3FindDbName(db, zName); 000940 sqlite3DbFree(db, zName); 000941 return i; 000942 } 000943 000944 /* The table or view or trigger name is passed to this routine via tokens 000945 ** pName1 and pName2. If the table name was fully qualified, for example: 000946 ** 000947 ** CREATE TABLE xxx.yyy (...); 000948 ** 000949 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 000950 ** the table name is not fully qualified, i.e.: 000951 ** 000952 ** CREATE TABLE yyy(...); 000953 ** 000954 ** Then pName1 is set to "yyy" and pName2 is "". 000955 ** 000956 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 000957 ** pName2) that stores the unqualified table name. The index of the 000958 ** database "xxx" is returned. 000959 */ 000960 int sqlite3TwoPartName( 000961 Parse *pParse, /* Parsing and code generating context */ 000962 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 000963 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 000964 Token **pUnqual /* Write the unqualified object name here */ 000965 ){ 000966 int iDb; /* Database holding the object */ 000967 sqlite3 *db = pParse->db; 000968 000969 assert( pName2!=0 ); 000970 if( pName2->n>0 ){ 000971 if( db->init.busy ) { 000972 sqlite3ErrorMsg(pParse, "corrupt database"); 000973 return -1; 000974 } 000975 *pUnqual = pName2; 000976 iDb = sqlite3FindDb(db, pName1); 000977 if( iDb<0 ){ 000978 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 000979 return -1; 000980 } 000981 }else{ 000982 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE 000983 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 000984 iDb = db->init.iDb; 000985 *pUnqual = pName1; 000986 } 000987 return iDb; 000988 } 000989 000990 /* 000991 ** True if PRAGMA writable_schema is ON 000992 */ 000993 int sqlite3WritableSchema(sqlite3 *db){ 000994 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 000995 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 000996 SQLITE_WriteSchema ); 000997 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 000998 SQLITE_Defensive ); 000999 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 001000 (SQLITE_WriteSchema|SQLITE_Defensive) ); 001001 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 001002 } 001003 001004 /* 001005 ** This routine is used to check if the UTF-8 string zName is a legal 001006 ** unqualified name for a new schema object (table, index, view or 001007 ** trigger). All names are legal except those that begin with the string 001008 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 001009 ** is reserved for internal use. 001010 ** 001011 ** When parsing the sqlite_schema table, this routine also checks to 001012 ** make sure the "type", "name", and "tbl_name" columns are consistent 001013 ** with the SQL. 001014 */ 001015 int sqlite3CheckObjectName( 001016 Parse *pParse, /* Parsing context */ 001017 const char *zName, /* Name of the object to check */ 001018 const char *zType, /* Type of this object */ 001019 const char *zTblName /* Parent table name for triggers and indexes */ 001020 ){ 001021 sqlite3 *db = pParse->db; 001022 if( sqlite3WritableSchema(db) 001023 || db->init.imposterTable 001024 || !sqlite3Config.bExtraSchemaChecks 001025 ){ 001026 /* Skip these error checks for writable_schema=ON */ 001027 return SQLITE_OK; 001028 } 001029 if( db->init.busy ){ 001030 if( sqlite3_stricmp(zType, db->init.azInit[0]) 001031 || sqlite3_stricmp(zName, db->init.azInit[1]) 001032 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 001033 ){ 001034 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 001035 return SQLITE_ERROR; 001036 } 001037 }else{ 001038 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 001039 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 001040 ){ 001041 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 001042 zName); 001043 return SQLITE_ERROR; 001044 } 001045 001046 } 001047 return SQLITE_OK; 001048 } 001049 001050 /* 001051 ** Return the PRIMARY KEY index of a table 001052 */ 001053 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 001054 Index *p; 001055 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 001056 return p; 001057 } 001058 001059 /* 001060 ** Convert an table column number into a index column number. That is, 001061 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 001062 ** find the (first) offset of that column in index pIdx. Or return -1 001063 ** if column iCol is not used in index pIdx. 001064 */ 001065 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 001066 int i; 001067 for(i=0; i<pIdx->nColumn; i++){ 001068 if( iCol==pIdx->aiColumn[i] ) return i; 001069 } 001070 return -1; 001071 } 001072 001073 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001074 /* Convert a storage column number into a table column number. 001075 ** 001076 ** The storage column number (0,1,2,....) is the index of the value 001077 ** as it appears in the record on disk. The true column number 001078 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 001079 ** 001080 ** The storage column number is less than the table column number if 001081 ** and only there are VIRTUAL columns to the left. 001082 ** 001083 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 001084 */ 001085 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 001086 if( pTab->tabFlags & TF_HasVirtual ){ 001087 int i; 001088 for(i=0; i<=iCol; i++){ 001089 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 001090 } 001091 } 001092 return iCol; 001093 } 001094 #endif 001095 001096 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001097 /* Convert a table column number into a storage column number. 001098 ** 001099 ** The storage column number (0,1,2,....) is the index of the value 001100 ** as it appears in the record on disk. Or, if the input column is 001101 ** the N-th virtual column (zero-based) then the storage number is 001102 ** the number of non-virtual columns in the table plus N. 001103 ** 001104 ** The true column number is the index (0,1,2,...) of the column in 001105 ** the CREATE TABLE statement. 001106 ** 001107 ** If the input column is a VIRTUAL column, then it should not appear 001108 ** in storage. But the value sometimes is cached in registers that 001109 ** follow the range of registers used to construct storage. This 001110 ** avoids computing the same VIRTUAL column multiple times, and provides 001111 ** values for use by OP_Param opcodes in triggers. Hence, if the 001112 ** input column is a VIRTUAL table, put it after all the other columns. 001113 ** 001114 ** In the following, N means "normal column", S means STORED, and 001115 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 001116 ** 001117 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 001118 ** -- 0 1 2 3 4 5 6 7 8 001119 ** 001120 ** Then the mapping from this function is as follows: 001121 ** 001122 ** INPUTS: 0 1 2 3 4 5 6 7 8 001123 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 001124 ** 001125 ** So, in other words, this routine shifts all the virtual columns to 001126 ** the end. 001127 ** 001128 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 001129 ** this routine is a no-op macro. If the pTab does not have any virtual 001130 ** columns, then this routine is no-op that always return iCol. If iCol 001131 ** is negative (indicating the ROWID column) then this routine return iCol. 001132 */ 001133 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 001134 int i; 001135 i16 n; 001136 assert( iCol<pTab->nCol ); 001137 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 001138 for(i=0, n=0; i<iCol; i++){ 001139 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 001140 } 001141 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 001142 /* iCol is a virtual column itself */ 001143 return pTab->nNVCol + i - n; 001144 }else{ 001145 /* iCol is a normal or stored column */ 001146 return n; 001147 } 001148 } 001149 #endif 001150 001151 /* 001152 ** Insert a single OP_JournalMode query opcode in order to force the 001153 ** prepared statement to return false for sqlite3_stmt_readonly(). This 001154 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already 001155 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS 001156 ** will return false for sqlite3_stmt_readonly() even if that statement 001157 ** is a read-only no-op. 001158 */ 001159 static void sqlite3ForceNotReadOnly(Parse *pParse){ 001160 int iReg = ++pParse->nMem; 001161 Vdbe *v = sqlite3GetVdbe(pParse); 001162 if( v ){ 001163 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); 001164 sqlite3VdbeUsesBtree(v, 0); 001165 } 001166 } 001167 001168 /* 001169 ** Begin constructing a new table representation in memory. This is 001170 ** the first of several action routines that get called in response 001171 ** to a CREATE TABLE statement. In particular, this routine is called 001172 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 001173 ** flag is true if the table should be stored in the auxiliary database 001174 ** file instead of in the main database file. This is normally the case 001175 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 001176 ** CREATE and TABLE. 001177 ** 001178 ** The new table record is initialized and put in pParse->pNewTable. 001179 ** As more of the CREATE TABLE statement is parsed, additional action 001180 ** routines will be called to add more information to this record. 001181 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 001182 ** is called to complete the construction of the new table record. 001183 */ 001184 void sqlite3StartTable( 001185 Parse *pParse, /* Parser context */ 001186 Token *pName1, /* First part of the name of the table or view */ 001187 Token *pName2, /* Second part of the name of the table or view */ 001188 int isTemp, /* True if this is a TEMP table */ 001189 int isView, /* True if this is a VIEW */ 001190 int isVirtual, /* True if this is a VIRTUAL table */ 001191 int noErr /* Do nothing if table already exists */ 001192 ){ 001193 Table *pTable; 001194 char *zName = 0; /* The name of the new table */ 001195 sqlite3 *db = pParse->db; 001196 Vdbe *v; 001197 int iDb; /* Database number to create the table in */ 001198 Token *pName; /* Unqualified name of the table to create */ 001199 001200 if( db->init.busy && db->init.newTnum==1 ){ 001201 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 001202 iDb = db->init.iDb; 001203 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 001204 pName = pName1; 001205 }else{ 001206 /* The common case */ 001207 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 001208 if( iDb<0 ) return; 001209 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 001210 /* If creating a temp table, the name may not be qualified. Unless 001211 ** the database name is "temp" anyway. */ 001212 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 001213 return; 001214 } 001215 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 001216 zName = sqlite3NameFromToken(db, pName); 001217 if( IN_RENAME_OBJECT ){ 001218 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 001219 } 001220 } 001221 pParse->sNameToken = *pName; 001222 if( zName==0 ) return; 001223 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 001224 goto begin_table_error; 001225 } 001226 if( db->init.iDb==1 ) isTemp = 1; 001227 #ifndef SQLITE_OMIT_AUTHORIZATION 001228 assert( isTemp==0 || isTemp==1 ); 001229 assert( isView==0 || isView==1 ); 001230 { 001231 static const u8 aCode[] = { 001232 SQLITE_CREATE_TABLE, 001233 SQLITE_CREATE_TEMP_TABLE, 001234 SQLITE_CREATE_VIEW, 001235 SQLITE_CREATE_TEMP_VIEW 001236 }; 001237 char *zDb = db->aDb[iDb].zDbSName; 001238 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 001239 goto begin_table_error; 001240 } 001241 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 001242 zName, 0, zDb) ){ 001243 goto begin_table_error; 001244 } 001245 } 001246 #endif 001247 001248 /* Make sure the new table name does not collide with an existing 001249 ** index or table name in the same database. Issue an error message if 001250 ** it does. The exception is if the statement being parsed was passed 001251 ** to an sqlite3_declare_vtab() call. In that case only the column names 001252 ** and types will be used, so there is no need to test for namespace 001253 ** collisions. 001254 */ 001255 if( !IN_SPECIAL_PARSE ){ 001256 char *zDb = db->aDb[iDb].zDbSName; 001257 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 001258 goto begin_table_error; 001259 } 001260 pTable = sqlite3FindTable(db, zName, zDb); 001261 if( pTable ){ 001262 if( !noErr ){ 001263 sqlite3ErrorMsg(pParse, "%s %T already exists", 001264 (IsView(pTable)? "view" : "table"), pName); 001265 }else{ 001266 assert( !db->init.busy || CORRUPT_DB ); 001267 sqlite3CodeVerifySchema(pParse, iDb); 001268 sqlite3ForceNotReadOnly(pParse); 001269 } 001270 goto begin_table_error; 001271 } 001272 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 001273 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 001274 goto begin_table_error; 001275 } 001276 } 001277 001278 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 001279 if( pTable==0 ){ 001280 assert( db->mallocFailed ); 001281 pParse->rc = SQLITE_NOMEM_BKPT; 001282 pParse->nErr++; 001283 goto begin_table_error; 001284 } 001285 pTable->zName = zName; 001286 pTable->iPKey = -1; 001287 pTable->pSchema = db->aDb[iDb].pSchema; 001288 pTable->nTabRef = 1; 001289 #ifdef SQLITE_DEFAULT_ROWEST 001290 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 001291 #else 001292 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 001293 #endif 001294 assert( pParse->pNewTable==0 ); 001295 pParse->pNewTable = pTable; 001296 001297 /* Begin generating the code that will insert the table record into 001298 ** the schema table. Note in particular that we must go ahead 001299 ** and allocate the record number for the table entry now. Before any 001300 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 001301 ** indices to be created and the table record must come before the 001302 ** indices. Hence, the record number for the table must be allocated 001303 ** now. 001304 */ 001305 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 001306 int addr1; 001307 int fileFormat; 001308 int reg1, reg2, reg3; 001309 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 001310 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 001311 sqlite3BeginWriteOperation(pParse, 1, iDb); 001312 001313 #ifndef SQLITE_OMIT_VIRTUALTABLE 001314 if( isVirtual ){ 001315 sqlite3VdbeAddOp0(v, OP_VBegin); 001316 } 001317 #endif 001318 001319 /* If the file format and encoding in the database have not been set, 001320 ** set them now. 001321 */ 001322 reg1 = pParse->regRowid = ++pParse->nMem; 001323 reg2 = pParse->regRoot = ++pParse->nMem; 001324 reg3 = ++pParse->nMem; 001325 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 001326 sqlite3VdbeUsesBtree(v, iDb); 001327 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 001328 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 001329 1 : SQLITE_MAX_FILE_FORMAT; 001330 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 001331 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 001332 sqlite3VdbeJumpHere(v, addr1); 001333 001334 /* This just creates a place-holder record in the sqlite_schema table. 001335 ** The record created does not contain anything yet. It will be replaced 001336 ** by the real entry in code generated at sqlite3EndTable(). 001337 ** 001338 ** The rowid for the new entry is left in register pParse->regRowid. 001339 ** The root page number of the new table is left in reg pParse->regRoot. 001340 ** The rowid and root page number values are needed by the code that 001341 ** sqlite3EndTable will generate. 001342 */ 001343 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 001344 if( isView || isVirtual ){ 001345 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 001346 }else 001347 #endif 001348 { 001349 assert( !pParse->bReturning ); 001350 pParse->u1.addrCrTab = 001351 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 001352 } 001353 sqlite3OpenSchemaTable(pParse, iDb); 001354 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 001355 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 001356 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 001357 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 001358 sqlite3VdbeAddOp0(v, OP_Close); 001359 } 001360 001361 /* Normal (non-error) return. */ 001362 return; 001363 001364 /* If an error occurs, we jump here */ 001365 begin_table_error: 001366 pParse->checkSchema = 1; 001367 sqlite3DbFree(db, zName); 001368 return; 001369 } 001370 001371 /* Set properties of a table column based on the (magical) 001372 ** name of the column. 001373 */ 001374 #if SQLITE_ENABLE_HIDDEN_COLUMNS 001375 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 001376 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ 001377 pCol->colFlags |= COLFLAG_HIDDEN; 001378 if( pTab ) pTab->tabFlags |= TF_HasHidden; 001379 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 001380 pTab->tabFlags |= TF_OOOHidden; 001381 } 001382 } 001383 #endif 001384 001385 /* 001386 ** Clean up the data structures associated with the RETURNING clause. 001387 */ 001388 static void sqlite3DeleteReturning(sqlite3 *db, void *pArg){ 001389 Returning *pRet = (Returning*)pArg; 001390 Hash *pHash; 001391 pHash = &(db->aDb[1].pSchema->trigHash); 001392 sqlite3HashInsert(pHash, pRet->zName, 0); 001393 sqlite3ExprListDelete(db, pRet->pReturnEL); 001394 sqlite3DbFree(db, pRet); 001395 } 001396 001397 /* 001398 ** Add the RETURNING clause to the parse currently underway. 001399 ** 001400 ** This routine creates a special TEMP trigger that will fire for each row 001401 ** of the DML statement. That TEMP trigger contains a single SELECT 001402 ** statement with a result set that is the argument of the RETURNING clause. 001403 ** The trigger has the Trigger.bReturning flag and an opcode of 001404 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 001405 ** knows to handle it specially. The TEMP trigger is automatically 001406 ** removed at the end of the parse. 001407 ** 001408 ** When this routine is called, we do not yet know if the RETURNING clause 001409 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 001410 ** RETURNING trigger instead. It will then be converted into the appropriate 001411 ** type on the first call to sqlite3TriggersExist(). 001412 */ 001413 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 001414 Returning *pRet; 001415 Hash *pHash; 001416 sqlite3 *db = pParse->db; 001417 if( pParse->pNewTrigger ){ 001418 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 001419 }else{ 001420 assert( pParse->bReturning==0 || pParse->ifNotExists ); 001421 } 001422 pParse->bReturning = 1; 001423 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 001424 if( pRet==0 ){ 001425 sqlite3ExprListDelete(db, pList); 001426 return; 001427 } 001428 pParse->u1.pReturning = pRet; 001429 pRet->pParse = pParse; 001430 pRet->pReturnEL = pList; 001431 sqlite3ParserAddCleanup(pParse, sqlite3DeleteReturning, pRet); 001432 testcase( pParse->earlyCleanup ); 001433 if( db->mallocFailed ) return; 001434 sqlite3_snprintf(sizeof(pRet->zName), pRet->zName, 001435 "sqlite_returning_%p", pParse); 001436 pRet->retTrig.zName = pRet->zName; 001437 pRet->retTrig.op = TK_RETURNING; 001438 pRet->retTrig.tr_tm = TRIGGER_AFTER; 001439 pRet->retTrig.bReturning = 1; 001440 pRet->retTrig.pSchema = db->aDb[1].pSchema; 001441 pRet->retTrig.pTabSchema = db->aDb[1].pSchema; 001442 pRet->retTrig.step_list = &pRet->retTStep; 001443 pRet->retTStep.op = TK_RETURNING; 001444 pRet->retTStep.pTrig = &pRet->retTrig; 001445 pRet->retTStep.pExprList = pList; 001446 pHash = &(db->aDb[1].pSchema->trigHash); 001447 assert( sqlite3HashFind(pHash, pRet->zName)==0 001448 || pParse->nErr || pParse->ifNotExists ); 001449 if( sqlite3HashInsert(pHash, pRet->zName, &pRet->retTrig) 001450 ==&pRet->retTrig ){ 001451 sqlite3OomFault(db); 001452 } 001453 } 001454 001455 /* 001456 ** Add a new column to the table currently being constructed. 001457 ** 001458 ** The parser calls this routine once for each column declaration 001459 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 001460 ** first to get things going. Then this routine is called for each 001461 ** column. 001462 */ 001463 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ 001464 Table *p; 001465 int i; 001466 char *z; 001467 char *zType; 001468 Column *pCol; 001469 sqlite3 *db = pParse->db; 001470 u8 hName; 001471 Column *aNew; 001472 u8 eType = COLTYPE_CUSTOM; 001473 u8 szEst = 1; 001474 char affinity = SQLITE_AFF_BLOB; 001475 001476 if( (p = pParse->pNewTable)==0 ) return; 001477 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 001478 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 001479 return; 001480 } 001481 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); 001482 001483 /* Because keywords GENERATE ALWAYS can be converted into identifiers 001484 ** by the parser, we can sometimes end up with a typename that ends 001485 ** with "generated always". Check for this case and omit the surplus 001486 ** text. */ 001487 if( sType.n>=16 001488 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 001489 ){ 001490 sType.n -= 6; 001491 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 001492 if( sType.n>=9 001493 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 001494 ){ 001495 sType.n -= 9; 001496 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; 001497 } 001498 } 001499 001500 /* Check for standard typenames. For standard typenames we will 001501 ** set the Column.eType field rather than storing the typename after 001502 ** the column name, in order to save space. */ 001503 if( sType.n>=3 ){ 001504 sqlite3DequoteToken(&sType); 001505 for(i=0; i<SQLITE_N_STDTYPE; i++){ 001506 if( sType.n==sqlite3StdTypeLen[i] 001507 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0 001508 ){ 001509 sType.n = 0; 001510 eType = i+1; 001511 affinity = sqlite3StdTypeAffinity[i]; 001512 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5; 001513 break; 001514 } 001515 } 001516 } 001517 001518 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) ); 001519 if( z==0 ) return; 001520 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); 001521 memcpy(z, sName.z, sName.n); 001522 z[sName.n] = 0; 001523 sqlite3Dequote(z); 001524 hName = sqlite3StrIHash(z); 001525 for(i=0; i<p->nCol; i++){ 001526 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ 001527 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 001528 sqlite3DbFree(db, z); 001529 return; 001530 } 001531 } 001532 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); 001533 if( aNew==0 ){ 001534 sqlite3DbFree(db, z); 001535 return; 001536 } 001537 p->aCol = aNew; 001538 pCol = &p->aCol[p->nCol]; 001539 memset(pCol, 0, sizeof(p->aCol[0])); 001540 pCol->zCnName = z; 001541 pCol->hName = hName; 001542 sqlite3ColumnPropertiesFromName(p, pCol); 001543 001544 if( sType.n==0 ){ 001545 /* If there is no type specified, columns have the default affinity 001546 ** 'BLOB' with a default size of 4 bytes. */ 001547 pCol->affinity = affinity; 001548 pCol->eCType = eType; 001549 pCol->szEst = szEst; 001550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 001551 if( affinity==SQLITE_AFF_BLOB ){ 001552 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 001553 pCol->colFlags |= COLFLAG_SORTERREF; 001554 } 001555 } 001556 #endif 001557 }else{ 001558 zType = z + sqlite3Strlen30(z) + 1; 001559 memcpy(zType, sType.z, sType.n); 001560 zType[sType.n] = 0; 001561 sqlite3Dequote(zType); 001562 pCol->affinity = sqlite3AffinityType(zType, pCol); 001563 pCol->colFlags |= COLFLAG_HASTYPE; 001564 } 001565 p->nCol++; 001566 p->nNVCol++; 001567 pParse->constraintName.n = 0; 001568 } 001569 001570 /* 001571 ** This routine is called by the parser while in the middle of 001572 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 001573 ** been seen on a column. This routine sets the notNull flag on 001574 ** the column currently under construction. 