000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** This file contains routines used for analyzing expressions and
000013  ** for generating VDBE code that evaluates expressions in SQLite.
000014  */
000015  #include "sqliteInt.h"
000016  
000017  /* Forward declarations */
000018  static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
000019  static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
000020  
000021  /*
000022  ** Return the affinity character for a single column of a table.
000023  */
000024  char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
000025    if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
000026    return pTab->aCol[iCol].affinity;
000027  }
000028  
000029  /*
000030  ** Return the 'affinity' of the expression pExpr if any.
000031  **
000032  ** If pExpr is a column, a reference to a column via an 'AS' alias,
000033  ** or a sub-select with a column as the return value, then the
000034  ** affinity of that column is returned. Otherwise, 0x00 is returned,
000035  ** indicating no affinity for the expression.
000036  **
000037  ** i.e. the WHERE clause expressions in the following statements all
000038  ** have an affinity:
000039  **
000040  ** CREATE TABLE t1(a);
000041  ** SELECT * FROM t1 WHERE a;
000042  ** SELECT a AS b FROM t1 WHERE b;
000043  ** SELECT * FROM t1 WHERE (select a from t1);
000044  */
000045  char sqlite3ExprAffinity(const Expr *pExpr){
000046    int op;
000047    op = pExpr->op;
000048    while( 1 /* exit-by-break */ ){
000049      if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){
000050        assert( ExprUseYTab(pExpr) );
000051        assert( pExpr->y.pTab!=0 );
000052        return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
000053      }
000054      if( op==TK_SELECT ){
000055        assert( ExprUseXSelect(pExpr) );
000056        assert( pExpr->x.pSelect!=0 );
000057        assert( pExpr->x.pSelect->pEList!=0 );
000058        assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
000059        return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
000060      }
000061  #ifndef SQLITE_OMIT_CAST
000062      if( op==TK_CAST ){
000063        assert( !ExprHasProperty(pExpr, EP_IntValue) );
000064        return sqlite3AffinityType(pExpr->u.zToken, 0);
000065      }
000066  #endif
000067      if( op==TK_SELECT_COLUMN ){
000068        assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
000069        assert( pExpr->iColumn < pExpr->iTable );
000070        assert( pExpr->iColumn >= 0 );
000071        assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
000072        return sqlite3ExprAffinity(
000073            pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
000074        );
000075      }
000076      if( op==TK_VECTOR ){
000077        assert( ExprUseXList(pExpr) );
000078        return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
000079      }
000080      if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
000081        assert( pExpr->op==TK_COLLATE
000082             || pExpr->op==TK_IF_NULL_ROW
000083             || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
000084        pExpr = pExpr->pLeft;
000085        op = pExpr->op;
000086        continue;
000087      }
000088      if( op!=TK_REGISTER ) break;
000089      op = pExpr->op2;
000090      if( NEVER( op==TK_REGISTER ) ) break;
000091    }
000092    return pExpr->affExpr;
000093  }
000094  
000095  /*
000096  ** Make a guess at all the possible datatypes of the result that could
000097  ** be returned by an expression.  Return a bitmask indicating the answer:
000098  **
000099  **     0x01         Numeric
000100  **     0x02         Text
000101  **     0x04         Blob
000102  **
000103  ** If the expression must return NULL, then 0x00 is returned.
000104  */
000105  int sqlite3ExprDataType(const Expr *pExpr){
000106    while( pExpr ){
000107      switch( pExpr->op ){
000108        case TK_COLLATE:
000109        case TK_IF_NULL_ROW:
000110        case TK_UPLUS:  {
000111          pExpr = pExpr->pLeft;
000112          break;
000113        }
000114        case TK_NULL: {
000115          pExpr = 0;
000116          break;
000117        }
000118        case TK_STRING: {
000119          return 0x02;
000120        }
000121        case TK_BLOB: {
000122          return 0x04;
000123        }
000124        case TK_CONCAT: {
000125          return 0x06;
000126        }
000127        case TK_VARIABLE:
000128        case TK_AGG_FUNCTION:
000129        case TK_FUNCTION: {
000130          return 0x07;
000131        }
000132        case TK_COLUMN:
000133        case TK_AGG_COLUMN:
000134        case TK_SELECT:
000135        case TK_CAST:
000136        case TK_SELECT_COLUMN:
000137        case TK_VECTOR:  {
000138          int aff = sqlite3ExprAffinity(pExpr);
000139          if( aff>=SQLITE_AFF_NUMERIC ) return 0x05;
000140          if( aff==SQLITE_AFF_TEXT )    return 0x06;
000141          return 0x07;
000142        }
000143        case TK_CASE: {
000144          int res = 0;
000145          int ii;
000146          ExprList *pList = pExpr->x.pList;
000147          assert( ExprUseXList(pExpr) && pList!=0 );
000148          assert( pList->nExpr > 0);
000149          for(ii=1; ii<pList->nExpr; ii+=2){
000150            res |= sqlite3ExprDataType(pList->a[ii].pExpr);
000151          }
000152          if( pList->nExpr % 2 ){
000153            res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr);
000154          }
000155          return res;
000156        }
000157        default: {
000158          return 0x01;
000159        }
000160      } /* End of switch(op) */
000161    } /* End of while(pExpr) */
000162    return 0x00;
000163  }
000164  
000165  /*
000166  ** Set the collating sequence for expression pExpr to be the collating
000167  ** sequence named by pToken.   Return a pointer to a new Expr node that
000168  ** implements the COLLATE operator.