001575 */ 001576 void sqlite3AddNotNull(Parse *pParse, int onError){ 001577 Table *p; 001578 Column *pCol; 001579 p = pParse->pNewTable; 001580 if( p==0 || NEVER(p->nCol<1) ) return; 001581 pCol = &p->aCol[p->nCol-1]; 001582 pCol->notNull = (u8)onError; 001583 p->tabFlags |= TF_HasNotNull; 001584 001585 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 001586 ** on this column. */ 001587 if( pCol->colFlags & COLFLAG_UNIQUE ){ 001588 Index *pIdx; 001589 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 001590 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 001591 if( pIdx->aiColumn[0]==p->nCol-1 ){ 001592 pIdx->uniqNotNull = 1; 001593 } 001594 } 001595 } 001596 } 001597 001598 /* 001599 ** Scan the column type name zType (length nType) and return the 001600 ** associated affinity type. 001601 ** 001602 ** This routine does a case-independent search of zType for the 001603 ** substrings in the following table. If one of the substrings is 001604 ** found, the corresponding affinity is returned. If zType contains 001605 ** more than one of the substrings, entries toward the top of 001606 ** the table take priority. For example, if zType is 'BLOBINT', 001607 ** SQLITE_AFF_INTEGER is returned. 001608 ** 001609 ** Substring | Affinity 001610 ** -------------------------------- 001611 ** 'INT' | SQLITE_AFF_INTEGER 001612 ** 'CHAR' | SQLITE_AFF_TEXT 001613 ** 'CLOB' | SQLITE_AFF_TEXT 001614 ** 'TEXT' | SQLITE_AFF_TEXT 001615 ** 'BLOB' | SQLITE_AFF_BLOB 001616 ** 'REAL' | SQLITE_AFF_REAL 001617 ** 'FLOA' | SQLITE_AFF_REAL 001618 ** 'DOUB' | SQLITE_AFF_REAL 001619 ** 001620 ** If none of the substrings in the above table are found, 001621 ** SQLITE_AFF_NUMERIC is returned. 001622 */ 001623 char sqlite3AffinityType(const char *zIn, Column *pCol){ 001624 u32 h = 0; 001625 char aff = SQLITE_AFF_NUMERIC; 001626 const char *zChar = 0; 001627 001628 assert( zIn!=0 ); 001629 while( zIn[0] ){ 001630 u8 x = *(u8*)zIn; 001631 h = (h<<8) + sqlite3UpperToLower[x]; 001632 zIn++; 001633 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 001634 aff = SQLITE_AFF_TEXT; 001635 zChar = zIn; 001636 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 001637 aff = SQLITE_AFF_TEXT; 001638 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 001639 aff = SQLITE_AFF_TEXT; 001640 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 001641 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 001642 aff = SQLITE_AFF_BLOB; 001643 if( zIn[0]=='(' ) zChar = zIn; 001644 #ifndef SQLITE_OMIT_FLOATING_POINT 001645 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 001646 && aff==SQLITE_AFF_NUMERIC ){ 001647 aff = SQLITE_AFF_REAL; 001648 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 001649 && aff==SQLITE_AFF_NUMERIC ){ 001650 aff = SQLITE_AFF_REAL; 001651 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 001652 && aff==SQLITE_AFF_NUMERIC ){ 001653 aff = SQLITE_AFF_REAL; 001654 #endif 001655 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 001656 aff = SQLITE_AFF_INTEGER; 001657 break; 001658 } 001659 } 001660 001661 /* If pCol is not NULL, store an estimate of the field size. The 001662 ** estimate is scaled so that the size of an integer is 1. */ 001663 if( pCol ){ 001664 int v = 0; /* default size is approx 4 bytes */ 001665 if( aff<SQLITE_AFF_NUMERIC ){ 001666 if( zChar ){ 001667 while( zChar[0] ){ 001668 if( sqlite3Isdigit(zChar[0]) ){ 001669 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 001670 sqlite3GetInt32(zChar, &v); 001671 break; 001672 } 001673 zChar++; 001674 } 001675 }else{ 001676 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 001677 } 001678 } 001679 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 001680 if( v>=sqlite3GlobalConfig.szSorterRef ){ 001681 pCol->colFlags |= COLFLAG_SORTERREF; 001682 } 001683 #endif 001684 v = v/4 + 1; 001685 if( v>255 ) v = 255; 001686 pCol->szEst = v; 001687 } 001688 return aff; 001689 } 001690 001691 /* 001692 ** The expression is the default value for the most recently added column 001693 ** of the table currently under construction. 001694 ** 001695 ** Default value expressions must be constant. Raise an exception if this 001696 ** is not the case. 001697 ** 001698 ** This routine is called by the parser while in the middle of 001699 ** parsing a CREATE TABLE statement. 001700 */ 001701 void sqlite3AddDefaultValue( 001702 Parse *pParse, /* Parsing context */ 001703 Expr *pExpr, /* The parsed expression of the default value */ 001704 const char *zStart, /* Start of the default value text */ 001705 const char *zEnd /* First character past end of default value text */ 001706 ){ 001707 Table *p; 001708 Column *pCol; 001709 sqlite3 *db = pParse->db; 001710 p = pParse->pNewTable; 001711 if( p!=0 ){ 001712 int isInit = db->init.busy && db->init.iDb!=1; 001713 pCol = &(p->aCol[p->nCol-1]); 001714 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 001715 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 001716 pCol->zCnName); 001717 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001718 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 001719 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001720 testcase( pCol->colFlags & COLFLAG_STORED ); 001721 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 001722 #endif 001723 }else{ 001724 /* A copy of pExpr is used instead of the original, as pExpr contains 001725 ** tokens that point to volatile memory. 001726 */ 001727 Expr x, *pDfltExpr; 001728 memset(&x, 0, sizeof(x)); 001729 x.op = TK_SPAN; 001730 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 001731 x.pLeft = pExpr; 001732 x.flags = EP_Skip; 001733 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 001734 sqlite3DbFree(db, x.u.zToken); 001735 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); 001736 } 001737 } 001738 if( IN_RENAME_OBJECT ){ 001739 sqlite3RenameExprUnmap(pParse, pExpr); 001740 } 001741 sqlite3ExprDelete(db, pExpr); 001742 } 001743 001744 /* 001745 ** Backwards Compatibility Hack: 001746 ** 001747 ** Historical versions of SQLite accepted strings as column names in 001748 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 001749 ** 001750 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 001751 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 001752 ** 001753 ** This is goofy. But to preserve backwards compatibility we continue to 001754 ** accept it. This routine does the necessary conversion. It converts 001755 ** the expression given in its argument from a TK_STRING into a TK_ID 001756 ** if the expression is just a TK_STRING with an optional COLLATE clause. 001757 ** If the expression is anything other than TK_STRING, the expression is 001758 ** unchanged. 001759 */ 001760 static void sqlite3StringToId(Expr *p){ 001761 if( p->op==TK_STRING ){ 001762 p->op = TK_ID; 001763 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 001764 p->pLeft->op = TK_ID; 001765 } 001766 } 001767 001768 /* 001769 ** Tag the given column as being part of the PRIMARY KEY 001770 */ 001771 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 001772 pCol->colFlags |= COLFLAG_PRIMKEY; 001773 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001774 if( pCol->colFlags & COLFLAG_GENERATED ){ 001775 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001776 testcase( pCol->colFlags & COLFLAG_STORED ); 001777 sqlite3ErrorMsg(pParse, 001778 "generated columns cannot be part of the PRIMARY KEY"); 001779 } 001780 #endif 001781 } 001782 001783 /* 001784 ** Designate the PRIMARY KEY for the table. pList is a list of names 001785 ** of columns that form the primary key. If pList is NULL, then the 001786 ** most recently added column of the table is the primary key. 001787 ** 001788 ** A table can have at most one primary key. If the table already has 001789 ** a primary key (and this is the second primary key) then create an 001790 ** error. 001791 ** 001792 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 001793 ** then we will try to use that column as the rowid. Set the Table.iPKey 001794 ** field of the table under construction to be the index of the 001795 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 001796 ** no INTEGER PRIMARY KEY. 001797 ** 001798 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 001799 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 001800 */ 001801 void sqlite3AddPrimaryKey( 001802 Parse *pParse, /* Parsing context */ 001803 ExprList *pList, /* List of field names to be indexed */ 001804 int onError, /* What to do with a uniqueness conflict */ 001805 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 001806 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 001807 ){ 001808 Table *pTab = pParse->pNewTable; 001809 Column *pCol = 0; 001810 int iCol = -1, i; 001811 int nTerm; 001812 if( pTab==0 ) goto primary_key_exit; 001813 if( pTab->tabFlags & TF_HasPrimaryKey ){ 001814 sqlite3ErrorMsg(pParse, 001815 "table \"%s\" has more than one primary key", pTab->zName); 001816 goto primary_key_exit; 001817 } 001818 pTab->tabFlags |= TF_HasPrimaryKey; 001819 if( pList==0 ){ 001820 iCol = pTab->nCol - 1; 001821 pCol = &pTab->aCol[iCol]; 001822 makeColumnPartOfPrimaryKey(pParse, pCol); 001823 nTerm = 1; 001824 }else{ 001825 nTerm = pList->nExpr; 001826 for(i=0; i<nTerm; i++){ 001827 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 001828 assert( pCExpr!=0 ); 001829 sqlite3StringToId(pCExpr); 001830 if( pCExpr->op==TK_ID ){ 001831 const char *zCName; 001832 assert( !ExprHasProperty(pCExpr, EP_IntValue) ); 001833 zCName = pCExpr->u.zToken; 001834 for(iCol=0; iCol<pTab->nCol; iCol++){ 001835 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ 001836 pCol = &pTab->aCol[iCol]; 001837 makeColumnPartOfPrimaryKey(pParse, pCol); 001838 break; 001839 } 001840 } 001841 } 001842 } 001843 } 001844 if( nTerm==1 001845 && pCol 001846 && pCol->eCType==COLTYPE_INTEGER 001847 && sortOrder!=SQLITE_SO_DESC 001848 ){ 001849 if( IN_RENAME_OBJECT && pList ){ 001850 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 001851 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 001852 } 001853 pTab->iPKey = iCol; 001854 pTab->keyConf = (u8)onError; 001855 assert( autoInc==0 || autoInc==1 ); 001856 pTab->tabFlags |= autoInc*TF_Autoincrement; 001857 if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags; 001858 (void)sqlite3HasExplicitNulls(pParse, pList); 001859 }else if( autoInc ){ 001860 #ifndef SQLITE_OMIT_AUTOINCREMENT 001861 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 001862 "INTEGER PRIMARY KEY"); 001863 #endif 001864 }else{ 001865 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 001866 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 001867 pList = 0; 001868 } 001869 001870 primary_key_exit: 001871 sqlite3ExprListDelete(pParse->db, pList); 001872 return; 001873 } 001874 001875 /* 001876 ** Add a new CHECK constraint to the table currently under construction. 001877 */ 001878 void sqlite3AddCheckConstraint( 001879 Parse *pParse, /* Parsing context */ 001880 Expr *pCheckExpr, /* The check expression */ 001881 const char *zStart, /* Opening "(" */ 001882 const char *zEnd /* Closing ")" */ 001883 ){ 001884 #ifndef SQLITE_OMIT_CHECK 001885 Table *pTab = pParse->pNewTable; 001886 sqlite3 *db = pParse->db; 001887 if( pTab && !IN_DECLARE_VTAB 001888 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 001889 ){ 001890 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 001891 if( pParse->constraintName.n ){ 001892 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 001893 }else{ 001894 Token t; 001895 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 001896 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 001897 t.z = zStart; 001898 t.n = (int)(zEnd - t.z); 001899 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 001900 } 001901 }else 001902 #endif 001903 { 001904 sqlite3ExprDelete(pParse->db, pCheckExpr); 001905 } 001906 } 001907 001908 /* 001909 ** Set the collation function of the most recently parsed table column 001910 ** to the CollSeq given. 001911 */ 001912 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 001913 Table *p; 001914 int i; 001915 char *zColl; /* Dequoted name of collation sequence */ 001916 sqlite3 *db; 001917 001918 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 001919 i = p->nCol-1; 001920 db = pParse->db; 001921 zColl = sqlite3NameFromToken(db, pToken); 001922 if( !zColl ) return; 001923 001924 if( sqlite3LocateCollSeq(pParse, zColl) ){ 001925 Index *pIdx; 001926 sqlite3ColumnSetColl(db, &p->aCol[i], zColl); 001927 001928 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 001929 ** then an index may have been created on this column before the 001930 ** collation type was added. Correct this if it is the case. 001931 */ 001932 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 001933 assert( pIdx->nKeyCol==1 ); 001934 if( pIdx->aiColumn[0]==i ){ 001935 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); 001936 } 001937 } 001938 } 001939 sqlite3DbFree(db, zColl); 001940 } 001941 001942 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 001943 ** column. 001944 */ 001945 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 001946 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001947 u8 eType = COLFLAG_VIRTUAL; 001948 Table *pTab = pParse->pNewTable; 001949 Column *pCol; 001950 if( pTab==0 ){ 001951 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 001952 goto generated_done; 001953 } 001954 pCol = &(pTab->aCol[pTab->nCol-1]); 001955 if( IN_DECLARE_VTAB ){ 001956 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 001957 goto generated_done; 001958 } 001959 if( pCol->iDflt>0 ) goto generated_error; 001960 if( pType ){ 001961 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 001962 /* no-op */ 001963 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 001964 eType = COLFLAG_STORED; 001965 }else{ 001966 goto generated_error; 001967 } 001968 } 001969 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 001970 pCol->colFlags |= eType; 001971 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 001972 assert( TF_HasStored==COLFLAG_STORED ); 001973 pTab->tabFlags |= eType; 001974 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 001975 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 001976 } 001977 if( ALWAYS(pExpr) && pExpr->op==TK_ID ){ 001978 /* The value of a generated column needs to be a real expression, not 001979 ** just a reference to another column, in order for covering index 001980 ** optimizations to work correctly. So if the value is not an expression, 001981 ** turn it into one by adding a unary "+" operator. */ 001982 pExpr = sqlite3PExpr(pParse, TK_UPLUS, pExpr, 0); 001983 } 001984 if( pExpr && pExpr->op!=TK_RAISE ) pExpr->affExpr = pCol->affinity; 001985 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); 001986 pExpr = 0; 001987 goto generated_done; 001988 001989 generated_error: 001990 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 001991 pCol->zCnName); 001992 generated_done: 001993 sqlite3ExprDelete(pParse->db, pExpr); 001994 #else 001995 /* Throw and error for the GENERATED ALWAYS AS clause if the 001996 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 001997 sqlite3ErrorMsg(pParse, "generated columns not supported"); 001998 sqlite3ExprDelete(pParse->db, pExpr); 001999 #endif 002000 } 002001 002002 /* 002003 ** Generate code that will increment the schema cookie. 002004 ** 002005 ** The schema cookie is used to determine when the schema for the 002006 ** database changes. After each schema change, the cookie value 002007 ** changes. When a process first reads the schema it records the 002008 ** cookie. Thereafter, whenever it goes to access the database, 002009 ** it checks the cookie to make sure the schema has not changed 002010 ** since it was last read. 002011 ** 002012 ** This plan is not completely bullet-proof. It is possible for 002013 ** the schema to change multiple times and for the cookie to be 002014 ** set back to prior value. But schema changes are infrequent 002015 ** and the probability of hitting the same cookie value is only 002016 ** 1 chance in 2^32. So we're safe enough. 002017 ** 002018 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 002019 ** the schema-version whenever the schema changes. 002020 */ 002021 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 002022 sqlite3 *db = pParse->db; 002023 Vdbe *v = pParse->pVdbe; 002024 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 002025 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 002026 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 002027 } 002028 002029 /* 002030 ** Measure the number of characters needed to output the given 002031 ** identifier. The number returned includes any quotes used 002032 ** but does not include the null terminator. 002033 ** 002034 ** The estimate is conservative. It might be larger that what is 002035 ** really needed. 002036 */ 002037 static int identLength(const char *z){ 002038 int n; 002039 for(n=0; *z; n++, z++){ 002040 if( *z=='"' ){ n++; } 002041 } 002042 return n + 2; 002043 } 002044 002045 /* 002046 ** The first parameter is a pointer to an output buffer. The second 002047 ** parameter is a pointer to an integer that contains the offset at 002048 ** which to write into the output buffer. This function copies the 002049 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 002050 ** to the specified offset in the buffer and updates *pIdx to refer 002051 ** to the first byte after the last byte written before returning. 002052 ** 002053 ** If the string zSignedIdent consists entirely of alphanumeric 002054 ** characters, does not begin with a digit and is not an SQL keyword, 002055 ** then it is copied to the output buffer exactly as it is. Otherwise, 002056 ** it is quoted using double-quotes. 002057 */ 002058 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 002059 unsigned char *zIdent = (unsigned char*)zSignedIdent; 002060 int i, j, needQuote; 002061 i = *pIdx; 002062 002063 for(j=0; zIdent[j]; j++){ 002064 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 002065 } 002066 needQuote = sqlite3Isdigit(zIdent[0]) 002067 || sqlite3KeywordCode(zIdent, j)!=TK_ID 002068 || zIdent[j]!=0 002069 || j==0; 002070 002071 if( needQuote ) z[i++] = '"'; 002072 for(j=0; zIdent[j]; j++){ 002073 z[i++] = zIdent[j]; 002074 if( zIdent[j]=='"' ) z[i++] = '"'; 002075 } 002076 if( needQuote ) z[i++] = '"'; 002077 z[i] = 0; 002078 *pIdx = i; 002079 } 002080 002081 /* 002082 ** Generate a CREATE TABLE statement appropriate for the given 002083 ** table. Memory to hold the text of the statement is obtained 002084 ** from sqliteMalloc() and must be freed by the calling function. 002085 */ 002086 static char *createTableStmt(sqlite3 *db, Table *p){ 002087 int i, k, n; 002088 char *zStmt; 002089 char *zSep, *zSep2, *zEnd; 002090 Column *pCol; 002091 n = 0; 002092 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 002093 n += identLength(pCol->zCnName) + 5; 002094 } 002095 n += identLength(p->zName); 002096 if( n<50 ){ 002097 zSep = ""; 002098 zSep2 = ","; 002099 zEnd = ")"; 002100 }else{ 002101 zSep = "\n "; 002102 zSep2 = ",\n "; 002103 zEnd = "\n)"; 002104 } 002105 n += 35 + 6*p->nCol; 002106 zStmt = sqlite3DbMallocRaw(0, n); 002107 if( zStmt==0 ){ 002108 sqlite3OomFault(db); 002109 return 0; 002110 } 002111 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 002112 k = sqlite3Strlen30(zStmt); 002113 identPut(zStmt, &k, p->zName); 002114 zStmt[k++] = '('; 002115 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 002116 static const char * const azType[] = { 002117 /* SQLITE_AFF_BLOB */ "", 002118 /* SQLITE_AFF_TEXT */ " TEXT", 002119 /* SQLITE_AFF_NUMERIC */ " NUM", 002120 /* SQLITE_AFF_INTEGER */ " INT", 002121 /* SQLITE_AFF_REAL */ " REAL", 002122 /* SQLITE_AFF_FLEXNUM */ " NUM", 002123 }; 002124 int len; 002125 const char *zType; 002126 002127 sqlite3_snprintf(n-k, &zStmt[k], zSep); 002128 k += sqlite3Strlen30(&zStmt[k]); 002129 zSep = zSep2; 002130 identPut(zStmt, &k, pCol->zCnName); 002131 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 002132 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 002133 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 002134 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 002135 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 002136 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 002137 testcase( pCol->affinity==SQLITE_AFF_REAL ); 002138 testcase( pCol->affinity==SQLITE_AFF_FLEXNUM ); 002139 002140 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 002141 len = sqlite3Strlen30(zType); 002142 assert( pCol->affinity==SQLITE_AFF_BLOB 002143 || pCol->affinity==SQLITE_AFF_FLEXNUM 002144 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 002145 memcpy(&zStmt[k], zType, len); 002146 k += len; 002147 assert( k<=n ); 002148 } 002149 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 002150 return zStmt; 002151 } 002152 002153 /* 002154 ** Resize an Index object to hold N columns total. Return SQLITE_OK 002155 ** on success and SQLITE_NOMEM on an OOM error. 002156 */ 002157 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 002158 char *zExtra; 002159 int nByte; 002160 if( pIdx->nColumn>=N ) return SQLITE_OK; 002161 assert( pIdx->isResized==0 ); 002162 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 002163 zExtra = sqlite3DbMallocZero(db, nByte); 002164 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 002165 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 002166 pIdx->azColl = (const char**)zExtra; 002167 zExtra += sizeof(char*)*N; 002168 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 002169 pIdx->aiRowLogEst = (LogEst*)zExtra; 002170 zExtra += sizeof(LogEst)*N; 002171 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 002172 pIdx->aiColumn = (i16*)zExtra; 002173 zExtra += sizeof(i16)*N; 002174 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 002175 pIdx->aSortOrder = (u8*)zExtra; 002176 pIdx->nColumn = N; 002177 pIdx->isResized = 1; 002178 return SQLITE_OK; 002179 } 002180 002181 /* 002182 ** Estimate the total row width for a table. 002183 */ 002184 static void estimateTableWidth(Table *pTab){ 002185 unsigned wTable = 0; 002186 const Column *pTabCol; 002187 int i; 002188 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 002189 wTable += pTabCol->szEst; 002190 } 002191 if( pTab->iPKey<0 ) wTable++; 002192 pTab->szTabRow = sqlite3LogEst(wTable*4); 002193 } 002194 002195 /* 002196 ** Estimate the average size of a row for an index. 002197 */ 002198 static void estimateIndexWidth(Index *pIdx){ 002199 unsigned wIndex = 0; 002200 int i; 002201 const Column *aCol = pIdx->pTable->aCol; 002202 for(i=0; i<pIdx->nColumn; i++){ 002203 i16 x = pIdx->aiColumn[i]; 002204 assert( x<pIdx->pTable->nCol ); 002205 wIndex += x<0 ? 1 : aCol[x].szEst; 002206 } 002207 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 002208 } 002209 002210 /* Return true if column number x is any of the first nCol entries of aiCol[]. 002211 ** This is used to determine if the column number x appears in any of the 002212 ** first nCol entries of an index. 002213 */ 002214 static int hasColumn(const i16 *aiCol, int nCol, int x){ 002215 while( nCol-- > 0 ){ 002216 if( x==*(aiCol++) ){ 002217 return 1; 002218 } 002219 } 002220 return 0; 002221 } 002222 002223 /* 002224 ** Return true if any of the first nKey entries of index pIdx exactly 002225 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 002226 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 002227 ** or may not be the same index as pPk. 002228 ** 002229 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 002230 ** not a rowid or expression. 002231 ** 002232 ** This routine differs from hasColumn() in that both the column and the 002233 ** collating sequence must match for this routine, but for hasColumn() only 002234 ** the column name must match. 002235 */ 002236 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 002237 int i, j; 002238 assert( nKey<=pIdx->nColumn ); 002239 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 002240 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 002241 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 002242 assert( pPk->pTable==pIdx->pTable ); 002243 testcase( pPk==pIdx ); 002244 j = pPk->aiColumn[iCol]; 002245 assert( j!=XN_ROWID && j!=XN_EXPR ); 002246 for(i=0; i<nKey; i++){ 002247 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 002248 if( pIdx->aiColumn[i]==j 002249 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 002250 ){ 002251 return 1; 002252 } 002253 } 002254 return 0; 002255 } 002256 002257 /* Recompute the colNotIdxed field of the Index. 002258 ** 002259 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 002260 ** columns that are within the first 63 columns of the table and a 1 for 002261 ** all other bits (all columns that are not in the index). The 002262 ** high-order bit of colNotIdxed is always 1. All unindexed columns 002263 ** of the table have a 1. 002264 ** 002265 ** 2019-10-24: For the purpose of this computation, virtual columns are 002266 ** not considered to be covered by the index, even if they are in the 002267 ** index, because we do not trust the logic in whereIndexExprTrans() to be 002268 ** able to find all instances of a reference to the indexed table column 002269 ** and convert them into references to the index. Hence we always want 002270 ** the actual table at hand in order to recompute the virtual column, if 002271 ** necessary. 002272 ** 002273 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 002274 ** to determine if the index is covering index. 002275 */ 002276 static void recomputeColumnsNotIndexed(Index *pIdx){ 002277 Bitmask m = 0; 002278 int j; 002279 Table *pTab = pIdx->pTable; 002280 for(j=pIdx->nColumn-1; j>=0; j--){ 002281 int x = pIdx->aiColumn[j]; 002282 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 002283 testcase( x==BMS-1 ); 002284 testcase( x==BMS-2 ); 002285 if( x<BMS-1 ) m |= MASKBIT(x); 002286 } 002287 } 002288 pIdx->colNotIdxed = ~m; 002289 assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */ 002290 } 002291 002292 /* 002293 ** This routine runs at the end of parsing a CREATE TABLE statement that 002294 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 002295 ** internal schema data structures and the generated VDBE code so that they 002296 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 002297 ** Changes include: 002298 ** 002299 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 002300 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 002301 ** into BTREE_BLOBKEY. 002302 ** (3) Bypass the creation of the sqlite_schema table entry 002303 ** for the PRIMARY KEY as the primary key index is now 002304 ** identified by the sqlite_schema table entry of the table itself. 002305 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 002306 ** schema to the rootpage from the main table. 002307 ** (5) Add all table columns to the PRIMARY KEY Index object 002308 ** so that the PRIMARY KEY is a covering index. The surplus 002309 ** columns are part of KeyInfo.nAllField and are not used for 002310 ** sorting or lookup or uniqueness checks. 002311 ** (6) Replace the rowid tail on all automatically generated UNIQUE 002312 ** indices with the PRIMARY KEY columns. 002313 ** 002314 ** For virtual tables, only (1) is performed. 002315 */ 002316 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 002317 Index *pIdx; 002318 Index *pPk; 002319 int nPk; 002320 int nExtra; 002321 int i, j; 002322 sqlite3 *db = pParse->db; 002323 Vdbe *v = pParse->pVdbe; 002324 002325 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 002326 */ 002327 if( !db->init.imposterTable ){ 002328 for(i=0; i<pTab->nCol; i++){ 002329 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 002330 && (pTab->aCol[i].notNull==OE_None) 002331 ){ 002332 pTab->aCol[i].notNull = OE_Abort; 002333 } 002334 } 002335 pTab->tabFlags |= TF_HasNotNull; 002336 } 002337 002338 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 002339 ** into BTREE_BLOBKEY. 002340 */ 002341 assert( !pParse->bReturning ); 002342 if( pParse->u1.addrCrTab ){ 002343 assert( v ); 002344 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 002345 } 002346 002347 /* Locate the PRIMARY KEY index. Or, if this table was originally 002348 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 002349 */ 002350 if( pTab->iPKey>=0 ){ 002351 ExprList *pList; 002352 Token ipkToken; 002353 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); 002354 pList = sqlite3ExprListAppend(pParse, 0, 002355 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 002356 if( pList==0 ){ 002357 pTab->tabFlags &= ~TF_WithoutRowid; 002358 return; 002359 } 002360 if( IN_RENAME_OBJECT ){ 002361 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 002362 } 002363 pList->a[0].fg.sortFlags = pParse->iPkSortOrder; 002364 assert( pParse->pNewTable==pTab ); 002365 pTab->iPKey = -1; 002366 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 002367 SQLITE_IDXTYPE_PRIMARYKEY); 002368 if( pParse->nErr ){ 002369 pTab->tabFlags &= ~TF_WithoutRowid; 002370 return; 002371 } 002372 assert( db->mallocFailed==0 ); 002373 pPk = sqlite3PrimaryKeyIndex(pTab); 002374 assert( pPk->nKeyCol==1 ); 002375 }else{ 002376 pPk = sqlite3PrimaryKeyIndex(pTab); 002377 assert( pPk!=0 ); 002378 002379 /* 002380 ** Remove all redundant columns from the PRIMARY KEY. For example, change 002381 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 002382 ** code assumes the PRIMARY KEY contains no repeated columns. 002383 */ 002384 for(i=j=1; i<pPk->nKeyCol; i++){ 002385 if( isDupColumn(pPk, j, pPk, i) ){ 002386 pPk->nColumn--; 002387 }else{ 002388 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 002389 pPk->azColl[j] = pPk->azColl[i]; 002390 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 002391 pPk->aiColumn[j++] = pPk->aiColumn[i]; 002392 } 002393 } 002394 pPk->nKeyCol = j; 002395 } 002396 assert( pPk!=0 ); 002397 pPk->isCovering = 1; 002398 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 002399 nPk = pPk->nColumn = pPk->nKeyCol; 002400 002401 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 002402 ** table entry. This is only required if currently generating VDBE 002403 ** code for a CREATE TABLE (not when parsing one as part of reading 002404 ** a database schema). */ 002405 if( v && pPk->tnum>0 ){ 002406 assert( db->init.busy==0 ); 002407 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 002408 } 002409 002410 /* The root page of the PRIMARY KEY is the table root page */ 002411 pPk->tnum = pTab->tnum; 002412 002413 /* Update the in-memory representation of all UNIQUE indices by converting 002414 ** the final rowid column into one or more columns of the PRIMARY KEY. 002415 */ 002416 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 002417 int n; 002418 if( IsPrimaryKeyIndex(pIdx) ) continue; 002419 for(i=n=0; i<nPk; i++){ 002420 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 002421 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 002422 n++; 002423 } 002424 } 002425 if( n==0 ){ 002426 /* This index is a superset of the primary key */ 002427 pIdx->nColumn = pIdx->nKeyCol; 002428 continue; 002429 } 002430 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 002431 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 002432 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 002433 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 002434 pIdx->aiColumn[j] = pPk->aiColumn[i]; 002435 pIdx->azColl[j] = pPk->azColl[i]; 002436 if( pPk->aSortOrder[i] ){ 002437 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 002438 pIdx->bAscKeyBug = 1; 002439 } 002440 j++; 002441 } 002442 } 002443 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 002444 assert( pIdx->nColumn>=j ); 002445 } 002446 002447 /* Add all table columns to the PRIMARY KEY index 002448 */ 002449 nExtra = 0; 002450 for(i=0; i<pTab->nCol; i++){ 002451 if( !hasColumn(pPk->aiColumn, nPk, i) 002452 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 002453 } 002454 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 002455 for(i=0, j=nPk; i<pTab->nCol; i++){ 002456 if( !hasColumn(pPk->aiColumn, j, i) 002457 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 002458 ){ 002459 assert( j<pPk->nColumn ); 002460 pPk->aiColumn[j] = i; 002461 pPk->azColl[j] = sqlite3StrBINARY; 002462 j++; 002463 } 002464 } 002465 assert( pPk->nColumn==j ); 002466 assert( pTab->nNVCol<=j ); 002467 recomputeColumnsNotIndexed(pPk); 002468 } 002469 002470 002471 #ifndef SQLITE_OMIT_VIRTUALTABLE 002472 /* 002473 ** Return true if pTab is a virtual table and zName is a shadow table name 002474 ** for that virtual table. 002475 */ 002476 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 002477 int nName; /* Length of zName */ 002478 Module *pMod; /* Module for the virtual table */ 002479 002480 if( !IsVirtual(pTab) ) return 0; 002481 nName = sqlite3Strlen30(pTab->zName); 002482 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 002483 if( zName[nName]!='_' ) return 0; 002484 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 002485 if( pMod==0 ) return 0; 002486 if( pMod->pModule->iVersion<3 ) return 0; 002487 if( pMod->pModule->xShadowName==0 ) return 0; 002488 return pMod->pModule->xShadowName(zName+nName+1); 002489 } 002490 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 002491 002492 #ifndef SQLITE_OMIT_VIRTUALTABLE 002493 /* 002494 ** Table pTab is a virtual table. If it the virtual table implementation 002495 ** exists and has an xShadowName method, then loop over all other ordinary 002496 ** tables within the same schema looking for shadow tables of pTab, and mark 002497 ** any shadow tables seen using the TF_Shadow flag. 002498 */ 002499 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ 002500 int nName; /* Length of pTab->zName */ 002501 Module *pMod; /* Module for the virtual table */ 002502 HashElem *k; /* For looping through the symbol table */ 002503 002504 assert( IsVirtual(pTab) ); 002505 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); 002506 if( pMod==0 ) return; 002507 if( NEVER(pMod->pModule==0) ) return; 002508 if( pMod->pModule->iVersion<3 ) return; 002509 if( pMod->pModule->xShadowName==0 ) return; 002510 assert( pTab->zName!=0 ); 002511 nName = sqlite3Strlen30(pTab->zName); 002512 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ 002513 Table *pOther = sqliteHashData(k); 002514 assert( pOther->zName!=0 ); 002515 if( !IsOrdinaryTable(pOther) ) continue; 002516 if( pOther->tabFlags & TF_Shadow ) continue; 002517 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 002518 && pOther->zName[nName]=='_' 002519 && pMod->pModule->xShadowName(pOther->zName+nName+1) 002520 ){ 002521 pOther->tabFlags |= TF_Shadow; 002522 } 002523 } 002524 } 002525 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 002526 002527 #ifndef SQLITE_OMIT_VIRTUALTABLE 002528 /* 002529 ** Return true if zName is a shadow table name in the current database 002530 ** connection. 002531 ** 002532 ** zName is temporarily modified while this routine is running, but is 002533 ** restored to its original value prior to this routine returning. 002534 */ 002535 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 002536 char *zTail; /* Pointer to the last "_" in zName */ 002537 Table *pTab; /* Table that zName is a shadow of */ 002538 zTail = strrchr(zName, '_'); 002539 if( zTail==0 ) return 0; 002540 *zTail = 0; 002541 pTab = sqlite3FindTable(db, zName, 0); 002542 *zTail = '_'; 002543 if( pTab==0 ) return 0; 002544 if( !IsVirtual(pTab) ) return 0; 002545 return sqlite3IsShadowTableOf(db, pTab, zName); 002546 } 002547 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 002548 002549 002550 #ifdef SQLITE_DEBUG 002551 /* 002552 ** Mark all nodes of an expression as EP_Immutable, indicating that 002553 ** they should not be changed. Expressions attached to a table or 002554 ** index definition are tagged this way to help ensure that we do 002555 ** not pass them into code generator routines by mistake. 002556 */ 002557 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 002558 (void)pWalker; 002559 ExprSetVVAProperty(pExpr, EP_Immutable); 002560 return WRC_Continue; 002561 } 002562 static void markExprListImmutable(ExprList *pList){ 002563 if( pList ){ 002564 Walker w; 002565 memset(&w, 0, sizeof(w)); 002566 w.xExprCallback = markImmutableExprStep; 002567 w.xSelectCallback = sqlite3SelectWalkNoop; 002568 w.xSelectCallback2 = 0; 002569 sqlite3WalkExprList(&w, pList); 002570 } 002571 } 002572 #else 002573 #define markExprListImmutable(X) /* no-op */ 002574 #endif /* SQLITE_DEBUG */ 002575 002576 002577 /* 002578 ** This routine is called to report the final ")" that terminates 002579 ** a CREATE TABLE statement. 002580 ** 002581 ** The table structure that other action routines have been building 002582 ** is added to the internal hash tables, assuming no errors have 002583 ** occurred. 002584 ** 002585 ** An entry for the table is made in the schema table on disk, unless 002586 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 002587 ** it means we are reading the sqlite_schema table because we just 002588 ** connected to the database or because the sqlite_schema table has 002589 ** recently changed, so the entry for this table already exists in 002590 ** the sqlite_schema table. We do not want to create it again. 002591 ** 002592 ** If the pSelect argument is not NULL, it means that this routine 002593 ** was called to create a table generated from a 002594 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 002595 ** the new table will match the result set of the SELECT. 002596 */ 002597 void sqlite3EndTable( 002598 Parse *pParse, /* Parse context */ 002599 Token *pCons, /* The ',' token after the last column defn. */ 002600 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 002601 u32 tabOpts, /* Extra table options. Usually 0. */ 002602 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 002603 ){ 002604 Table *p; /* The new table */ 002605 sqlite3 *db = pParse->db; /* The database connection */ 002606 int iDb; /* Database in which the table lives */ 002607 Index *pIdx; /* An implied index of the table */ 002608 002609 if( pEnd==0 && pSelect==0 ){ 002610 return; 002611 } 002612 p = pParse->pNewTable; 002613 if( p==0 ) return; 002614 002615 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 002616 p->tabFlags |= TF_Shadow; 002617 } 002618 002619 /* If the db->init.busy is 1 it means we are reading the SQL off the 002620 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 002621 ** So do not write to the disk again. Extract the root page number 002622 ** for the table from the db->init.newTnum field. (The page number 002623 ** should have been put there by the sqliteOpenCb routine.) 002624 ** 002625 ** If the root page number is 1, that means this is the sqlite_schema 002626 ** table itself. So mark it read-only. 002627 */ 002628 if( db->init.busy ){ 002629 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ 002630 sqlite3ErrorMsg(pParse, ""); 002631 return; 002632 } 002633 p->tnum = db->init.newTnum; 002634 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 002635 } 002636 002637 /* Special processing for tables that include the STRICT keyword: 002638 ** 002639 ** * Do not allow custom column datatypes. Every column must have 002640 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. 002641 ** 002642 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, 002643 ** then all columns of the PRIMARY KEY must have a NOT NULL 002644 ** constraint. 002645 */ 002646 if( tabOpts & TF_Strict ){ 002647 int ii; 002648 p->tabFlags |= TF_Strict; 002649 for(ii=0; ii<p->nCol; ii++){ 002650 Column *pCol = &p->aCol[ii]; 002651 if( pCol->eCType==COLTYPE_CUSTOM ){ 002652 if( pCol->colFlags & COLFLAG_HASTYPE ){ 002653 sqlite3ErrorMsg(pParse, 002654 "unknown datatype for %s.%s: \"%s\"", 002655 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") 002656 ); 002657 }else{ 002658 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", 002659 p->zName, pCol->zCnName); 002660 } 002661 return; 002662 }else if( pCol->eCType==COLTYPE_ANY ){ 002663 pCol->affinity = SQLITE_AFF_BLOB; 002664 } 002665 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 002666 && p->iPKey!=ii 002667 && pCol->notNull == OE_None 002668 ){ 002669 pCol->notNull = OE_Abort; 002670 p->tabFlags |= TF_HasNotNull; 002671 } 002672 } 002673 } 002674 002675 assert( (p->tabFlags & TF_HasPrimaryKey)==0 002676 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 002677 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 002678 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 002679 002680 /* Special processing for WITHOUT ROWID Tables */ 002681 if( tabOpts & TF_WithoutRowid ){ 002682 if( (p->tabFlags & TF_Autoincrement) ){ 002683 sqlite3ErrorMsg(pParse, 002684 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 002685 return; 002686 } 002687 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 002688 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 002689 return; 002690 } 002691 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 002692 convertToWithoutRowidTable(pParse, p); 002693 } 002694 iDb = sqlite3SchemaToIndex(db, p->pSchema); 002695 002696 #ifndef SQLITE_OMIT_CHECK 002697 /* Resolve names in all CHECK constraint expressions. 002698 */ 002699 if( p->pCheck ){ 002700 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 002701 if( pParse->nErr ){ 002702 /* If errors are seen, delete the CHECK constraints now, else they might 002703 ** actually be used if PRAGMA writable_schema=ON is set. */ 002704 sqlite3ExprListDelete(db, p->pCheck); 002705 p->pCheck = 0; 002706 }else{ 002707 markExprListImmutable(p->pCheck); 002708 } 002709 } 002710 #endif /* !defined(SQLITE_OMIT_CHECK) */ 002711 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 002712 if( p->tabFlags & TF_HasGenerated ){ 002713 int ii, nNG = 0; 002714 testcase( p->tabFlags & TF_HasVirtual ); 002715 testcase( p->tabFlags & TF_HasStored ); 002716 for(ii=0; ii<p->nCol; ii++){ 002717 u32 colFlags = p->aCol[ii].colFlags; 002718 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 002719 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); 002720 testcase( colFlags & COLFLAG_VIRTUAL ); 002721 testcase( colFlags & COLFLAG_STORED ); 002722 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 002723 /* If there are errors in resolving the expression, change the 002724 ** expression to a NULL. This prevents code generators that operate 002725 ** on the expression from inserting extra parts into the expression 002726 ** tree that have been allocated from lookaside memory, which is 002727 ** illegal in a schema and will lead to errors or heap corruption 002728 ** when the database connection closes. */ 002729 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], 002730 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 002731 } 002732 }else{ 002733 nNG++; 002734 } 002735 } 002736 if( nNG==0 ){ 002737 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 002738 return; 002739 } 002740 } 002741 #endif 002742 002743 /* Estimate the average row size for the table and for all implied indices */ 002744 estimateTableWidth(p); 002745 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 002746 estimateIndexWidth(pIdx); 002747 } 002748 002749 /* If not initializing, then create a record for the new table 002750 ** in the schema table of the database. 