000169  **
000170  ** If a memory allocation error occurs, that fact is recorded in pParse->db
000171  ** and the pExpr parameter is returned unchanged.
000172  */
000173  Expr *sqlite3ExprAddCollateToken(
000174    const Parse *pParse,     /* Parsing context */
000175    Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
000176    const Token *pCollName,  /* Name of collating sequence */
000177    int dequote              /* True to dequote pCollName */
000178  ){
000179    if( pCollName->n>0 ){
000180      Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
000181      if( pNew ){
000182        pNew->pLeft = pExpr;
000183        pNew->flags |= EP_Collate|EP_Skip;
000184        pExpr = pNew;
000185      }
000186    }
000187    return pExpr;
000188  }
000189  Expr *sqlite3ExprAddCollateString(
000190    const Parse *pParse,  /* Parsing context */
000191    Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
000192    const char *zC        /* The collating sequence name */
000193  ){
000194    Token s;
000195    assert( zC!=0 );
000196    sqlite3TokenInit(&s, (char*)zC);
000197    return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
000198  }
000199  
000200  /*
000201  ** Skip over any TK_COLLATE operators.
000202  */
000203  Expr *sqlite3ExprSkipCollate(Expr *pExpr){
000204    while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
000205      assert( pExpr->op==TK_COLLATE );
000206      pExpr = pExpr->pLeft;
000207    }  
000208    return pExpr;
000209  }
000210  
000211  /*
000212  ** Skip over any TK_COLLATE operators and/or any unlikely()
000213  ** or likelihood() or likely() functions at the root of an
000214  ** expression.
000215  */
000216  Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
000217    while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
000218      if( ExprHasProperty(pExpr, EP_Unlikely) ){
000219        assert( ExprUseXList(pExpr) );
000220        assert( pExpr->x.pList->nExpr>0 );
000221        assert( pExpr->op==TK_FUNCTION );
000222        pExpr = pExpr->x.pList->a[0].pExpr;
000223      }else if( pExpr->op==TK_COLLATE ){
000224        pExpr = pExpr->pLeft;
000225      }else{
000226        break;
000227      }
000228    }  
000229    return pExpr;
000230  }
000231  
000232  /*
000233  ** Return the collation sequence for the expression pExpr. If
000234  ** there is no defined collating sequence, return NULL.
000235  **
000236  ** See also: sqlite3ExprNNCollSeq()
000237  **
000238  ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
000239  ** default collation if pExpr has no defined collation.
000240  **
000241  ** The collating sequence might be determined by a COLLATE operator
000242  ** or by the presence of a column with a defined collating sequence.
000243  ** COLLATE operators take first precedence.  Left operands take
000244  ** precedence over right operands.