002751 ** 002752 ** If this is a TEMPORARY table, write the entry into the auxiliary 002753 ** file instead of into the main database file. 002754 */ 002755 if( !db->init.busy ){ 002756 int n; 002757 Vdbe *v; 002758 char *zType; /* "view" or "table" */ 002759 char *zType2; /* "VIEW" or "TABLE" */ 002760 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 002761 002762 v = sqlite3GetVdbe(pParse); 002763 if( NEVER(v==0) ) return; 002764 002765 sqlite3VdbeAddOp1(v, OP_Close, 0); 002766 002767 /* 002768 ** Initialize zType for the new view or table. 002769 */ 002770 if( IsOrdinaryTable(p) ){ 002771 /* A regular table */ 002772 zType = "table"; 002773 zType2 = "TABLE"; 002774 #ifndef SQLITE_OMIT_VIEW 002775 }else{ 002776 /* A view */ 002777 zType = "view"; 002778 zType2 = "VIEW"; 002779 #endif 002780 } 002781 002782 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 002783 ** statement to populate the new table. The root-page number for the 002784 ** new table is in register pParse->regRoot. 002785 ** 002786 ** Once the SELECT has been coded by sqlite3Select(), it is in a 002787 ** suitable state to query for the column names and types to be used 002788 ** by the new table. 002789 ** 002790 ** A shared-cache write-lock is not required to write to the new table, 002791 ** as a schema-lock must have already been obtained to create it. Since 002792 ** a schema-lock excludes all other database users, the write-lock would 002793 ** be redundant. 002794 */ 002795 if( pSelect ){ 002796 SelectDest dest; /* Where the SELECT should store results */ 002797 int regYield; /* Register holding co-routine entry-point */ 002798 int addrTop; /* Top of the co-routine */ 002799 int regRec; /* A record to be insert into the new table */ 002800 int regRowid; /* Rowid of the next row to insert */ 002801 int addrInsLoop; /* Top of the loop for inserting rows */ 002802 Table *pSelTab; /* A table that describes the SELECT results */ 002803 int iCsr; /* Write cursor on the new table */ 002804 002805 if( IN_SPECIAL_PARSE ){ 002806 pParse->rc = SQLITE_ERROR; 002807 pParse->nErr++; 002808 return; 002809 } 002810 iCsr = pParse->nTab++; 002811 regYield = ++pParse->nMem; 002812 regRec = ++pParse->nMem; 002813 regRowid = ++pParse->nMem; 002814 sqlite3MayAbort(pParse); 002815 sqlite3VdbeAddOp3(v, OP_OpenWrite, iCsr, pParse->regRoot, iDb); 002816 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 002817 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 002818 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 002819 if( pParse->nErr ) return; 002820 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 002821 if( pSelTab==0 ) return; 002822 assert( p->aCol==0 ); 002823 p->nCol = p->nNVCol = pSelTab->nCol; 002824 p->aCol = pSelTab->aCol; 002825 pSelTab->nCol = 0; 002826 pSelTab->aCol = 0; 002827 sqlite3DeleteTable(db, pSelTab); 002828 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 002829 sqlite3Select(pParse, pSelect, &dest); 002830 if( pParse->nErr ) return; 002831 sqlite3VdbeEndCoroutine(v, regYield); 002832 sqlite3VdbeJumpHere(v, addrTop - 1); 002833 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 002834 VdbeCoverage(v); 002835 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 002836 sqlite3TableAffinity(v, p, 0); 002837 sqlite3VdbeAddOp2(v, OP_NewRowid, iCsr, regRowid); 002838 sqlite3VdbeAddOp3(v, OP_Insert, iCsr, regRec, regRowid); 002839 sqlite3VdbeGoto(v, addrInsLoop); 002840 sqlite3VdbeJumpHere(v, addrInsLoop); 002841 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 002842 } 002843 002844 /* Compute the complete text of the CREATE statement */ 002845 if( pSelect ){ 002846 zStmt = createTableStmt(db, p); 002847 }else{ 002848 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 002849 n = (int)(pEnd2->z - pParse->sNameToken.z); 002850 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 002851 zStmt = sqlite3MPrintf(db, 002852 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 002853 ); 002854 } 002855 002856 /* A slot for the record has already been allocated in the 002857 ** schema table. We just need to update that slot with all 002858 ** the information we've collected. 002859 */ 002860 sqlite3NestedParse(pParse, 002861 "UPDATE %Q." LEGACY_SCHEMA_TABLE 002862 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 002863 " WHERE rowid=#%d", 002864 db->aDb[iDb].zDbSName, 002865 zType, 002866 p->zName, 002867 p->zName, 002868 pParse->regRoot, 002869 zStmt, 002870 pParse->regRowid 002871 ); 002872 sqlite3DbFree(db, zStmt); 002873 sqlite3ChangeCookie(pParse, iDb); 002874 002875 #ifndef SQLITE_OMIT_AUTOINCREMENT 002876 /* Check to see if we need to create an sqlite_sequence table for 002877 ** keeping track of autoincrement keys. 002878 */ 002879 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 002880 Db *pDb = &db->aDb[iDb]; 002881 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 002882 if( pDb->pSchema->pSeqTab==0 ){ 002883 sqlite3NestedParse(pParse, 002884 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 002885 pDb->zDbSName 002886 ); 002887 } 002888 } 002889 #endif 002890 002891 /* Reparse everything to update our internal data structures */ 002892 sqlite3VdbeAddParseSchemaOp(v, iDb, 002893 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 002894 002895 /* Test for cycles in generated columns and illegal expressions 002896 ** in CHECK constraints and in DEFAULT clauses. */ 002897 if( p->tabFlags & TF_HasGenerated ){ 002898 sqlite3VdbeAddOp4(v, OP_SqlExec, 0x0001, 0, 0, 002899 sqlite3MPrintf(db, "SELECT*FROM\"%w\".\"%w\"", 002900 db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC); 002901 } 002902 } 002903 002904 /* Add the table to the in-memory representation of the database. 002905 */ 002906 if( db->init.busy ){ 002907 Table *pOld; 002908 Schema *pSchema = p->pSchema; 002909 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 002910 assert( HasRowid(p) || p->iPKey<0 ); 002911 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 002912 if( pOld ){ 002913 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 002914 sqlite3OomFault(db); 002915 return; 002916 } 002917 pParse->pNewTable = 0; 002918 db->mDbFlags |= DBFLAG_SchemaChange; 002919 002920 /* If this is the magic sqlite_sequence table used by autoincrement, 002921 ** then record a pointer to this table in the main database structure 002922 ** so that INSERT can find the table easily. */ 002923 assert( !pParse->nested ); 002924 #ifndef SQLITE_OMIT_AUTOINCREMENT 002925 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 002926 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 002927 p->pSchema->pSeqTab = p; 002928 } 002929 #endif 002930 } 002931 002932 #ifndef SQLITE_OMIT_ALTERTABLE 002933 if( !pSelect && IsOrdinaryTable(p) ){ 002934 assert( pCons && pEnd ); 002935 if( pCons->z==0 ){ 002936 pCons = pEnd; 002937 } 002938 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 002939 } 002940 #endif 002941 } 002942 002943 #ifndef SQLITE_OMIT_VIEW 002944 /* 002945 ** The parser calls this routine in order to create a new VIEW 002946 */ 002947 void sqlite3CreateView( 002948 Parse *pParse, /* The parsing context */ 002949 Token *pBegin, /* The CREATE token that begins the statement */ 002950 Token *pName1, /* The token that holds the name of the view */ 002951 Token *pName2, /* The token that holds the name of the view */ 002952 ExprList *pCNames, /* Optional list of view column names */ 002953 Select *pSelect, /* A SELECT statement that will become the new view */ 002954 int isTemp, /* TRUE for a TEMPORARY view */ 002955 int noErr /* Suppress error messages if VIEW already exists */ 002956 ){ 002957 Table *p; 002958 int n; 002959 const char *z; 002960 Token sEnd; 002961 DbFixer sFix; 002962 Token *pName = 0; 002963 int iDb; 002964 sqlite3 *db = pParse->db; 002965 002966 if( pParse->nVar>0 ){ 002967 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 002968 goto create_view_fail; 002969 } 002970 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 002971 p = pParse->pNewTable; 002972 if( p==0 || pParse->nErr ) goto create_view_fail; 002973 002974 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 002975 ** on a view, even though views do not have rowids. The following flag 002976 ** setting fixes this problem. But the fix can be disabled by compiling 002977 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 002978 ** depend upon the old buggy behavior. The ability can also be toggled 002979 ** using sqlite3_config(SQLITE_CONFIG_ROWID_IN_VIEW,...) */ 002980 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 002981 p->tabFlags |= sqlite3Config.mNoVisibleRowid; /* Optional. Allow by default */ 002982 #else 002983 p->tabFlags |= TF_NoVisibleRowid; /* Never allow rowid in view */ 002984 #endif 002985 002986 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 002987 iDb = sqlite3SchemaToIndex(db, p->pSchema); 002988 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 002989 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 002990 002991 /* Make a copy of the entire SELECT statement that defines the view. 002992 ** This will force all the Expr.token.z values to be dynamically 002993 ** allocated rather than point to the input string - which means that 002994 ** they will persist after the current sqlite3_exec() call returns. 002995 */ 002996 pSelect->selFlags |= SF_View; 002997 if( IN_RENAME_OBJECT ){ 002998 p->u.view.pSelect = pSelect; 002999 pSelect = 0; 003000 }else{ 003001 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 003002 } 003003 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 003004 p->eTabType = TABTYP_VIEW; 003005 if( db->mallocFailed ) goto create_view_fail; 003006 003007 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 003008 ** the end. 003009 */ 003010 sEnd = pParse->sLastToken; 003011 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 003012 if( sEnd.z[0]!=';' ){ 003013 sEnd.z += sEnd.n; 003014 } 003015 sEnd.n = 0; 003016 n = (int)(sEnd.z - pBegin->z); 003017 assert( n>0 ); 003018 z = pBegin->z; 003019 while( sqlite3Isspace(z[n-1]) ){ n--; } 003020 sEnd.z = &z[n-1]; 003021 sEnd.n = 1; 003022 003023 /* Use sqlite3EndTable() to add the view to the schema table */ 003024 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 003025 003026 create_view_fail: 003027 sqlite3SelectDelete(db, pSelect); 003028 if( IN_RENAME_OBJECT ){ 003029 sqlite3RenameExprlistUnmap(pParse, pCNames); 003030 } 003031 sqlite3ExprListDelete(db, pCNames); 003032 return; 003033 } 003034 #endif /* SQLITE_OMIT_VIEW */ 003035 003036 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 003037 /* 003038 ** The Table structure pTable is really a VIEW. Fill in the names of 003039 ** the columns of the view in the pTable structure. Return non-zero if 003040 ** there are errors. If an error is seen an error message is left 003041 ** in pParse->zErrMsg. 003042 */ 003043 static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){ 003044 Table *pSelTab; /* A fake table from which we get the result set */ 003045 Select *pSel; /* Copy of the SELECT that implements the view */ 003046 int nErr = 0; /* Number of errors encountered */ 003047 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 003048 #ifndef SQLITE_OMIT_VIRTUALTABLE 003049 int rc; 003050 #endif 003051 #ifndef SQLITE_OMIT_AUTHORIZATION 003052 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 003053 #endif 003054 003055 assert( pTable ); 003056 003057 #ifndef SQLITE_OMIT_VIRTUALTABLE 003058 if( IsVirtual(pTable) ){ 003059 db->nSchemaLock++; 003060 rc = sqlite3VtabCallConnect(pParse, pTable); 003061 db->nSchemaLock--; 003062 return rc; 003063 } 003064 #endif 003065 003066 #ifndef SQLITE_OMIT_VIEW 003067 /* A positive nCol means the columns names for this view are 003068 ** already known. This routine is not called unless either the 003069 ** table is virtual or nCol is zero. 003070 */ 003071 assert( pTable->nCol<=0 ); 003072 003073 /* A negative nCol is a special marker meaning that we are currently 003074 ** trying to compute the column names. If we enter this routine with 003075 ** a negative nCol, it means two or more views form a loop, like this: 003076 ** 003077 ** CREATE VIEW one AS SELECT * FROM two; 003078 ** CREATE VIEW two AS SELECT * FROM one; 003079 ** 003080 ** Actually, the error above is now caught prior to reaching this point. 003081 ** But the following test is still important as it does come up 003082 ** in the following: 003083 ** 003084 ** CREATE TABLE main.ex1(a); 003085 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 003086 ** SELECT * FROM temp.ex1; 003087 */ 003088 if( pTable->nCol<0 ){ 003089 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 003090 return 1; 003091 } 003092 assert( pTable->nCol>=0 ); 003093 003094 /* If we get this far, it means we need to compute the table names. 003095 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 003096 ** "*" elements in the results set of the view and will assign cursors 003097 ** to the elements of the FROM clause. But we do not want these changes 003098 ** to be permanent. So the computation is done on a copy of the SELECT 003099 ** statement that defines the view. 003100 */ 003101 assert( IsView(pTable) ); 003102 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); 003103 if( pSel ){ 003104 u8 eParseMode = pParse->eParseMode; 003105 int nTab = pParse->nTab; 003106 int nSelect = pParse->nSelect; 003107 pParse->eParseMode = PARSE_MODE_NORMAL; 003108 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 003109 pTable->nCol = -1; 003110 DisableLookaside; 003111 #ifndef SQLITE_OMIT_AUTHORIZATION 003112 xAuth = db->xAuth; 003113 db->xAuth = 0; 003114 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 003115 db->xAuth = xAuth; 003116 #else 003117 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 003118 #endif 003119 pParse->nTab = nTab; 003120 pParse->nSelect = nSelect; 003121 if( pSelTab==0 ){ 003122 pTable->nCol = 0; 003123 nErr++; 003124 }else if( pTable->pCheck ){ 003125 /* CREATE VIEW name(arglist) AS ... 003126 ** The names of the columns in the table are taken from 003127 ** arglist which is stored in pTable->pCheck. The pCheck field 003128 ** normally holds CHECK constraints on an ordinary table, but for 003129 ** a VIEW it holds the list of column names. 003130 */ 003131 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 003132 &pTable->nCol, &pTable->aCol); 003133 if( pParse->nErr==0 003134 && pTable->nCol==pSel->pEList->nExpr 003135 ){ 003136 assert( db->mallocFailed==0 ); 003137 sqlite3SubqueryColumnTypes(pParse, pTable, pSel, SQLITE_AFF_NONE); 003138 } 003139 }else{ 003140 /* CREATE VIEW name AS... without an argument list. Construct 003141 ** the column names from the SELECT statement that defines the view. 003142 */ 003143 assert( pTable->aCol==0 ); 003144 pTable->nCol = pSelTab->nCol; 003145 pTable->aCol = pSelTab->aCol; 003146 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 003147 pSelTab->nCol = 0; 003148 pSelTab->aCol = 0; 003149 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 003150 } 003151 pTable->nNVCol = pTable->nCol; 003152 sqlite3DeleteTable(db, pSelTab); 003153 sqlite3SelectDelete(db, pSel); 003154 EnableLookaside; 003155 pParse->eParseMode = eParseMode; 003156 } else { 003157 nErr++; 003158 } 003159 pTable->pSchema->schemaFlags |= DB_UnresetViews; 003160 if( db->mallocFailed ){ 003161 sqlite3DeleteColumnNames(db, pTable); 003162 } 003163 #endif /* SQLITE_OMIT_VIEW */ 003164 return nErr + pParse->nErr; 003165 } 003166 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 003167 assert( pTable!=0 ); 003168 if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0; 003169 return viewGetColumnNames(pParse, pTable); 003170 } 003171 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 003172 003173 #ifndef SQLITE_OMIT_VIEW 003174 /* 003175 ** Clear the column names from every VIEW in database idx. 003176 */ 003177 static void sqliteViewResetAll(sqlite3 *db, int idx){ 003178 HashElem *i; 003179 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 003180 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 003181 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 003182 Table *pTab = sqliteHashData(i); 003183 if( IsView(pTab) ){ 003184 sqlite3DeleteColumnNames(db, pTab); 003185 } 003186 } 003187 DbClearProperty(db, idx, DB_UnresetViews); 003188 } 003189 #else 003190 # define sqliteViewResetAll(A,B) 003191 #endif /* SQLITE_OMIT_VIEW */ 003192 003193 /* 003194 ** This function is called by the VDBE to adjust the internal schema 003195 ** used by SQLite when the btree layer moves a table root page. The 003196 ** root-page of a table or index in database iDb has changed from iFrom 003197 ** to iTo. 003198 ** 003199 ** Ticket #1728: The symbol table might still contain information 003200 ** on tables and/or indices that are the process of being deleted. 003201 ** If you are unlucky, one of those deleted indices or tables might 003202 ** have the same rootpage number as the real table or index that is 003203 ** being moved. So we cannot stop searching after the first match 003204 ** because the first match might be for one of the deleted indices 003205 ** or tables and not the table/index that is actually being moved. 003206 ** We must continue looping until all tables and indices with 003207 ** rootpage==iFrom have been converted to have a rootpage of iTo 003208 ** in order to be certain that we got the right one. 003209 */ 003210 #ifndef SQLITE_OMIT_AUTOVACUUM 003211 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 003212 HashElem *pElem; 003213 Hash *pHash; 003214 Db *pDb; 003215 003216 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 003217 pDb = &db->aDb[iDb]; 003218 pHash = &pDb->pSchema->tblHash; 003219 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 003220 Table *pTab = sqliteHashData(pElem); 003221 if( pTab->tnum==iFrom ){ 003222 pTab->tnum = iTo; 003223 } 003224 } 003225 pHash = &pDb->pSchema->idxHash; 003226 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 003227 Index *pIdx = sqliteHashData(pElem); 003228 if( pIdx->tnum==iFrom ){ 003229 pIdx->tnum = iTo; 003230 } 003231 } 003232 } 003233 #endif 003234 003235 /* 003236 ** Write code to erase the table with root-page iTable from database iDb. 003237 ** Also write code to modify the sqlite_schema table and internal schema 003238 ** if a root-page of another table is moved by the btree-layer whilst 003239 ** erasing iTable (this can happen with an auto-vacuum database). 003240 */ 003241 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 003242 Vdbe *v = sqlite3GetVdbe(pParse); 003243 int r1 = sqlite3GetTempReg(pParse); 003244 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 003245 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 003246 sqlite3MayAbort(pParse); 003247 #ifndef SQLITE_OMIT_AUTOVACUUM 003248 /* OP_Destroy stores an in integer r1. If this integer 003249 ** is non-zero, then it is the root page number of a table moved to 003250 ** location iTable. The following code modifies the sqlite_schema table to 003251 ** reflect this. 003252 ** 003253 ** The "#NNN" in the SQL is a special constant that means whatever value 003254 ** is in register NNN. See grammar rules associated with the TK_REGISTER 003255 ** token for additional information. 003256 */ 003257 sqlite3NestedParse(pParse, 003258 "UPDATE %Q." LEGACY_SCHEMA_TABLE 003259 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 003260 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 003261 #endif 003262 sqlite3ReleaseTempReg(pParse, r1); 003263 } 003264 003265 /* 003266 ** Write VDBE code to erase table pTab and all associated indices on disk. 003267 ** Code to update the sqlite_schema tables and internal schema definitions 003268 ** in case a root-page belonging to another table is moved by the btree layer 003269 ** is also added (this can happen with an auto-vacuum database). 003270 */ 003271 static void destroyTable(Parse *pParse, Table *pTab){ 003272 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 003273 ** is not defined), then it is important to call OP_Destroy on the 003274 ** table and index root-pages in order, starting with the numerically 003275 ** largest root-page number. This guarantees that none of the root-pages 003276 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 003277 ** following were coded: 003278 ** 003279 ** OP_Destroy 4 0 003280 ** ... 003281 ** OP_Destroy 5 0 003282 ** 003283 ** and root page 5 happened to be the largest root-page number in the 003284 ** database, then root page 5 would be moved to page 4 by the 003285 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 003286 ** a free-list page. 003287 */ 003288 Pgno iTab = pTab->tnum; 003289 Pgno iDestroyed = 0; 003290 003291 while( 1 ){ 003292 Index *pIdx; 003293 Pgno iLargest = 0; 003294 003295 if( iDestroyed==0 || iTab<iDestroyed ){ 003296 iLargest = iTab; 003297 } 003298 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 003299 Pgno iIdx = pIdx->tnum; 003300 assert( pIdx->pSchema==pTab->pSchema ); 003301 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 003302 iLargest = iIdx; 003303 } 003304 } 003305 if( iLargest==0 ){ 003306 return; 003307 }else{ 003308 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 003309 assert( iDb>=0 && iDb<pParse->db->nDb ); 003310 destroyRootPage(pParse, iLargest, iDb); 003311 iDestroyed = iLargest; 003312 } 003313 } 003314 } 003315 003316 /* 003317 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 003318 ** after a DROP INDEX or DROP TABLE command. 