000245  */
000246  CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
000247    sqlite3 *db = pParse->db;
000248    CollSeq *pColl = 0;
000249    const Expr *p = pExpr;
000250    while( p ){
000251      int op = p->op;
000252      if( op==TK_REGISTER ) op = p->op2;
000253      if( (op==TK_AGG_COLUMN && p->y.pTab!=0)
000254       || op==TK_COLUMN || op==TK_TRIGGER
000255      ){
000256        int j;
000257        assert( ExprUseYTab(p) );
000258        assert( p->y.pTab!=0 );
000259        if( (j = p->iColumn)>=0 ){
000260          const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
000261          pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
000262        }
000263        break;
000264      }
000265      if( op==TK_CAST || op==TK_UPLUS ){
000266        p = p->pLeft;
000267        continue;
000268      }
000269      if( op==TK_VECTOR ){
000270        assert( ExprUseXList(p) );
000271        p = p->x.pList->a[0].pExpr;
000272        continue;
000273      }
000274      if( op==TK_COLLATE ){
000275        assert( !ExprHasProperty(p, EP_IntValue) );
000276        pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
000277        break;
000278      }
000279      if( p->flags & EP_Collate ){
000280        if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
000281          p = p->pLeft;
000282        }else{
000283          Expr *pNext  = p->pRight;
000284          /* The Expr.x union is never used at the same time as Expr.pRight */
000285          assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 );
000286          if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){
000287            int i;
000288            for(i=0; i<p->x.pList->nExpr; i++){
000289              if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
000290                pNext = p->x.pList->a[i].pExpr;
000291                break;
000292              }
000293            }
000294          }
000295          p = pNext;
000296        }
000297      }else{
000298        break;
000299      }
000300    }
000301    if( sqlite3CheckCollSeq(pParse, pColl) ){
000302      pColl = 0;
000303    }
000304    return pColl;
000305  }
000306  
000307  /*
000308  ** Return the collation sequence for the expression pExpr. If
000309  ** there is no defined collating sequence, return a pointer to the
000310  ** default collation sequence.
000311  **
000312  ** See also: sqlite3ExprCollSeq()
000313  **
000314  ** The sqlite3ExprCollSeq() routine works the same except that it
000315  ** returns NULL if there is no defined collation.
000316  */
000317  CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
000318    CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
000319    if( p==0 ) p = pParse->db->pDfltColl;
000320    assert( p!=0 );
000321    return p;
000322  }
000323  
000324  /*
000325  ** Return TRUE if the two expressions have equivalent collating sequences.
000326  */
000327  int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
000328    CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
000329    CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
000330    return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
000331  }
000332  
000333  /*
000334  ** pExpr is an operand of a comparison operator.  aff2 is the
000335  ** type affinity of the other operand.  This routine returns the
000336  ** type affinity that should be used for the comparison operator.
000337  */
000338  char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
000339    char aff1 = sqlite3ExprAffinity(pExpr);
000340    if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
000341      /* Both sides of the comparison are columns. If one has numeric
000342      ** affinity, use that. Otherwise use no affinity.
000343      */
000344      if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
000345        return SQLITE_AFF_NUMERIC;
000346      }else{
000347        return SQLITE_AFF_BLOB;
000348      }
000349    }else{
000350      /* One side is a column, the other is not. Use the columns affinity. */
000351      assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
000352      return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
000353    }
000354  }
000355  
000356  /*
000357  ** pExpr is a comparison operator.  Return the type affinity that should
000358  ** be applied to both operands prior to doing the comparison.
000359  */
000360  static char comparisonAffinity(const Expr *pExpr){
000361    char aff;
000362    assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
000363            pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
000364            pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
000365    assert( pExpr->pLeft );
000366    aff = sqlite3ExprAffinity(pExpr->pLeft);
000367    if( pExpr->pRight ){
000368      aff = sqlite3CompareAffinity(pExpr->pRight, aff);
000369    }else if( ExprUseXSelect(pExpr) ){
000370      aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
000371    }else if( aff==0 ){
000372      aff = SQLITE_AFF_BLOB;
000373    }
000374    return aff;
000375  }
000376  
000377  /*
000378  ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
000379  ** idx_affinity is the affinity of an indexed column. Return true
000380  ** if the index with affinity idx_affinity may be used to implement
000381  ** the comparison in pExpr.
000382  */
000383  int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
000384    char aff = comparisonAffinity(pExpr);
000385    if( aff<SQLITE_AFF_TEXT ){
000386      return 1;
000387    }
000388    if( aff==SQLITE_AFF_TEXT ){
000389      return idx_affinity==SQLITE_AFF_TEXT;
000390    }
000391    return sqlite3IsNumericAffinity(idx_affinity);
000392  }
000393  
000394  /*
000395  ** Return the P5 value that should be used for a binary comparison
000396  ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
000397  */
000398  static u8 binaryCompareP5(
000399    const Expr *pExpr1,   /* Left operand */
000400    const Expr *pExpr2,   /* Right operand */
000401    int jumpIfNull        /* Extra flags added to P5 */
000402  ){
000403    u8 aff = (char)sqlite3ExprAffinity(pExpr2);
000404    aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
000405    return aff;
000406  }
000407  
000408  /*
000409  ** Return a pointer to the collation sequence that should be used by
000410  ** a binary comparison operator comparing pLeft and pRight.
000411  **
000412  ** If the left hand expression has a collating sequence type, then it is
000413  ** used. Otherwise the collation sequence for the right hand expression
000414  ** is used, or the default (BINARY) if neither expression has a collating
000415  ** type.
000416  **
000417  ** Argument pRight (but not pLeft) may be a null pointer. In this case,
000418  ** it is not considered.
000419  */
000420  CollSeq *sqlite3BinaryCompareCollSeq(
000421    Parse *pParse,
000422    const Expr *pLeft,
000423    const Expr *pRight
000424  ){
000425    CollSeq *pColl;
000426    assert( pLeft );
000427    if( pLeft->flags & EP_Collate ){
000428      pColl = sqlite3ExprCollSeq(pParse, pLeft);
000429    }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
000430      pColl = sqlite3ExprCollSeq(pParse, pRight);
000431    }else{
000432      pColl = sqlite3ExprCollSeq(pParse, pLeft);
000433      if( !pColl ){
000434        pColl = sqlite3ExprCollSeq(pParse, pRight);
000435      }
000436    }
000437    return pColl;
000438  }
000439  
000440  /* Expression p is a comparison operator.  Return a collation sequence
000441  ** appropriate for the comparison operator.
000442  **
000443  ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
000444  ** However, if the OP_Commuted flag is set, then the order of the operands
000445  ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
000446  ** correct collating sequence is found.
000447  */
000448  CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
000449    if( ExprHasProperty(p, EP_Commuted) ){
000450      return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
000451    }else{
000452      return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
000453    }
000454  }
000455  
000456  /*
000457  ** Generate code for a comparison operator.
000458  */
000459  static int codeCompare(
000460    Parse *pParse,    /* The parsing (and code generating) context */
000461    Expr *pLeft,      /* The left operand */
000462    Expr *pRight,     /* The right operand */
000463    int opcode,       /* The comparison opcode */
000464    int in1, int in2, /* Register holding operands */
000465    int dest,         /* Jump here if true.  */
000466    int jumpIfNull,   /* If true, jump if either operand is NULL */
000467    int isCommuted    /* The comparison has been commuted */
000468  ){
000469    int p5;
000470    int addr;
000471    CollSeq *p4;
000472  
000473    if( pParse->nErr ) return 0;
000474    if( isCommuted ){
000475      p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
000476    }else{
000477      p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
000478    }
000479    p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
000480    addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
000481                             (void*)p4, P4_COLLSEQ);
000482    sqlite3VdbeChangeP5(pParse->pVdbe, (u16)p5);
000483    return addr;
000484  }
000485  
000486  /*
000487  ** Return true if expression pExpr is a vector, or false otherwise.
000488  **
000489  ** A vector is defined as any expression that results in two or more
000490  ** columns of result.  Every TK_VECTOR node is an vector because the
000491  ** parser will not generate a TK_VECTOR with fewer than two entries.
000492  ** But a TK_SELECT might be either a vector or a scalar. It is only
000493  ** considered a vector if it has two or more result columns.
000494  */
000495  int sqlite3ExprIsVector(const Expr *pExpr){
000496    return sqlite3ExprVectorSize(pExpr)>1;
000497  }
000498  
000499  /*
000500  ** If the expression passed as the only argument is of type TK_VECTOR
000501  ** return the number of expressions in the vector. Or, if the expression
000502  ** is a sub-select, return the number of columns in the sub-select. For
000503  ** any other type of expression, return 1.
000504  */
000505  int sqlite3ExprVectorSize(const Expr *pExpr){
000506    u8 op = pExpr->op;
000507    if( op==TK_REGISTER ) op = pExpr->op2;
000508    if( op==TK_VECTOR ){
000509      assert( ExprUseXList(pExpr) );
000510      return pExpr->x.pList->nExpr;
000511    }else if( op==TK_SELECT ){
000512      assert( ExprUseXSelect(pExpr) );
000513      return pExpr->x.pSelect->pEList->nExpr;
000514    }else{
000515      return 1;
000516    }
000517  }
000518  
000519  /*
000520  ** Return a pointer to a subexpression of pVector that is the i-th
000521  ** column of the vector (numbered starting with 0).  The caller must
000522  ** ensure that i is within range.
000523  **
000524  ** If pVector is really a scalar (and "scalar" here includes subqueries
000525  ** that return a single column!) then return pVector unmodified.
000526  **
000527  ** pVector retains ownership of the returned subexpression.