003319 */ 003320 static void sqlite3ClearStatTables( 003321 Parse *pParse, /* The parsing context */ 003322 int iDb, /* The database number */ 003323 const char *zType, /* "idx" or "tbl" */ 003324 const char *zName /* Name of index or table */ 003325 ){ 003326 int i; 003327 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 003328 for(i=1; i<=4; i++){ 003329 char zTab[24]; 003330 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 003331 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 003332 sqlite3NestedParse(pParse, 003333 "DELETE FROM %Q.%s WHERE %s=%Q", 003334 zDbName, zTab, zType, zName 003335 ); 003336 } 003337 } 003338 } 003339 003340 /* 003341 ** Generate code to drop a table. 003342 */ 003343 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 003344 Vdbe *v; 003345 sqlite3 *db = pParse->db; 003346 Trigger *pTrigger; 003347 Db *pDb = &db->aDb[iDb]; 003348 003349 v = sqlite3GetVdbe(pParse); 003350 assert( v!=0 ); 003351 sqlite3BeginWriteOperation(pParse, 1, iDb); 003352 003353 #ifndef SQLITE_OMIT_VIRTUALTABLE 003354 if( IsVirtual(pTab) ){ 003355 sqlite3VdbeAddOp0(v, OP_VBegin); 003356 } 003357 #endif 003358 003359 /* Drop all triggers associated with the table being dropped. Code 003360 ** is generated to remove entries from sqlite_schema and/or 003361 ** sqlite_temp_schema if required. 003362 */ 003363 pTrigger = sqlite3TriggerList(pParse, pTab); 003364 while( pTrigger ){ 003365 assert( pTrigger->pSchema==pTab->pSchema || 003366 pTrigger->pSchema==db->aDb[1].pSchema ); 003367 sqlite3DropTriggerPtr(pParse, pTrigger); 003368 pTrigger = pTrigger->pNext; 003369 } 003370 003371 #ifndef SQLITE_OMIT_AUTOINCREMENT 003372 /* Remove any entries of the sqlite_sequence table associated with 003373 ** the table being dropped. This is done before the table is dropped 003374 ** at the btree level, in case the sqlite_sequence table needs to 003375 ** move as a result of the drop (can happen in auto-vacuum mode). 003376 */ 003377 if( pTab->tabFlags & TF_Autoincrement ){ 003378 sqlite3NestedParse(pParse, 003379 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 003380 pDb->zDbSName, pTab->zName 003381 ); 003382 } 003383 #endif 003384 003385 /* Drop all entries in the schema table that refer to the 003386 ** table. The program name loops through the schema table and deletes 003387 ** every row that refers to a table of the same name as the one being 003388 ** dropped. Triggers are handled separately because a trigger can be 003389 ** created in the temp database that refers to a table in another 003390 ** database. 003391 */ 003392 sqlite3NestedParse(pParse, 003393 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE 003394 " WHERE tbl_name=%Q and type!='trigger'", 003395 pDb->zDbSName, pTab->zName); 003396 if( !isView && !IsVirtual(pTab) ){ 003397 destroyTable(pParse, pTab); 003398 } 003399 003400 /* Remove the table entry from SQLite's internal schema and modify 003401 ** the schema cookie. 003402 */ 003403 if( IsVirtual(pTab) ){ 003404 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 003405 sqlite3MayAbort(pParse); 003406 } 003407 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 003408 sqlite3ChangeCookie(pParse, iDb); 003409 sqliteViewResetAll(db, iDb); 003410 } 003411 003412 /* 003413 ** Return TRUE if shadow tables should be read-only in the current 003414 ** context. 003415 */ 003416 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 003417 #ifndef SQLITE_OMIT_VIRTUALTABLE 003418 if( (db->flags & SQLITE_Defensive)!=0 003419 && db->pVtabCtx==0 003420 && db->nVdbeExec==0 003421 && !sqlite3VtabInSync(db) 003422 ){ 003423 return 1; 003424 } 003425 #endif 003426 return 0; 003427 } 003428 003429 /* 003430 ** Return true if it is not allowed to drop the given table 003431 */ 003432 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 003433 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 003434 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 003435 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 003436 return 1; 003437 } 003438 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 003439 return 1; 003440 } 003441 if( pTab->tabFlags & TF_Eponymous ){ 003442 return 1; 003443 } 003444 return 0; 003445 } 003446 003447 /* 003448 ** This routine is called to do the work of a DROP TABLE statement. 003449 ** pName is the name of the table to be dropped. 003450 */ 003451 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 003452 Table *pTab; 003453 Vdbe *v; 003454 sqlite3 *db = pParse->db; 003455 int iDb; 003456 003457 if( db->mallocFailed ){ 003458 goto exit_drop_table; 003459 } 003460 assert( pParse->nErr==0 ); 003461 assert( pName->nSrc==1 ); 003462 assert( pName->a[0].fg.fixedSchema==0 ); 003463 assert( pName->a[0].fg.isSubquery==0 ); 003464 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 003465 if( noErr ) db->suppressErr++; 003466 assert( isView==0 || isView==LOCATE_VIEW ); 003467 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 003468 if( noErr ) db->suppressErr--; 003469 003470 if( pTab==0 ){ 003471 if( noErr ){ 003472 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].u4.zDatabase); 003473 sqlite3ForceNotReadOnly(pParse); 003474 } 003475 goto exit_drop_table; 003476 } 003477 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 003478 assert( iDb>=0 && iDb<db->nDb ); 003479 003480 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 003481 ** it is initialized. 003482 */ 003483 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 003484 goto exit_drop_table; 003485 } 003486 #ifndef SQLITE_OMIT_AUTHORIZATION 003487 { 003488 int code; 003489 const char *zTab = SCHEMA_TABLE(iDb); 003490 const char *zDb = db->aDb[iDb].zDbSName; 003491 const char *zArg2 = 0; 003492 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 003493 goto exit_drop_table; 003494 } 003495 if( isView ){ 003496 if( !OMIT_TEMPDB && iDb==1 ){ 003497 code = SQLITE_DROP_TEMP_VIEW; 003498 }else{ 003499 code = SQLITE_DROP_VIEW; 003500 } 003501 #ifndef SQLITE_OMIT_VIRTUALTABLE 003502 }else if( IsVirtual(pTab) ){ 003503 code = SQLITE_DROP_VTABLE; 003504 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 003505 #endif 003506 }else{ 003507 if( !OMIT_TEMPDB && iDb==1 ){ 003508 code = SQLITE_DROP_TEMP_TABLE; 003509 }else{ 003510 code = SQLITE_DROP_TABLE; 003511 } 003512 } 003513 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 003514 goto exit_drop_table; 003515 } 003516 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 003517 goto exit_drop_table; 003518 } 003519 } 003520 #endif 003521 if( tableMayNotBeDropped(db, pTab) ){ 003522 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 003523 goto exit_drop_table; 003524 } 003525 003526 #ifndef SQLITE_OMIT_VIEW 003527 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 003528 ** on a table. 003529 */ 003530 if( isView && !IsView(pTab) ){ 003531 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 003532 goto exit_drop_table; 003533 } 003534 if( !isView && IsView(pTab) ){ 003535 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 003536 goto exit_drop_table; 003537 } 003538 #endif 003539 003540 /* Generate code to remove the table from the schema table 003541 ** on disk. 003542 */ 003543 v = sqlite3GetVdbe(pParse); 003544 if( v ){ 003545 sqlite3BeginWriteOperation(pParse, 1, iDb); 003546 if( !isView ){ 003547 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 003548 sqlite3FkDropTable(pParse, pName, pTab); 003549 } 003550 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 003551 } 003552 003553 exit_drop_table: 003554 sqlite3SrcListDelete(db, pName); 003555 } 003556 003557 /* 003558 ** This routine is called to create a new foreign key on the table 003559 ** currently under construction. pFromCol determines which columns 003560 ** in the current table point to the foreign key. If pFromCol==0 then 003561 ** connect the key to the last column inserted. pTo is the name of 003562 ** the table referred to (a.k.a the "parent" table). pToCol is a list 003563 ** of tables in the parent pTo table. flags contains all 003564 ** information about the conflict resolution algorithms specified 003565 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 003566 ** 003567 ** An FKey structure is created and added to the table currently 003568 ** under construction in the pParse->pNewTable field. 003569 ** 003570 ** The foreign key is set for IMMEDIATE processing. A subsequent call 003571 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 003572 */ 003573 void sqlite3CreateForeignKey( 003574 Parse *pParse, /* Parsing context */ 003575 ExprList *pFromCol, /* Columns in this table that point to other table */ 003576 Token *pTo, /* Name of the other table */ 003577 ExprList *pToCol, /* Columns in the other table */ 003578 int flags /* Conflict resolution algorithms. */ 003579 ){ 003580 sqlite3 *db = pParse->db; 003581 #ifndef SQLITE_OMIT_FOREIGN_KEY 003582 FKey *pFKey = 0; 003583 FKey *pNextTo; 003584 Table *p = pParse->pNewTable; 003585 i64 nByte; 003586 int i; 003587 int nCol; 003588 char *z; 003589 003590 assert( pTo!=0 ); 003591 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 003592 if( pFromCol==0 ){ 003593 int iCol = p->nCol-1; 003594 if( NEVER(iCol<0) ) goto fk_end; 003595 if( pToCol && pToCol->nExpr!=1 ){ 003596 sqlite3ErrorMsg(pParse, "foreign key on %s" 003597 " should reference only one column of table %T", 003598 p->aCol[iCol].zCnName, pTo); 003599 goto fk_end; 003600 } 003601 nCol = 1; 003602 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 003603 sqlite3ErrorMsg(pParse, 003604 "number of columns in foreign key does not match the number of " 003605 "columns in the referenced table"); 003606 goto fk_end; 003607 }else{ 003608 nCol = pFromCol->nExpr; 003609 } 003610 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 003611 if( pToCol ){ 003612 for(i=0; i<pToCol->nExpr; i++){ 003613 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 003614 } 003615 } 003616 pFKey = sqlite3DbMallocZero(db, nByte ); 003617 if( pFKey==0 ){ 003618 goto fk_end; 003619 } 003620 pFKey->pFrom = p; 003621 assert( IsOrdinaryTable(p) ); 003622 pFKey->pNextFrom = p->u.tab.pFKey; 003623 z = (char*)&pFKey->aCol[nCol]; 003624 pFKey->zTo = z; 003625 if( IN_RENAME_OBJECT ){ 003626 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 003627 } 003628 memcpy(z, pTo->z, pTo->n); 003629 z[pTo->n] = 0; 003630 sqlite3Dequote(z); 003631 z += pTo->n+1; 003632 pFKey->nCol = nCol; 003633 if( pFromCol==0 ){ 003634 pFKey->aCol[0].iFrom = p->nCol-1; 003635 }else{ 003636 for(i=0; i<nCol; i++){ 003637 int j; 003638 for(j=0; j<p->nCol; j++){ 003639 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ 003640 pFKey->aCol[i].iFrom = j; 003641 break; 003642 } 003643 } 003644 if( j>=p->nCol ){ 003645 sqlite3ErrorMsg(pParse, 003646 "unknown column \"%s\" in foreign key definition", 003647 pFromCol->a[i].zEName); 003648 goto fk_end; 003649 } 003650 if( IN_RENAME_OBJECT ){ 003651 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 003652 } 003653 } 003654 } 003655 if( pToCol ){ 003656 for(i=0; i<nCol; i++){ 003657 int n = sqlite3Strlen30(pToCol->a[i].zEName); 003658 pFKey->aCol[i].zCol = z; 003659 if( IN_RENAME_OBJECT ){ 003660 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 003661 } 003662 memcpy(z, pToCol->a[i].zEName, n); 003663 z[n] = 0; 003664 z += n+1; 003665 } 003666 } 003667 pFKey->isDeferred = 0; 003668 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 003669 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 003670 003671 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 003672 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 003673 pFKey->zTo, (void *)pFKey 003674 ); 003675 if( pNextTo==pFKey ){ 003676 sqlite3OomFault(db); 003677 goto fk_end; 003678 } 003679 if( pNextTo ){ 003680 assert( pNextTo->pPrevTo==0 ); 003681 pFKey->pNextTo = pNextTo; 003682 pNextTo->pPrevTo = pFKey; 003683 } 003684 003685 /* Link the foreign key to the table as the last step. 003686 */ 003687 assert( IsOrdinaryTable(p) ); 003688 p->u.tab.pFKey = pFKey; 003689 pFKey = 0; 003690 003691 fk_end: 003692 sqlite3DbFree(db, pFKey); 003693 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 003694 sqlite3ExprListDelete(db, pFromCol); 003695 sqlite3ExprListDelete(db, pToCol); 003696 } 003697 003698 /* 003699 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 003700 ** clause is seen as part of a foreign key definition. The isDeferred 003701 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 003702 ** The behavior of the most recently created foreign key is adjusted 003703 ** accordingly. 003704 */ 003705 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 003706 #ifndef SQLITE_OMIT_FOREIGN_KEY 003707 Table *pTab; 003708 FKey *pFKey; 003709 if( (pTab = pParse->pNewTable)==0 ) return; 003710 if( NEVER(!IsOrdinaryTable(pTab)) ) return; 003711 if( (pFKey = pTab->u.tab.pFKey)==0 ) return; 003712 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 003713 pFKey->isDeferred = (u8)isDeferred; 003714 #endif 003715 } 003716 003717 /* 003718 ** Generate code that will erase and refill index *pIdx. This is 003719 ** used to initialize a newly created index or to recompute the 003720 ** content of an index in response to a REINDEX command. 003721 ** 003722 ** if memRootPage is not negative, it means that the index is newly 003723 ** created. The register specified by memRootPage contains the 003724 ** root page number of the index. If memRootPage is negative, then 003725 ** the index already exists and must be cleared before being refilled and 003726 ** the root page number of the index is taken from pIndex->tnum. 003727 */ 003728 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 003729 Table *pTab = pIndex->pTable; /* The table that is indexed */ 003730 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 003731 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 003732 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 003733 int addr1; /* Address of top of loop */ 003734 int addr2; /* Address to jump to for next iteration */ 003735 Pgno tnum; /* Root page of index */ 003736 int iPartIdxLabel; /* Jump to this label to skip a row */ 003737 Vdbe *v; /* Generate code into this virtual machine */ 003738 KeyInfo *pKey; /* KeyInfo for index */ 003739 int regRecord; /* Register holding assembled index record */ 003740 sqlite3 *db = pParse->db; /* The database connection */ 003741 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 003742 003743 #ifndef SQLITE_OMIT_AUTHORIZATION 003744 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 003745 db->aDb[iDb].zDbSName ) ){ 003746 return; 003747 } 003748 #endif 003749 003750 /* Require a write-lock on the table to perform this operation */ 003751 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 003752 003753 v = sqlite3GetVdbe(pParse); 003754 if( v==0 ) return; 003755 if( memRootPage>=0 ){ 003756 tnum = (Pgno)memRootPage; 003757 }else{ 003758 tnum = pIndex->tnum; 003759 } 003760 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 003761 assert( pKey!=0 || pParse->nErr ); 003762 003763 /* Open the sorter cursor if we are to use one. */ 003764 iSorter = pParse->nTab++; 003765 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 003766 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 003767 003768 /* Open the table. Loop through all rows of the table, inserting index 003769 ** records into the sorter. */ 003770 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 003771 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 003772 regRecord = sqlite3GetTempReg(pParse); 003773 sqlite3MultiWrite(pParse); 003774 003775 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 003776 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 003777 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 003778 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 003779 sqlite3VdbeJumpHere(v, addr1); 003780 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 003781 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 003782 (char *)pKey, P4_KEYINFO); 003783 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 003784 003785 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 003786 if( IsUniqueIndex(pIndex) ){ 003787 int j2 = sqlite3VdbeGoto(v, 1); 003788 addr2 = sqlite3VdbeCurrentAddr(v); 003789 sqlite3VdbeVerifyAbortable(v, OE_Abort); 003790 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 003791 pIndex->nKeyCol); VdbeCoverage(v); 003792 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 003793 sqlite3VdbeJumpHere(v, j2); 003794 }else{ 003795 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 003796 ** abort. The exception is if one of the indexed expressions contains a 003797 ** user function that throws an exception when it is evaluated. But the 003798 ** overhead of adding a statement journal to a CREATE INDEX statement is 003799 ** very small (since most of the pages written do not contain content that 003800 ** needs to be restored if the statement aborts), so we call 003801 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 003802 sqlite3MayAbort(pParse); 003803 addr2 = sqlite3VdbeCurrentAddr(v); 003804 } 003805 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 003806 if( !pIndex->bAscKeyBug ){ 003807 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 003808 ** faster by avoiding unnecessary seeks. But the optimization does 003809 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 003810 ** with DESC primary keys, since those indexes have there keys in 003811 ** a different order from the main table. 003812 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 003813 */ 003814 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 003815 } 003816 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 003817 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 003818 sqlite3ReleaseTempReg(pParse, regRecord); 003819 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 003820 sqlite3VdbeJumpHere(v, addr1); 003821 003822 sqlite3VdbeAddOp1(v, OP_Close, iTab); 003823 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 003824 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 003825 } 003826 003827 /* 003828 ** Allocate heap space to hold an Index object with nCol columns. 003829 ** 003830 ** Increase the allocation size to provide an extra nExtra bytes 003831 ** of 8-byte aligned space after the Index object and return a 003832 ** pointer to this extra space in *ppExtra. 003833 */ 003834 Index *sqlite3AllocateIndexObject( 003835 sqlite3 *db, /* Database connection */ 003836 i16 nCol, /* Total number of columns in the index */ 003837 int nExtra, /* Number of bytes of extra space to alloc */ 003838 char **ppExtra /* Pointer to the "extra" space */ 003839 ){ 003840 Index *p; /* Allocated index object */ 003841 int nByte; /* Bytes of space for Index object + arrays */ 003842 003843 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 003844 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 003845 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 003846 sizeof(i16)*nCol + /* Index.aiColumn */ 003847 sizeof(u8)*nCol); /* Index.aSortOrder */ 003848 p = sqlite3DbMallocZero(db, nByte + nExtra); 003849 if( p ){ 003850 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 003851 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 003852 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 003853 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 003854 p->aSortOrder = (u8*)pExtra; 003855 p->nColumn = nCol; 003856 p->nKeyCol = nCol - 1; 003857 *ppExtra = ((char*)p) + nByte; 003858 } 003859 return p; 003860 } 003861 003862 /* 003863 ** If expression list pList contains an expression that was parsed with 003864 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 003865 ** pParse and return non-zero. Otherwise, return zero. 003866 */ 003867 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 003868 if( pList ){ 003869 int i; 003870 for(i=0; i<pList->nExpr; i++){ 003871 if( pList->a[i].fg.bNulls ){ 003872 u8 sf = pList->a[i].fg.sortFlags; 003873 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 003874 (sf==0 || sf==3) ? "FIRST" : "LAST" 003875 ); 003876 return 1; 003877 } 003878 } 003879 } 003880 return 0; 003881 } 003882 003883 /* 003884 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 003885 ** and pTblList is the name of the table that is to be indexed. Both will 003886 ** be NULL for a primary key or an index that is created to satisfy a 003887 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 003888 ** as the table to be indexed. pParse->pNewTable is a table that is 003889 ** currently being constructed by a CREATE TABLE statement. 003890 ** 003891 ** pList is a list of columns to be indexed. pList will be NULL if this 003892 ** is a primary key or unique-constraint on the most recent column added 003893 ** to the table currently under construction. 003894 */ 003895 void sqlite3CreateIndex( 003896 Parse *pParse, /* All information about this parse */ 003897 Token *pName1, /* First part of index name. May be NULL */ 003898 Token *pName2, /* Second part of index name. May be NULL */ 003899 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 003900 ExprList *pList, /* A list of columns to be indexed */ 003901 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 003902 Token *pStart, /* The CREATE token that begins this statement */ 003903 Expr *pPIWhere, /* WHERE clause for partial indices */ 003904 int sortOrder, /* Sort order of primary key when pList==NULL */ 003905 int ifNotExist, /* Omit error if index already exists */ 003906 u8 idxType /* The index type */ 003907 ){ 003908 Table *pTab = 0; /* Table to be indexed */ 003909 Index *pIndex = 0; /* The index to be created */ 003910 char *zName = 0; /* Name of the index */ 003911 int nName; /* Number of characters in zName */ 003912 int i, j; 003913 DbFixer sFix; /* For assigning database names to pTable */ 003914 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 003915 sqlite3 *db = pParse->db; 003916 Db *pDb; /* The specific table containing the indexed database */ 003917 int iDb; /* Index of the database that is being written */ 003918 Token *pName = 0; /* Unqualified name of the index to create */ 003919 struct ExprList_item *pListItem; /* For looping over pList */ 003920 int nExtra = 0; /* Space allocated for zExtra[] */ 003921 int nExtraCol; /* Number of extra columns needed */ 003922 char *zExtra = 0; /* Extra space after the Index object */ 003923 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 003924 003925 assert( db->pParse==pParse ); 003926 if( pParse->nErr ){ 003927 goto exit_create_index; 003928 } 003929 assert( db->mallocFailed==0 ); 003930 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 003931 goto exit_create_index; 003932 } 003933 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 003934 goto exit_create_index; 003935 } 003936 if( sqlite3HasExplicitNulls(pParse, pList) ){ 003937 goto exit_create_index; 003938 } 003939 003940 /* 003941 ** Find the table that is to be indexed. Return early if not found. 003942 */ 003943 if( pTblName!=0 ){ 003944 003945 /* Use the two-part index name to determine the database 003946 ** to search for the table. 'Fix' the table name to this db 003947 ** before looking up the table. 003948 */ 003949 assert( pName1 && pName2 ); 003950 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 003951 if( iDb<0 ) goto exit_create_index; 003952 assert( pName && pName->z ); 003953 003954 #ifndef SQLITE_OMIT_TEMPDB 003955 /* If the index name was unqualified, check if the table 003956 ** is a temp table. If so, set the database to 1. Do not do this 003957 ** if initializing a database schema. 003958 */ 003959 if( !db->init.busy ){ 003960 pTab = sqlite3SrcListLookup(pParse, pTblName); 003961 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 003962 iDb = 1; 003963 } 003964 } 003965 #endif 003966 003967 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 003968 if( sqlite3FixSrcList(&sFix, pTblName) ){ 003969 /* Because the parser constructs pTblName from a single identifier, 003970 ** sqlite3FixSrcList can never fail. */ 003971 assert(0); 003972 } 003973 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 003974 assert( db->mallocFailed==0 || pTab==0 ); 003975 if( pTab==0 ) goto exit_create_index; 003976 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 003977 sqlite3ErrorMsg(pParse, 003978 "cannot create a TEMP index on non-TEMP table \"%s\"", 003979 pTab->zName); 003980 goto exit_create_index; 003981 } 003982 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 003983 }else{ 003984 assert( pName==0 ); 003985 assert( pStart==0 ); 003986 pTab = pParse->pNewTable; 003987 if( !pTab ) goto exit_create_index; 003988 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 003989 } 003990 pDb = &db->aDb[iDb]; 003991 003992 assert( pTab!=0 ); 003993 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 003994 && db->init.busy==0 003995 && pTblName!=0 003996 ){ 003997 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 003998 goto exit_create_index; 003999 } 004000 #ifndef SQLITE_OMIT_VIEW 004001 if( IsView(pTab) ){ 004002 sqlite3ErrorMsg(pParse, "views may not be indexed"); 004003 goto exit_create_index; 004004 } 004005 #endif 004006 #ifndef SQLITE_OMIT_VIRTUALTABLE 004007 if( IsVirtual(pTab) ){ 004008 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 004009 goto exit_create_index; 004010 } 004011 #endif 004012 004013 /* 004014 ** Find the name of the index. Make sure there is not already another 004015 ** index or table with the same name. 004016 ** 004017 ** Exception: If we are reading the names of permanent indices from the 004018 ** sqlite_schema table (because some other process changed the schema) and 004019 ** one of the index names collides with the name of a temporary table or 004020 ** index, then we will continue to process this index. 004021 ** 004022 ** If pName==0 it means that we are 004023 ** dealing with a primary key or UNIQUE constraint. We have to invent our 004024 ** own name. 004025 */ 004026 if( pName ){ 004027 zName = sqlite3NameFromToken(db, pName); 004028 if( zName==0 ) goto exit_create_index; 004029 assert( pName->z!=0 ); 004030 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 004031 goto exit_create_index; 004032 } 004033 if( !IN_RENAME_OBJECT ){ 004034 if( !db->init.busy ){ 004035 if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){ 004036 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 004037 goto exit_create_index; 004038 } 004039 } 004040 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 004041 if( !ifNotExist ){ 004042 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 004043 }else{ 004044 assert( !db->init.busy ); 004045 sqlite3CodeVerifySchema(pParse, iDb); 004046 sqlite3ForceNotReadOnly(pParse); 004047 } 004048 goto exit_create_index; 004049 } 004050 } 004051 }else{ 004052 int n; 004053 Index *pLoop; 004054 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 004055 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 004056 if( zName==0 ){ 004057 goto exit_create_index; 004058 } 004059 004060 /* Automatic index names generated from within sqlite3_declare_vtab() 004061 ** must have names that are distinct from normal automatic index names. 004062 ** The following statement converts "sqlite3_autoindex..." into 004063 ** "sqlite3_butoindex..." in order to make the names distinct. 004064 ** The "vtab_err.test" test demonstrates the need of this statement. */ 004065 if( IN_SPECIAL_PARSE ) zName[7]++; 004066 } 004067 004068 /* Check for authorization to create an index. 004069 */ 004070 #ifndef SQLITE_OMIT_AUTHORIZATION 004071 if( !IN_RENAME_OBJECT ){ 004072 const char *zDb = pDb->zDbSName; 004073 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 004074 goto exit_create_index; 004075 } 004076 i = SQLITE_CREATE_INDEX; 004077 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 004078 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 004079 goto exit_create_index; 004080 } 004081 } 004082 #endif 004083 004084 /* If pList==0, it means this routine was called to make a primary 004085 ** key out of the last column added to the table under construction. 004086 ** So create a fake list to simulate this. 004087 */ 004088 if( pList==0 ){ 004089 Token prevCol; 004090 Column *pCol = &pTab->aCol[pTab->nCol-1]; 004091 pCol->colFlags |= COLFLAG_UNIQUE; 004092 sqlite3TokenInit(&prevCol, pCol->zCnName); 004093 pList = sqlite3ExprListAppend(pParse, 0, 004094 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 004095 if( pList==0 ) goto exit_create_index; 004096 assert( pList->nExpr==1 ); 004097 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 004098 }else{ 004099 sqlite3ExprListCheckLength(pParse, pList, "index"); 004100 if( pParse->nErr ) goto exit_create_index; 004101 } 004102 004103 /* Figure out how many bytes of space are required to store explicitly 004104 ** specified collation sequence names. 004105 */ 004106 for(i=0; i<pList->nExpr; i++){ 004107 Expr *pExpr = pList->a[i].pExpr; 004108 assert( pExpr!=0 ); 004109 if( pExpr->op==TK_COLLATE ){ 004110 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004111 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 004112 } 004113 } 004114 004115 /* 004116 ** Allocate the index structure. 004117 */ 004118 nName = sqlite3Strlen30(zName); 004119 nExtraCol = pPk ? pPk->nKeyCol : 1; 004120 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 004121 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 004122 nName + nExtra + 1, &zExtra); 004123 if( db->mallocFailed ){ 004124 goto exit_create_index; 004125 } 004126 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 004127 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 004128 pIndex->zName = zExtra; 004129 zExtra += nName + 1; 004130 memcpy(pIndex->zName, zName, nName+1); 004131 pIndex->pTable = pTab; 004132 pIndex->onError = (u8)onError; 004133 pIndex->uniqNotNull = onError!=OE_None; 004134 pIndex->idxType = idxType; 004135 pIndex->pSchema = db->aDb[iDb].pSchema; 004136 pIndex->nKeyCol = pList->nExpr; 004137 if( pPIWhere ){ 004138 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 004139 pIndex->pPartIdxWhere = pPIWhere; 004140 pPIWhere = 0; 004141 } 004142 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 004143 004144 /* Check to see if we should honor DESC requests on index columns 004145 */ 004146 if( pDb->pSchema->file_format>=4 ){ 004147 sortOrderMask = -1; /* Honor DESC */ 004148 }else{ 004149 sortOrderMask = 0; /* Ignore DESC */ 004150 } 004151 004152 /* Analyze the list of expressions that form the terms of the index and 004153 ** report any errors. In the common case where the expression is exactly 004154 ** a table column, store that column in aiColumn[]. For general expressions, 004155 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 004156 ** 004157 ** TODO: Issue a warning if two or more columns of the index are identical. 004158 ** TODO: Issue a warning if the table primary key is used as part of the 004159 ** index key. 004160 */ 004161 pListItem = pList->a; 004162 if( IN_RENAME_OBJECT ){ 004163 pIndex->aColExpr = pList; 004164 pList = 0; 004165 } 004166 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 004167 Expr *pCExpr; /* The i-th index expression */ 004168 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 004169 const char *zColl; /* Collation sequence name */ 004170 004171 sqlite3StringToId(pListItem->pExpr); 004172 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 004173 if( pParse->nErr ) goto exit_create_index; 004174 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 004175 if( pCExpr->op!=TK_COLUMN ){ 004176 if( pTab==pParse->pNewTable ){ 004177 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 004178 "UNIQUE constraints"); 004179 goto exit_create_index; 004180 } 004181 if( pIndex->aColExpr==0 ){ 004182 pIndex->aColExpr = pList; 004183 pList = 0; 004184 } 004185 j = XN_EXPR; 004186 pIndex->aiColumn[i] = XN_EXPR; 004187 pIndex->uniqNotNull = 0; 004188 pIndex->bHasExpr = 1; 004189 }else{ 004190 j = pCExpr->iColumn; 004191 assert( j<=0x7fff ); 004192 if( j<0 ){ 004193 j = pTab->iPKey; 004194 }else{ 004195 if( pTab->aCol[j].notNull==0 ){ 004196 pIndex->uniqNotNull = 0; 004197 } 004198 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 004199 pIndex->bHasVCol = 1; 004200 pIndex->bHasExpr = 1; 004201 } 004202 } 004203 pIndex->aiColumn[i] = (i16)j; 004204 } 004205 zColl = 0; 004206 if( pListItem->pExpr->op==TK_COLLATE ){ 004207 int nColl; 004208 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); 004209 zColl = pListItem->pExpr->u.zToken; 004210 nColl = sqlite3Strlen30(zColl) + 1; 004211 assert( nExtra>=nColl ); 004212 memcpy(zExtra, zColl, nColl); 004213 zColl = zExtra; 004214 zExtra += nColl; 004215 nExtra -= nColl; 004216 }else if( j>=0 ){ 004217 zColl = sqlite3ColumnColl(&pTab->aCol[j]); 004218 } 004219 if( !zColl ) zColl = sqlite3StrBINARY; 004220 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 004221 goto exit_create_index; 004222 } 004223 pIndex->azColl[i] = zColl; 004224 requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask; 004225 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 004226 } 004227 004228 /* Append the table key to the end of the index. For WITHOUT ROWID 004229 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 004230 ** normal tables (when pPk==0) this will be the rowid. 004231 */ 004232 if( pPk ){ 004233 for(j=0; j<pPk->nKeyCol; j++){ 004234 int x = pPk->aiColumn[j]; 004235 assert( x>=0 ); 004236 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 004237 pIndex->nColumn--; 004238 }else{ 004239 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 004240 pIndex->aiColumn[i] = x; 004241 pIndex->azColl[i] = pPk->azColl[j]; 004242 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 004243 i++; 004244 } 004245 } 004246 assert( i==pIndex->nColumn ); 004247 }else{ 004248 pIndex->aiColumn[i] = XN_ROWID; 004249 pIndex->azColl[i] = sqlite3StrBINARY; 004250 } 004251 sqlite3DefaultRowEst(pIndex); 004252 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 004253 004254 /* If this index contains every column of its table, then mark 004255 ** it as a covering index */ 004256 assert( HasRowid(pTab) 004257 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 004258 recomputeColumnsNotIndexed(pIndex); 004259 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 004260 pIndex->isCovering = 1; 004261 for(j=0; j<pTab->nCol; j++){ 004262 if( j==pTab->iPKey ) continue; 004263 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 004264 pIndex->isCovering = 0; 004265 break; 004266 } 004267 } 004268 004269 if( pTab==pParse->pNewTable ){ 004270 /* This routine has been called to create an automatic index as a 004271 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 004272 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 004273 ** i.e. one of: 004274 ** 004275 ** CREATE TABLE t(x PRIMARY KEY, y); 004276 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 004277 ** 004278 ** Either way, check to see if the table already has such an index. If 004279 ** so, don't bother creating this one. This only applies to 004280 ** automatically created indices. Users can do as they wish with 004281 ** explicit indices. 004282 ** 004283 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 004284 ** (and thus suppressing the second one) even if they have different 004285 ** sort orders. 004286 ** 004287 ** If there are different collating sequences or if the columns of 004288 ** the constraint occur in different orders, then the constraints are 004289 ** considered distinct and both result in separate indices. 004290 */ 004291 Index *pIdx; 004292 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 004293 int k; 004294 assert( IsUniqueIndex(pIdx) ); 004295 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 004296 assert( IsUniqueIndex(pIndex) ); 004297 004298 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 004299 for(k=0; k<pIdx->nKeyCol; k++){ 004300 const char *z1; 004301 const char *z2; 004302 assert( pIdx->aiColumn[k]>=0 ); 004303 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 004304 z1 = pIdx->azColl[k]; 004305 z2 = pIndex->azColl[k]; 004306 if( sqlite3StrICmp(z1, z2) ) break; 004307 } 004308 if( k==pIdx->nKeyCol ){ 004309 if( pIdx->onError!=pIndex->onError ){ 004310 /* This constraint creates the same index as a previous 004311 ** constraint specified somewhere in the CREATE TABLE statement. 004312 ** However the ON CONFLICT clauses are different. If both this 004313 ** constraint and the previous equivalent constraint have explicit 004314 ** ON CONFLICT clauses this is an error. Otherwise, use the 004315 ** explicitly specified behavior for the index. 004316 */ 004317 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 004318 sqlite3ErrorMsg(pParse, 004319 "conflicting ON CONFLICT clauses specified", 0); 004320 } 004321 if( pIdx->onError==OE_Default ){ 004322 pIdx->onError = pIndex->onError; 004323 } 004324 } 004325 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 004326 if( IN_RENAME_OBJECT ){ 004327 pIndex->pNext = pParse->pNewIndex; 004328 pParse->pNewIndex = pIndex; 004329 pIndex = 0; 004330 } 004331 goto exit_create_index; 004332 } 004333 } 004334 } 004335 004336 if( !IN_RENAME_OBJECT ){ 004337 004338 /* Link the new Index structure to its table and to the other 004339 ** in-memory database structures. 004340 */ 004341 assert( pParse->nErr==0 ); 004342 if( db->init.busy ){ 004343 Index *p; 004344 assert( !IN_SPECIAL_PARSE ); 004345 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 004346 if( pTblName!=0 ){ 004347 pIndex->tnum = db->init.newTnum; 004348 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 004349 sqlite3ErrorMsg(pParse, "invalid rootpage"); 004350 pParse->rc = SQLITE_CORRUPT_BKPT; 004351 goto exit_create_index; 004352 } 004353 } 004354 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 004355 pIndex->zName, pIndex); 004356 if( p ){ 004357 assert( p==pIndex ); /* Malloc must have failed */ 004358 sqlite3OomFault(db); 004359 goto exit_create_index; 004360 } 004361 db->mDbFlags |= DBFLAG_SchemaChange; 004362 } 004363 004364 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 004365 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 004366 ** emit code to allocate the index rootpage on disk and make an entry for 004367 ** the index in the sqlite_schema table and populate the index with 004368 ** content. But, do not do this if we are simply reading the sqlite_schema 004369 ** table to parse the schema, or if this index is the PRIMARY KEY index 004370 ** of a WITHOUT ROWID table. 004371 ** 004372 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 004373 ** or UNIQUE index in a CREATE TABLE statement. Since the table 004374 ** has just been created, it contains no data and the index initialization 004375 ** step can be skipped. 004376 */ 004377 else if( HasRowid(pTab) || pTblName!=0 ){ 004378 Vdbe *v; 004379 char *zStmt; 004380 int iMem = ++pParse->nMem; 004381 004382 v = sqlite3GetVdbe(pParse); 004383 if( v==0 ) goto exit_create_index; 004384 004385 sqlite3BeginWriteOperation(pParse, 1, iDb); 004386 004387 /* Create the rootpage for the index using CreateIndex. But before 004388 ** doing so, code a Noop instruction and store its address in 004389 ** Index.tnum. This is required in case this index is actually a 004390 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 004391 ** that case the convertToWithoutRowidTable() routine will replace 004392 ** the Noop with a Goto to jump over the VDBE code generated below. */ 004393 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 004394 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 004395 004396 /* Gather the complete text of the CREATE INDEX statement into 004397 ** the zStmt variable 004398 */ 004399 assert( pName!=0 || pStart==0 ); 004400 if( pStart ){ 004401 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 004402 if( pName->z[n-1]==';' ) n--; 004403 /* A named index with an explicit CREATE INDEX statement */ 004404 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 004405 onError==OE_None ? "" : " UNIQUE", n, pName->z); 004406 }else{ 004407 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 004408 /* zStmt = sqlite3MPrintf(""); */ 004409 zStmt = 0; 004410 } 004411 004412 /* Add an entry in sqlite_schema for this index 004413 */ 004414 sqlite3NestedParse(pParse, 004415 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 004416 db->aDb[iDb].zDbSName, 004417 pIndex->zName, 004418 pTab->zName, 004419 iMem, 004420 zStmt 004421 ); 004422 sqlite3DbFree(db, zStmt); 004423 004424 /* Fill the index with data and reparse the schema. Code an OP_Expire 004425 ** to invalidate all pre-compiled statements. 004426 */ 004427 if( pTblName ){ 004428 sqlite3RefillIndex(pParse, pIndex, iMem); 004429 sqlite3ChangeCookie(pParse, iDb); 004430 sqlite3VdbeAddParseSchemaOp(v, iDb, 004431 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 004432 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 004433 } 004434 004435 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 004436 } 004437 } 004438 if( db->init.busy || pTblName==0 ){ 004439 pIndex->pNext = pTab->pIndex; 004440 pTab->pIndex = pIndex; 004441 pIndex = 0; 004442 } 004443 else if( IN_RENAME_OBJECT ){ 004444 assert( pParse->pNewIndex==0 ); 004445 pParse->pNewIndex = pIndex; 004446 pIndex = 0; 004447 } 004448 004449 /* Clean up before exiting */ 004450 exit_create_index: 004451 if( pIndex ) sqlite3FreeIndex(db, pIndex); 004452 if( pTab ){ 004453 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 004454 ** The list was already ordered when this routine was entered, so at this 004455 ** point at most a single index (the newly added index) will be out of 004456 ** order. So we have to reorder at most one index. */ 004457 Index **ppFrom; 004458 Index *pThis; 004459 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 004460 Index *pNext; 004461 if( pThis->onError!=OE_Replace ) continue; 004462 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 004463 *ppFrom = pNext; 004464 pThis->pNext = pNext->pNext; 004465 pNext->pNext = pThis; 004466 ppFrom = &pNext->pNext; 004467 } 004468 break; 004469 } 004470 #ifdef SQLITE_DEBUG 004471 /* Verify that all REPLACE indexes really are now at the end 004472 ** of the index list. In other words, no other index type ever 004473 ** comes after a REPLACE index on the list. */ 004474 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 004475 assert( pThis->onError!=OE_Replace 004476 || pThis->pNext==0 004477 || pThis->pNext->onError==OE_Replace ); 004478 } 004479 #endif 004480 } 004481 sqlite3ExprDelete(db, pPIWhere); 004482 sqlite3ExprListDelete(db, pList); 004483 sqlite3SrcListDelete(db, pTblName); 004484 sqlite3DbFree(db, zName); 004485 } 004486 004487 /* 004488 ** Fill the Index.aiRowEst[] array with default information - information 004489 ** to be used when we have not run the ANALYZE command. 004490 ** 004491 ** aiRowEst[0] is supposed to contain the number of elements in the index. 004492 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 004493 ** number of rows in the table that match any particular value of the 004494 ** first column of the index. aiRowEst[2] is an estimate of the number 004495 ** of rows that match any particular combination of the first 2 columns 004496 ** of the index. And so forth. It must always be the case that 004497 * 004498 ** aiRowEst[N]<=aiRowEst[N-1] 004499 ** aiRowEst[N]>=1 004500 ** 004501 ** Apart from that, we have little to go on besides intuition as to 004502 ** how aiRowEst[] should be initialized. The numbers generated here 004503 ** are based on typical values found in actual indices. 004504 */ 004505 void sqlite3DefaultRowEst(Index *pIdx){ 004506 /* 10, 9, 8, 7, 6 */ 004507 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 004508 LogEst *a = pIdx->aiRowLogEst; 004509 LogEst x; 004510 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 004511 int i; 004512 004513 /* Indexes with default row estimates should not have stat1 data */ 004514 assert( !pIdx->hasStat1 ); 004515 004516 /* Set the first entry (number of rows in the index) to the estimated 004517 ** number of rows in the table, or half the number of rows in the table 004518 ** for a partial index. 004519 ** 004520 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 004521 ** table but other parts we are having to guess at, then do not let the 004522 ** estimated number of rows in the table be less than 1000 (LogEst 99). 004523 ** Failure to do this can cause the indexes for which we do not have 004524 ** stat1 data to be ignored by the query planner. 004525 */ 004526 x = pIdx->pTable->nRowLogEst; 004527 assert( 99==sqlite3LogEst(1000) ); 004528 if( x<99 ){ 004529 pIdx->pTable->nRowLogEst = x = 99; 004530 } 004531 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } 004532 a[0] = x; 004533 004534 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 004535 ** 6 and each subsequent value (if any) is 5. */ 004536 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 004537 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 004538 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 004539 } 004540 004541 assert( 0==sqlite3LogEst(1) ); 004542 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 004543 } 004544 004545 /* 004546 ** This routine will drop an existing named index. This routine 004547 ** implements the DROP INDEX statement. 004548 */ 004549 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 004550 Index *pIndex; 004551 Vdbe *v; 004552 sqlite3 *db = pParse->db; 004553 int iDb; 004554 004555 if( db->mallocFailed ){ 004556 goto exit_drop_index; 004557 } 004558 assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */ 004559 assert( pName->nSrc==1 ); 004560 assert( pName->a[0].fg.fixedSchema==0 ); 004561 assert( pName->a[0].fg.isSubquery==0 ); 004562 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 004563 goto exit_drop_index; 004564 } 004565 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].u4.zDatabase); 004566 if( pIndex==0 ){ 004567 if( !ifExists ){ 004568 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 004569 }else{ 004570 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].u4.zDatabase); 004571 sqlite3ForceNotReadOnly(pParse); 004572 } 004573 pParse->checkSchema = 1; 004574 goto exit_drop_index; 004575 } 004576 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 004577 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 004578 "or PRIMARY KEY constraint cannot be dropped", 0); 004579 goto exit_drop_index; 004580 } 004581 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 004582 #ifndef SQLITE_OMIT_AUTHORIZATION 004583 { 004584 int code = SQLITE_DROP_INDEX; 004585 Table *pTab = pIndex->pTable; 004586 const char *zDb = db->aDb[iDb].zDbSName; 004587 const char *zTab = SCHEMA_TABLE(iDb); 004588 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 004589 goto exit_drop_index; 004590 } 004591 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; 004592 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 004593 goto exit_drop_index; 004594 } 004595 } 004596 #endif 004597 004598 /* Generate code to remove the index and from the schema table */ 004599 v = sqlite3GetVdbe(pParse); 004600 if( v ){ 004601 sqlite3BeginWriteOperation(pParse, 1, iDb); 004602 sqlite3NestedParse(pParse, 004603 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 004604 db->aDb[iDb].zDbSName, pIndex->zName 004605 ); 004606 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 004607 sqlite3ChangeCookie(pParse, iDb); 004608 destroyRootPage(pParse, pIndex->tnum, iDb); 004609 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 004610 } 004611 004612 exit_drop_index: 004613 sqlite3SrcListDelete(db, pName); 004614 } 004615 004616 /* 004617 ** pArray is a pointer to an array of objects. Each object in the 004618 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 004619 ** to extend the array so that there is space for a new object at the end. 004620 ** 004621 ** When this function is called, *pnEntry contains the current size of 004622 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 004623 ** in total). 004624 ** 004625 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 004626 ** space allocated for the new object is zeroed, *pnEntry updated to 004627 ** reflect the new size of the array and a pointer to the new allocation 004628 ** returned. *pIdx is set to the index of the new array entry in this case. 004629 ** 004630 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 004631 ** unchanged and a copy of pArray returned. 004632 */ 004633 void *sqlite3ArrayAllocate( 004634 sqlite3 *db, /* Connection to notify of malloc failures */ 004635 void *pArray, /* Array of objects. Might be reallocated */ 004636 int szEntry, /* Size of each object in the array */ 004637 int *pnEntry, /* Number of objects currently in use */ 004638 int *pIdx /* Write the index of a new slot here */ 004639 ){ 004640 char *z; 004641 sqlite3_int64 n = *pIdx = *pnEntry; 004642 if( (n & (n-1))==0 ){ 004643 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 004644 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 004645 if( pNew==0 ){ 004646 *pIdx = -1; 004647 return pArray; 004648 } 004649 pArray = pNew; 004650 } 004651 z = (char*)pArray; 004652 memset(&z[n * szEntry], 0, szEntry); 004653 ++*pnEntry; 004654 return pArray; 004655 } 004656 004657 /* 004658 ** Append a new element to the given IdList. Create a new IdList if 004659 ** need be. 004660 ** 004661 ** A new IdList is returned, or NULL if malloc() fails. 004662 */ 004663 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 004664 sqlite3 *db = pParse->db; 004665 int i; 004666 if( pList==0 ){ 004667 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 004668 if( pList==0 ) return 0; 004669 }else{ 004670 IdList *pNew; 004671 pNew = sqlite3DbRealloc(db, pList, 004672 sizeof(IdList) + pList->nId*sizeof(pList->a)); 004673 if( pNew==0 ){ 004674 sqlite3IdListDelete(db, pList); 004675 return 0; 004676 } 004677 pList = pNew; 004678 } 004679 i = pList->nId++; 004680 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 004681 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 004682 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 004683 } 004684 return pList; 004685 } 004686 004687 /* 004688 ** Delete an IdList. 004689 */ 004690 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 004691 int i; 004692 assert( db!=0 ); 004693 if( pList==0 ) return; 004694 for(i=0; i<pList->nId; i++){ 004695 sqlite3DbFree(db, pList->a[i].zName); 004696 } 004697 sqlite3DbNNFreeNN(db, pList); 004698 } 004699 004700 /* 004701 ** Return the index in pList of the identifier named zId. Return -1 004702 ** if not found. 004703 */ 004704 int sqlite3IdListIndex(IdList *pList, const char *zName){ 004705 int i; 004706 assert( pList!=0 ); 004707 for(i=0; i<pList->nId; i++){ 004708 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 004709 } 004710 return -1; 004711 } 004712 004713 /* 004714 ** Maximum size of a SrcList object. 004715 ** The SrcList object is used to represent the FROM clause of a 004716 ** SELECT statement, and the query planner cannot deal with more 004717 ** than 64 tables in a join. So any value larger than 64 here 004718 ** is sufficient for most uses. Smaller values, like say 10, are 004719 ** appropriate for small and memory-limited applications. 004720 */ 004721 #ifndef SQLITE_MAX_SRCLIST 004722 # define SQLITE_MAX_SRCLIST 200 004723 #endif 004724 004725 /* 004726 ** Expand the space allocated for the given SrcList object by 004727 ** creating nExtra new slots beginning at iStart. iStart is zero based. 004728 ** New slots are zeroed. 004729 ** 004730 ** For example, suppose a SrcList initially contains two entries: A,B. 004731 ** To append 3 new entries onto the end, do this: 004732 ** 004733 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 004734 ** 004735 ** After the call above it would contain: A, B, nil, nil, nil. 004736 ** If the iStart argument had been 1 instead of 2, then the result 004737 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 004738 ** the iStart value would be 0. The result then would 004739 ** be: nil, nil, nil, A, B. 004740 ** 004741 ** If a memory allocation fails or the SrcList becomes too large, leave 004742 ** the original SrcList unchanged, return NULL, and leave an error message 004743 ** in pParse. 004744 */ 004745 SrcList *sqlite3SrcListEnlarge( 004746 Parse *pParse, /* Parsing context into which errors are reported */ 004747 SrcList *pSrc, /* The SrcList to be enlarged */ 004748 int nExtra, /* Number of new slots to add to pSrc->a[] */ 004749 int iStart /* Index in pSrc->a[] of first new slot */ 004750 ){ 004751 int i; 004752 004753 /* Sanity checking on calling parameters */ 004754 assert( iStart>=0 ); 004755 assert( nExtra>=1 ); 004756 assert( pSrc!=0 ); 004757 assert( iStart<=pSrc->nSrc ); 004758 004759 /* Allocate additional space if needed */ 004760 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 004761 SrcList *pNew; 004762 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 004763 sqlite3 *db = pParse->db; 004764 004765 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 004766 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 004767 SQLITE_MAX_SRCLIST); 004768 return 0; 004769 } 004770 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 004771 pNew = sqlite3DbRealloc(db, pSrc, 004772 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 004773 if( pNew==0 ){ 004774 assert( db->mallocFailed ); 004775 return 0; 004776 } 004777 pSrc = pNew; 004778 pSrc->nAlloc = nAlloc; 004779 } 004780 004781 /* Move existing slots that come after the newly inserted slots 004782 ** out of the way */ 004783 for(i=pSrc->nSrc-1; i>=iStart; i--){ 004784 pSrc->a[i+nExtra] = pSrc->a[i]; 004785 } 004786 pSrc->nSrc += nExtra; 004787 004788 /* Zero the newly allocated slots */ 004789 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 004790 for(i=iStart; i<iStart+nExtra; i++){ 004791 pSrc->a[i].iCursor = -1; 004792 } 004793 004794 /* Return a pointer to the enlarged SrcList */ 004795 return pSrc; 004796 } 004797 004798 004799 /* 004800 ** Append a new table name to the given SrcList. Create a new SrcList if 004801 ** need be. A new entry is created in the SrcList even if pTable is NULL. 004802 ** 004803 ** A SrcList is returned, or NULL if there is an OOM error or if the 004804 ** SrcList grows to large. The returned 004805 ** SrcList might be the same as the SrcList that was input or it might be 004806 ** a new one. If an OOM error does occurs, then the prior value of pList 004807 ** that is input to this routine is automatically freed. 004808 ** 004809 ** If pDatabase is not null, it means that the table has an optional 004810 ** database name prefix. Like this: "database.table". The pDatabase 004811 ** points to the table name and the pTable points to the database name. 004812 ** The SrcList.a[].zName field is filled with the table name which might 004813 ** come from pTable (if pDatabase is NULL) or from pDatabase. 004814 ** SrcList.a[].zDatabase is filled with the database name from pTable, 004815 ** or with NULL if no database is specified. 004816 ** 004817 ** In other words, if call like this: 004818 ** 004819 ** sqlite3SrcListAppend(D,A,B,0); 004820 ** 004821 ** Then B is a table name and the database name is unspecified. If called 004822 ** like this: 004823 ** 004824 ** sqlite3SrcListAppend(D,A,B,C); 004825 ** 004826 ** Then C is the table name and B is the database name. If C is defined 004827 ** then so is B. In other words, we never have a case where: 004828 ** 004829 ** sqlite3SrcListAppend(D,A,0,C); 004830 ** 004831 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 004832 ** before being added to the SrcList. 004833 */ 004834 SrcList *sqlite3SrcListAppend( 004835 Parse *pParse, /* Parsing context, in which errors are reported */ 004836 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 004837 Token *pTable, /* Table to append */ 004838 Token *pDatabase /* Database of the table */ 004839 ){ 004840 SrcItem *pItem; 004841 sqlite3 *db; 004842 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 004843 assert( pParse!=0 ); 004844 assert( pParse->db!=0 ); 004845 db = pParse->db; 004846 if( pList==0 ){ 004847 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 004848 if( pList==0 ) return 0; 004849 pList->nAlloc = 1; 004850 pList->nSrc = 1; 004851 memset(&pList->a[0], 0, sizeof(pList->a[0])); 004852 pList->a[0].iCursor = -1; 004853 }else{ 004854 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 004855 if( pNew==0 ){ 004856 sqlite3SrcListDelete(db, pList); 004857 return 0; 004858 }else{ 004859 pList = pNew; 004860 } 004861 } 004862 pItem = &pList->a[pList->nSrc-1]; 004863 if( pDatabase && pDatabase->z==0 ){ 004864 pDatabase = 0; 004865 } 004866 assert( pItem->fg.fixedSchema==0 ); 004867 assert( pItem->fg.isSubquery==0 ); 004868 if( pDatabase ){ 004869 pItem->zName = sqlite3NameFromToken(db, pDatabase); 004870 pItem->u4.zDatabase = sqlite3NameFromToken(db, pTable); 004871 }else{ 004872 pItem->zName = sqlite3NameFromToken(db, pTable); 004873 pItem->u4.zDatabase = 0; 004874 } 004875 return pList; 004876 } 004877 004878 /* 004879 ** Assign VdbeCursor index numbers to all tables in a SrcList 004880 */ 004881 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 004882 int i; 004883 SrcItem *pItem; 004884 assert( pList || pParse->db->mallocFailed ); 004885 if( ALWAYS(pList) ){ 004886 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 004887 if( pItem->iCursor>=0 ) continue; 004888 pItem->iCursor = pParse->nTab++; 004889 if( pItem->fg.isSubquery ){ 004890 assert( pItem->u4.pSubq!=0 ); 004891 assert( pItem->u4.pSubq->pSelect!=0 ); 004892 assert( pItem->u4.pSubq->pSelect->pSrc!=0 ); 004893 sqlite3SrcListAssignCursors(pParse, pItem->u4.pSubq->pSelect->pSrc); 004894 } 004895 } 004896 } 004897 } 004898 004899 /* 004900 ** Delete a Subquery object and its substructure. 004901 */ 004902 void sqlite3SubqueryDelete(sqlite3 *db, Subquery *pSubq){ 004903 assert( pSubq!=0 && pSubq->pSelect!=0 ); 004904 sqlite3SelectDelete(db, pSubq->pSelect); 004905 sqlite3DbFree(db, pSubq); 004906 } 004907 004908 /* 004909 ** Remove a Subquery from a SrcItem. Return the associated Select object. 004910 ** The returned Select becomes the responsibility of the caller. 004911 */ 004912 Select *sqlite3SubqueryDetach(sqlite3 *db, SrcItem *pItem){ 004913 Select *pSel; 004914 assert( pItem!=0 ); 004915 assert( pItem->fg.isSubquery ); 004916 pSel = pItem->u4.pSubq->pSelect; 004917 sqlite3DbFree(db, pItem->u4.pSubq); 004918 pItem->u4.pSubq = 0; 004919 pItem->fg.isSubquery = 0; 004920 return pSel; 004921 } 004922 004923 /* 004924 ** Delete an entire SrcList including all its substructure. 004925 */ 004926 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 004927 int i; 004928 SrcItem *pItem; 004929 assert( db!=0 ); 004930 if( pList==0 ) return; 004931 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 004932 004933 /* Check invariants on SrcItem */ 004934 assert( !pItem->fg.isIndexedBy || !pItem->fg.isTabFunc ); 004935 assert( !pItem->fg.isCte || !pItem->fg.isIndexedBy ); 004936 assert( !pItem->fg.fixedSchema || !pItem->fg.isSubquery ); 004937 assert( !pItem->fg.isSubquery || (pItem->u4.pSubq!=0 && 004938 pItem->u4.pSubq->pSelect!=0) ); 004939 004940 if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName); 004941 if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias); 004942 if( pItem->fg.isSubquery ){ 004943 sqlite3SubqueryDelete(db, pItem->u4.pSubq); 004944 }else if( pItem->fg.fixedSchema==0 && pItem->u4.zDatabase!=0 ){ 004945 sqlite3DbNNFreeNN(db, pItem->u4.zDatabase); 004946 } 004947 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 004948 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 004949 sqlite3DeleteTable(db, pItem->pSTab); 004950 if( pItem->fg.isUsing ){ 004951 sqlite3IdListDelete(db, pItem->u3.pUsing); 004952 }else if( pItem->u3.pOn ){ 004953 sqlite3ExprDelete(db, pItem->u3.pOn); 004954 } 004955 } 004956 sqlite3DbNNFreeNN(db, pList); 004957 } 004958 004959 /* 004960 ** Attach a Subquery object to pItem->uv.pSubq. Set the 004961 ** pSelect value but leave all the other values initialized 004962 ** to zero. 004963 ** 004964 ** A copy of the Select object is made if dupSelect is true, and the 004965 ** SrcItem takes responsibility for deleting the copy. If dupSelect is 004966 ** false, ownership of the Select passes to the SrcItem. Either way, 004967 ** the SrcItem will take responsibility for deleting the Select. 004968 ** 004969 ** When dupSelect is zero, that means the Select might get deleted right 004970 ** away if there is an OOM error. Beware. 004971 ** 004972 ** Return non-zero on success. Return zero on an OOM error. 004973 */ 004974 int sqlite3SrcItemAttachSubquery( 004975 Parse *pParse, /* Parsing context */ 004976 SrcItem *pItem, /* Item to which the subquery is to be attached */ 004977 Select *pSelect, /* The subquery SELECT. Must be non-NULL */ 004978 int dupSelect /* If true, attach a copy of pSelect, not pSelect itself.*/ 004979 ){ 004980 Subquery *p; 004981 assert( pSelect!=0 ); 004982 assert( pItem->fg.isSubquery==0 ); 004983 if( pItem->fg.fixedSchema ){ 004984 pItem->u4.pSchema = 0; 004985 pItem->fg.fixedSchema = 0; 004986 }else if( pItem->u4.zDatabase!=0 ){ 004987 sqlite3DbFree(pParse->db, pItem->u4.zDatabase); 004988 pItem->u4.zDatabase = 0; 004989 } 004990 if( dupSelect ){ 004991 pSelect = sqlite3SelectDup(pParse->db, pSelect, 0); 004992 if( pSelect==0 ) return 0; 004993 } 004994 p = pItem->u4.pSubq = sqlite3DbMallocRawNN(pParse->db, sizeof(Subquery)); 004995 if( p==0 ){ 004996 sqlite3SelectDelete(pParse->db, pSelect); 004997 return 0; 004998 } 004999 pItem->fg.isSubquery = 1; 005000 p->pSelect = pSelect; 005001 assert( offsetof(Subquery, pSelect)==0 ); 005002 memset(((char*)p)+sizeof(p->pSelect), 0, sizeof(*p)-sizeof(p->pSelect)); 005003 return 1; 005004 } 005005 005006 005007 /* 005008 ** This routine is called by the parser to add a new term to the 005009 ** end of a growing FROM clause. The "p" parameter is the part of 005010 ** the FROM clause that has already been constructed. "p" is NULL 005011 ** if this is the first term of the FROM clause. pTable and pDatabase 005012 ** are the name of the table and database named in the FROM clause term. 005013 ** pDatabase is NULL if the database name qualifier is missing - the 005014 ** usual case. If the term has an alias, then pAlias points to the 005015 ** alias token. If the term is a subquery, then pSubquery is the 005016 ** SELECT statement that the subquery encodes. The pTable and 005017 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 005018 ** parameters are the content of the ON and USING clauses. 005019 ** 005020 ** Return a new SrcList which encodes is the FROM with the new 005021 ** term added. 005022 */ 005023 SrcList *sqlite3SrcListAppendFromTerm( 005024 Parse *pParse, /* Parsing context */ 005025 SrcList *p, /* The left part of the FROM clause already seen */ 005026 Token *pTable, /* Name of the table to add to the FROM clause */ 005027 Token *pDatabase, /* Name of the database containing pTable */ 005028 Token *pAlias, /* The right-hand side of the AS subexpression */ 005029 Select *pSubquery, /* A subquery used in place of a table name */ 005030 OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */ 005031 ){ 005032 SrcItem *pItem; 005033 sqlite3 *db = pParse->db; 005034 if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){ 005035 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 005036 (pOnUsing->pOn ? "ON" : "USING") 005037 ); 005038 goto append_from_error; 005039 } 005040 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 005041 if( p==0 ){ 005042 goto append_from_error; 005043 } 005044 assert( p->nSrc>0 ); 005045 pItem = &p->a[p->nSrc-1]; 005046 assert( (pTable==0)==(pDatabase==0) ); 005047 assert( pItem->zName==0 || pDatabase!=0 ); 005048 if( IN_RENAME_OBJECT && pItem->zName ){ 005049 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 005050 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 005051 } 005052 assert( pAlias!=0 ); 005053 if( pAlias->n ){ 005054 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 005055 } 005056 assert( pSubquery==0 || pDatabase==0 ); 005057 if( pSubquery ){ 005058 if( sqlite3SrcItemAttachSubquery(pParse, pItem, pSubquery, 0) ){ 005059 if( pSubquery->selFlags & SF_NestedFrom ){ 005060 pItem->fg.isNestedFrom = 1; 005061 } 005062 } 005063 } 005064 assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 ); 005065 assert( pItem->fg.isUsing==0 ); 005066 if( pOnUsing==0 ){ 005067 pItem->u3.pOn = 0; 005068 }else if( pOnUsing->pUsing ){ 005069 pItem->fg.isUsing = 1; 005070 pItem->u3.pUsing = pOnUsing->pUsing; 005071 }else{ 005072 pItem->u3.pOn = pOnUsing->pOn; 005073 } 005074 return p; 005075 005076 append_from_error: 005077 assert( p==0 ); 005078 sqlite3ClearOnOrUsing(db, pOnUsing); 005079 sqlite3SelectDelete(db, pSubquery); 005080 return 0; 005081 } 005082 005083 /* 005084 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 005085 ** element of the source-list passed as the second argument. 005086 */ 005087 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 005088 assert( pIndexedBy!=0 ); 005089 if( p && pIndexedBy->n>0 ){ 005090 SrcItem *pItem; 005091 assert( p->nSrc>0 ); 005092 pItem = &p->a[p->nSrc-1]; 005093 assert( pItem->fg.notIndexed==0 ); 005094 assert( pItem->fg.isIndexedBy==0 ); 005095 assert( pItem->fg.isTabFunc==0 ); 005096 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 005097 /* A "NOT INDEXED" clause was supplied. See parse.y 005098 ** construct "indexed_opt" for details. */ 005099 pItem->fg.notIndexed = 1; 005100 }else{ 005101 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 005102 pItem->fg.isIndexedBy = 1; 005103 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ 005104 } 005105 } 005106 } 005107 005108 /* 005109 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 005110 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 005111 ** are deleted by this function. 005112 */ 005113 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 005114 assert( p1 && p1->nSrc==1 ); 005115 if( p2 ){ 005116 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 005117 if( pNew==0 ){ 005118 sqlite3SrcListDelete(pParse->db, p2); 005119 }else{ 005120 p1 = pNew; 005121 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 005122 sqlite3DbFree(pParse->db, p2); 005123 p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype); 005124 } 005125 } 005126 return p1; 005127 } 005128 005129 /* 005130 ** Add the list of function arguments to the SrcList entry for a 005131 ** table-valued-function. 005132 */ 005133 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 005134 if( p ){ 005135 SrcItem *pItem = &p->a[p->nSrc-1]; 005136 assert( pItem->fg.notIndexed==0 ); 005137 assert( pItem->fg.isIndexedBy==0 ); 005138 assert( pItem->fg.isTabFunc==0 ); 005139 pItem->u1.pFuncArg = pList; 005140 pItem->fg.isTabFunc = 1; 005141 }else{ 005142 sqlite3ExprListDelete(pParse->db, pList); 005143 } 005144 } 005145 005146 /* 005147 ** When building up a FROM clause in the parser, the join operator 005148 ** is initially attached to the left operand. But the code generator 005149 ** expects the join operator to be on the right operand. This routine 005150 ** Shifts all join operators from left to right for an entire FROM 005151 ** clause. 005152 ** 005153 ** Example: Suppose the join is like this: 005154 ** 005155 ** A natural cross join B 005156 ** 005157 ** The operator is "natural cross join". The A and B operands are stored 005158 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 005159 ** operator with A. This routine shifts that operator over to B. 005160 ** 005161 ** Additional changes: 005162 ** 005163 ** * All tables to the left of the right-most RIGHT JOIN are tagged with 005164 ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the 005165 ** code generator can easily tell that the table is part of 005166 ** the left operand of at least one RIGHT JOIN. 005167 */ 005168 void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){ 005169 (void)pParse; 005170 if( p && p->nSrc>1 ){ 005171 int i = p->nSrc-1; 005172 u8 allFlags = 0; 005173 do{ 005174 allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype; 005175 }while( (--i)>0 ); 005176 p->a[0].fg.jointype = 0; 005177 005178 /* All terms to the left of a RIGHT JOIN should be tagged with the 005179 ** JT_LTORJ flags */ 005180 if( allFlags & JT_RIGHT ){ 005181 for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){} 005182 i--; 005183 assert( i>=0 ); 005184 do{ 005185 p->a[i].fg.jointype |= JT_LTORJ; 005186 }while( (--i)>=0 ); 005187 } 005188 } 005189 } 005190 005191 /* 005192 ** Generate VDBE code for a BEGIN statement. 005193 */ 005194 void sqlite3BeginTransaction(Parse *pParse, int type){ 005195 sqlite3 *db; 005196 Vdbe *v; 005197 int i; 005198 005199 assert( pParse!=0 ); 005200 db = pParse->db; 005201 assert( db!=0 ); 005202 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 005203 return; 005204 } 005205 v = sqlite3GetVdbe(pParse); 005206 if( !v ) return; 005207 if( type!=TK_DEFERRED ){ 005208 for(i=0; i<db->nDb; i++){ 005209 int eTxnType; 005210 Btree *pBt = db->aDb[i].pBt; 005211 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 005212 eTxnType = 0; /* Read txn */ 005213 }else if( type==TK_EXCLUSIVE ){ 005214 eTxnType = 2; /* Exclusive txn */ 005215 }else{ 005216 eTxnType = 1; /* Write txn */ 005217 } 005218 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 005219 sqlite3VdbeUsesBtree(v, i); 005220 } 005221 } 005222 sqlite3VdbeAddOp0(v, OP_AutoCommit); 005223 } 005224 005225 /* 005226 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 005227 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 005228 ** code is generated for a COMMIT. 005229 */ 005230 void sqlite3EndTransaction(Parse *pParse, int eType){ 005231 Vdbe *v; 005232 int isRollback; 005233 005234 assert( pParse!=0 ); 005235 assert( pParse->db!=0 ); 005236 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 005237 isRollback = eType==TK_ROLLBACK; 005238 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 005239 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 005240 return; 005241 } 005242 v = sqlite3GetVdbe(pParse); 005243 if( v ){ 005244 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 005245 } 005246 } 005247 005248 /* 005249 ** This function is called by the parser when it parses a command to create, 005250 ** release or rollback an SQL savepoint. 005251 */ 005252 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 005253 char *zName = sqlite3NameFromToken(pParse->db, pName); 005254 if( zName ){ 005255 Vdbe *v = sqlite3GetVdbe(pParse); 005256 #ifndef SQLITE_OMIT_AUTHORIZATION 005257 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 005258 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 005259 #endif 005260 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 005261 sqlite3DbFree(pParse->db, zName); 005262 return; 005263 } 005264 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 005265 } 005266 } 005267 005268 /* 005269 ** Make sure the TEMP database is open and available for use. Return 005270 ** the number of errors. Leave any error messages in the pParse structure. 005271 */ 005272 int sqlite3OpenTempDatabase(Parse *pParse){ 005273 sqlite3 *db = pParse->db; 005274 if( db->aDb[1].pBt==0 && !pParse->explain ){ 005275 int rc; 005276 Btree *pBt; 005277 static const int flags = 005278 SQLITE_OPEN_READWRITE | 005279 SQLITE_OPEN_CREATE | 005280 SQLITE_OPEN_EXCLUSIVE | 005281 SQLITE_OPEN_DELETEONCLOSE | 005282 SQLITE_OPEN_TEMP_DB; 005283 005284 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 005285 if( rc!=SQLITE_OK ){ 005286 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 005287 "file for storing temporary tables"); 005288 pParse->rc = rc; 005289 return 1; 005290 } 005291 db->aDb[1].pBt = pBt; 005292 assert( db->aDb[1].pSchema ); 005293 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 005294 sqlite3OomFault(db); 005295 return 1; 005296 } 005297 } 005298 return 0; 005299 } 005300 005301 /* 005302 ** Record the fact that the schema cookie will need to be verified 005303 ** for database iDb. The code to actually verify the schema cookie 005304 ** will occur at the end of the top-level VDBE and will be generated 005305 ** later, by sqlite3FinishCoding(). 005306 */ 005307 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 005308 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 005309 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 005310 assert( iDb<SQLITE_MAX_DB ); 005311 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 005312 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 005313 DbMaskSet(pToplevel->cookieMask, iDb); 005314 if( !OMIT_TEMPDB && iDb==1 ){ 005315 sqlite3OpenTempDatabase(pToplevel); 005316 } 005317 } 005318 } 005319 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 005320 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 005321 } 005322 005323 005324 /* 005325 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 005326 ** attached database. Otherwise, invoke it for the database named zDb only. 005327 */ 005328 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 005329 sqlite3 *db = pParse->db; 005330 int i; 005331 for(i=0; i<db->nDb; i++){ 005332 Db *pDb = &db->aDb[i]; 005333 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 005334 sqlite3CodeVerifySchema(pParse, i); 005335 } 005336 } 005337 } 005338 005339 /* 005340 ** Generate VDBE code that prepares for doing an operation that 005341 ** might change the database. 005342 ** 005343 ** This routine starts a new transaction if we are not already within 005344 ** a transaction. If we are already within a transaction, then a checkpoint 005345 ** is set if the setStatement parameter is true. A checkpoint should 005346 ** be set for operations that might fail (due to a constraint) part of 005347 ** the way through and which will need to undo some writes without having to 005348 ** rollback the whole transaction. For operations where all constraints 005349 ** can be checked before any changes are made to the database, it is never 005350 ** necessary to undo a write and the checkpoint should not be set. 005351 */ 005352 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 005353 Parse *pToplevel = sqlite3ParseToplevel(pParse); 005354 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 005355 DbMaskSet(pToplevel->writeMask, iDb); 005356 pToplevel->isMultiWrite |= setStatement; 005357 } 005358 005359 /* 005360 ** Indicate that the statement currently under construction might write 005361 ** more than one entry (example: deleting one row then inserting another, 005362 ** inserting multiple rows in a table, or inserting a row and index entries.) 005363 ** If an abort occurs after some of these writes have completed, then it will 005364 ** be necessary to undo the completed writes. 005365 */ 005366 void sqlite3MultiWrite(Parse *pParse){ 005367 Parse *pToplevel = sqlite3ParseToplevel(pParse); 005368 pToplevel->isMultiWrite = 1; 005369 } 005370 005371 /* 005372 ** The code generator calls this routine if is discovers that it is 005373 ** possible to abort a statement prior to completion. In order to 005374 ** perform this abort without corrupting the database, we need to make 005375 ** sure that the statement is protected by a statement transaction. 005376 ** 005377 ** Technically, we only need to set the mayAbort flag if the 005378 ** isMultiWrite flag was previously set. There is a time dependency 005379 ** such that the abort must occur after the multiwrite. This makes 005380 ** some statements involving the REPLACE conflict resolution algorithm 005381 ** go a little faster. But taking advantage of this time dependency 005382 ** makes it more difficult to prove that the code is correct (in 005383 ** particular, it prevents us from writing an effective 005384 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 005385 ** to take the safe route and skip the optimization. 005386 */ 005387 void sqlite3MayAbort(Parse *pParse){ 005388 Parse *pToplevel = sqlite3ParseToplevel(pParse); 005389 pToplevel->mayAbort = 1; 005390 } 005391 005392 /* 005393 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 005394 ** error. The onError parameter determines which (if any) of the statement 005395 ** and/or current transaction is rolled back. 005396 */ 005397 void sqlite3HaltConstraint( 005398 Parse *pParse, /* Parsing context */ 005399 int errCode, /* extended error code */ 005400 int onError, /* Constraint type */ 005401 char *p4, /* Error message */ 005402 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 005403 u8 p5Errmsg /* P5_ErrMsg type */ 005404 ){ 005405 Vdbe *v; 005406 assert( pParse->pVdbe!=0 ); 005407 v = sqlite3GetVdbe(pParse); 005408 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 005409 if( onError==OE_Abort ){ 005410 sqlite3MayAbort(pParse); 005411 } 005412 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 005413 sqlite3VdbeChangeP5(v, p5Errmsg); 005414 } 005415 005416 /* 005417 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 005418 */ 005419 void sqlite3UniqueConstraint( 005420 Parse *pParse, /* Parsing context */ 005421 int onError, /* Constraint type */ 005422 Index *pIdx /* The index that triggers the constraint */ 005423 ){ 005424 char *zErr; 005425 int j; 005426 StrAccum errMsg; 005427 Table *pTab = pIdx->pTable; 005428 005429 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 005430 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 005431 if( pIdx->aColExpr ){ 005432 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 005433 }else{ 005434 for(j=0; j<pIdx->nKeyCol; j++){ 005435 char *zCol; 005436 assert( pIdx->aiColumn[j]>=0 ); 005437 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; 005438 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 005439 sqlite3_str_appendall(&errMsg, pTab->zName); 005440 sqlite3_str_append(&errMsg, ".", 1); 005441 sqlite3_str_appendall(&errMsg, zCol); 005442 } 005443 } 005444 zErr = sqlite3StrAccumFinish(&errMsg); 005445 sqlite3HaltConstraint(pParse, 005446 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 005447 : SQLITE_CONSTRAINT_UNIQUE, 005448 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 005449 } 005450 005451 005452 /* 005453 ** Code an OP_Halt due to non-unique rowid. 005454 */ 005455 void sqlite3RowidConstraint( 005456 Parse *pParse, /* Parsing context */ 005457 int onError, /* Conflict resolution algorithm */ 005458 Table *pTab /* The table with the non-unique rowid */ 005459 ){ 005460 char *zMsg; 005461 int rc; 005462 if( pTab->iPKey>=0 ){ 005463 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 005464 pTab->aCol[pTab->iPKey].zCnName); 005465 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 005466 }else{ 005467 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 005468 rc = SQLITE_CONSTRAINT_ROWID; 005469 } 005470 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 005471 P5_ConstraintUnique); 005472 } 005473 005474 /* 005475 ** Check to see if pIndex uses the collating sequence pColl. Return 005476 ** true if it does and false if it does not. 005477 */ 005478 #ifndef SQLITE_OMIT_REINDEX 005479 static int collationMatch(const char *zColl, Index *pIndex){ 005480 int i; 005481 assert( zColl!=0 ); 005482 for(i=0; i<pIndex->nColumn; i++){ 005483 const char *z = pIndex->azColl[i]; 005484 assert( z!=0 || pIndex->aiColumn[i]<0 ); 005485 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 005486 return 1; 005487 } 005488 } 005489 return 0; 005490 } 005491 #endif 005492 005493 /* 005494 ** Recompute all indices of pTab that use the collating sequence pColl. 005495 ** If pColl==0 then recompute all indices of pTab. 005496 */ 005497 #ifndef SQLITE_OMIT_REINDEX 005498 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 005499 if( !IsVirtual(pTab) ){ 005500 Index *pIndex; /* An index associated with pTab */ 005501 005502 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 005503 if( zColl==0 || collationMatch(zColl, pIndex) ){ 005504 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 005505 sqlite3BeginWriteOperation(pParse, 0, iDb); 005506 sqlite3RefillIndex(pParse, pIndex, -1); 005507 } 005508 } 005509 } 005510 } 005511 #endif 005512 005513 /* 005514 ** Recompute all indices of all tables in all databases where the 005515 ** indices use the collating sequence pColl. If pColl==0 then recompute 005516 ** all indices everywhere. 005517 */ 005518 #ifndef SQLITE_OMIT_REINDEX 005519 static void reindexDatabases(Parse *pParse, char const *zColl){ 005520 Db *pDb; /* A single database */ 005521 int iDb; /* The database index number */ 005522 sqlite3 *db = pParse->db; /* The database connection */ 005523 HashElem *k; /* For looping over tables in pDb */ 005524 Table *pTab; /* A table in the database */ 005525 005526 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 005527 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 005528 assert( pDb!=0 ); 005529 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 005530 pTab = (Table*)sqliteHashData(k); 005531 reindexTable(pParse, pTab, zColl); 005532 } 005533 } 005534 } 005535 #endif 005536 005537 /* 005538 ** Generate code for the REINDEX command. 005539 ** 005540 ** REINDEX -- 1 005541 ** REINDEX <collation> -- 2 005542 ** REINDEX ?<database>.?<tablename> -- 3 005543 ** REINDEX ?<database>.?<indexname> -- 4 005544 ** 005545 ** Form 1 causes all indices in all attached databases to be rebuilt. 005546 ** Form 2 rebuilds all indices in all databases that use the named 005547 ** collating function. Forms 3 and 4 rebuild the named index or all 005548 ** indices associated with the named table. 005549 */ 005550 #ifndef SQLITE_OMIT_REINDEX 005551 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 005552 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 005553 char *z; /* Name of a table or index */ 005554 const char *zDb; /* Name of the database */ 005555 Table *pTab; /* A table in the database */ 005556 Index *pIndex; /* An index associated with pTab */ 005557 int iDb; /* The database index number */ 005558 sqlite3 *db = pParse->db; /* The database connection */ 005559 Token *pObjName; /* Name of the table or index to be reindexed */ 005560 005561 /* Read the database schema. If an error occurs, leave an error message 005562 ** and code in pParse and return NULL. */ 005563 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 005564 return; 005565 } 005566 005567 if( pName1==0 ){ 005568 reindexDatabases(pParse, 0); 005569 return; 005570 }else if( NEVER(pName2==0) || pName2->z==0 ){ 005571 char *zColl; 005572 assert( pName1->z ); 005573 zColl = sqlite3NameFromToken(pParse->db, pName1); 005574 if( !zColl ) return; 005575 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 005576 if( pColl ){ 005577 reindexDatabases(pParse, zColl); 005578 sqlite3DbFree(db, zColl); 005579 return; 005580 } 005581 sqlite3DbFree(db, zColl); 005582 } 005583 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 005584 if( iDb<0 ) return; 005585 z = sqlite3NameFromToken(db, pObjName); 005586 if( z==0 ) return; 005587 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 005588 pTab = sqlite3FindTable(db, z, zDb); 005589 if( pTab ){ 005590 reindexTable(pParse, pTab, 0); 005591 sqlite3DbFree(db, z); 005592 return; 005593 } 005594 pIndex = sqlite3FindIndex(db, z, zDb); 005595 sqlite3DbFree(db, z); 005596 if( pIndex ){ 005597 iDb = sqlite3SchemaToIndex(db, pIndex->pTable->pSchema); 005598 sqlite3BeginWriteOperation(pParse, 0, iDb); 005599 sqlite3RefillIndex(pParse, pIndex, -1); 005600 return; 005601 } 005602 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 005603 } 005604 #endif 005605 005606 /* 005607 ** Return a KeyInfo structure that is appropriate for the given Index. 005608 ** 005609 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 005610 ** when it has finished using it. 005611 */ 005612 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 005613 int i; 005614 int nCol = pIdx->nColumn; 005615 int nKey = pIdx->nKeyCol; 005616 KeyInfo *pKey; 005617 if( pParse->nErr ) return 0; 005618 if( pIdx->uniqNotNull ){ 005619 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 005620 }else{ 005621 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 005622 } 005623 if( pKey ){ 005624 assert( sqlite3KeyInfoIsWriteable(pKey) ); 005625 for(i=0; i<nCol; i++){ 005626 const char *zColl = pIdx->azColl[i]; 005627 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 005628 sqlite3LocateCollSeq(pParse, zColl); 005629 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 005630 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 005631 } 005632 if( pParse->nErr ){ 005633 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 005634 if( pIdx->bNoQuery==0 ){ 005635 /* Deactivate the index because it contains an unknown collating 005636 ** sequence. The only way to reactive the index is to reload the 005637 ** schema. Adding the missing collating sequence later does not 005638 ** reactive the index. The application had the chance to register 005639 ** the missing index using the collation-needed callback. For 005640 ** simplicity, SQLite will not give the application a second chance. 005641 */ 005642 pIdx->bNoQuery = 1; 005643 pParse->rc = SQLITE_ERROR_RETRY; 005644 } 005645 sqlite3KeyInfoUnref(pKey); 005646 pKey = 0; 005647 } 005648 } 005649 return pKey; 005650 } 005651 005652 #ifndef SQLITE_OMIT_CTE 005653 /* 005654 ** Create a new CTE object 005655 */ 005656 Cte *sqlite3CteNew( 005657 Parse *pParse, /* Parsing context */ 005658 Token *pName, /* Name of the common-table */ 005659 ExprList *pArglist, /* Optional column name list for the table */ 005660 Select *pQuery, /* Query used to initialize the table */ 005661 u8 eM10d /* The MATERIALIZED flag */ 005662 ){ 005663 Cte *pNew; 005664 sqlite3 *db = pParse->db; 005665 005666 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 005667 assert( pNew!=0 || db->mallocFailed ); 005668 005669 if( db->mallocFailed ){ 005670 sqlite3ExprListDelete(db, pArglist); 005671 sqlite3SelectDelete(db, pQuery); 005672 }else{ 005673 pNew->pSelect = pQuery; 005674 pNew->pCols = pArglist; 005675 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 005676 pNew->eM10d = eM10d; 005677 } 005678 return pNew; 005679 } 005680 005681 /* 005682 ** Clear information from a Cte object, but do not deallocate storage 005683 ** for the object itself. 005684 */ 005685 static void cteClear(sqlite3 *db, Cte *pCte){ 005686 assert( pCte!=0 ); 005687 sqlite3ExprListDelete(db, pCte->pCols); 005688 sqlite3SelectDelete(db, pCte->pSelect); 005689 sqlite3DbFree(db, pCte->zName); 005690 } 005691 005692 /* 005693 ** Free the contents of the CTE object passed as the second argument. 005694 */ 005695 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 005696 assert( pCte!=0 ); 005697 cteClear(db, pCte); 005698 sqlite3DbFree(db, pCte); 005699 } 005700 005701 /* 005702 ** This routine is invoked once per CTE by the parser while parsing a 005703 ** WITH clause. The CTE described by the third argument is added to 005704 ** the WITH clause of the second argument. If the second argument is 005705 ** NULL, then a new WITH argument is created. 005706 */ 005707 With *sqlite3WithAdd( 005708 Parse *pParse, /* Parsing context */ 005709 With *pWith, /* Existing WITH clause, or NULL */ 005710 Cte *pCte /* CTE to add to the WITH clause */ 005711 ){ 005712 sqlite3 *db = pParse->db; 005713 With *pNew; 005714 char *zName; 005715 005716 if( pCte==0 ){ 005717 return pWith; 005718 } 005719 005720 /* Check that the CTE name is unique within this WITH clause. If 005721 ** not, store an error in the Parse structure. */ 005722 zName = pCte->zName; 005723 if( zName && pWith ){ 005724 int i; 005725 for(i=0; i<pWith->nCte; i++){ 005726 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 005727 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 005728 } 005729 } 005730 } 005731 005732 if( pWith ){ 005733 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 005734 pNew = sqlite3DbRealloc(db, pWith, nByte); 005735 }else{ 005736 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 005737 } 005738 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 005739 005740 if( db->mallocFailed ){ 005741 sqlite3CteDelete(db, pCte); 005742 pNew = pWith; 005743 }else{ 005744 pNew->a[pNew->nCte++] = *pCte; 005745 sqlite3DbFree(db, pCte); 005746 } 005747 005748 return pNew; 005749 } 005750 005751 /* 005752 ** Free the contents of the With object passed as the second argument. 005753 */ 005754 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 005755 if( pWith ){ 005756 int i; 005757 for(i=0; i<pWith->nCte; i++){ 005758 cteClear(db, &pWith->a[i]); 005759 } 005760 sqlite3DbFree(db, pWith); 005761 } 005762 } 005763 void sqlite3WithDeleteGeneric(sqlite3 *db, void *pWith){ 005764 sqlite3WithDelete(db, (With*)pWith); 005765 } 005766 #endif /* !defined(SQLITE_OMIT_CTE) */