000528  **
000529  ** If the vector is a (SELECT ...) then the expression returned is
000530  ** just the expression for the i-th term of the result set, and may
000531  ** not be ready for evaluation because the table cursor has not yet
000532  ** been positioned.
000533  */
000534  Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
000535    assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
000536    if( sqlite3ExprIsVector(pVector) ){
000537      assert( pVector->op2==0 || pVector->op==TK_REGISTER );
000538      if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
000539        assert( ExprUseXSelect(pVector) );
000540        return pVector->x.pSelect->pEList->a[i].pExpr;
000541      }else{
000542        assert( ExprUseXList(pVector) );
000543        return pVector->x.pList->a[i].pExpr;
000544      }
000545    }
000546    return pVector;
000547  }
000548  
000549  /*
000550  ** Compute and return a new Expr object which when passed to
000551  ** sqlite3ExprCode() will generate all necessary code to compute
000552  ** the iField-th column of the vector expression pVector.
000553  **
000554  ** It is ok for pVector to be a scalar (as long as iField==0). 
000555  ** In that case, this routine works like sqlite3ExprDup().
000556  **
000557  ** The caller owns the returned Expr object and is responsible for
000558  ** ensuring that the returned value eventually gets freed.
000559  **
000560  ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
000561  ** then the returned object will reference pVector and so pVector must remain
000562  ** valid for the life of the returned object.  If pVector is a TK_VECTOR
000563  ** or a scalar expression, then it can be deleted as soon as this routine
000564  ** returns.
000565  **
000566  ** A trick to cause a TK_SELECT pVector to be deleted together with
000567  ** the returned Expr object is to attach the pVector to the pRight field
000568  ** of the returned TK_SELECT_COLUMN Expr object.
000569  */
000570  Expr *sqlite3ExprForVectorField(
000571    Parse *pParse,       /* Parsing context */
000572    Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
000573    int iField,          /* Which column of the vector to return */
000574    int nField           /* Total number of columns in the vector */
000575  ){
000576    Expr *pRet;
000577    if( pVector->op==TK_SELECT ){
000578      assert( ExprUseXSelect(pVector) );
000579      /* The TK_SELECT_COLUMN Expr node:
000580      **
000581      ** pLeft:           pVector containing TK_SELECT.  Not deleted.
000582      ** pRight:          not used.  But recursively deleted.
000583      ** iColumn:         Index of a column in pVector
000584      ** iTable:          0 or the number of columns on the LHS of an assignment
000585      ** pLeft->iTable:   First in an array of register holding result, or 0
000586      **                  if the result is not yet computed.
000587      **
000588      ** sqlite3ExprDelete() specifically skips the recursive delete of
000589      ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
000590      ** can be attached to pRight to cause this node to take ownership of
000591      ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
000592      ** with the same pLeft pointer to the pVector, but only one of them
000593      ** will own the pVector.
000594      */
000595      pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
000596      if( pRet ){
000597        ExprSetProperty(pRet, EP_FullSize);
000598        pRet->iTable = nField;
000599        pRet->iColumn = iField;
000600        pRet->pLeft = pVector;
000601      }
000602    }else{
000603      if( pVector->op==TK_VECTOR ){
000604        Expr **ppVector;
000605        assert( ExprUseXList(pVector) );
000606        ppVector = &pVector->x.pList->a[iField].pExpr;
000607        pVector = *ppVector;
000608        if( IN_RENAME_OBJECT ){
000609          /* This must be a vector UPDATE inside a trigger */
000610          *ppVector = 0;
000611          return pVector;
000612        }
000613      }
000614      pRet = sqlite3ExprDup(pParse->db, pVector, 0);
000615    }
000616    return pRet;
000617  }
000618  
000619  /*
000620  ** If expression pExpr is of type TK_SELECT, generate code to evaluate
000621  ** it. Return the register in which the result is stored (or, if the
000622  ** sub-select returns more than one column, the first in an array
000623  ** of registers in which the result is stored).
000624  **
000625  ** If pExpr is not a TK_SELECT expression, return 0.
000626  */
000627  static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
000628    int reg = 0;
000629  #ifndef SQLITE_OMIT_SUBQUERY
000630    if( pExpr->op==TK_SELECT ){
000631      reg = sqlite3CodeSubselect(pParse, pExpr);
000632    }
000633  #endif
000634    return reg;
000635  }
000636  
000637  /*
000638  ** Argument pVector points to a vector expression - either a TK_VECTOR
000639  ** or TK_SELECT that returns more than one column. This function returns
000640  ** the register number of a register that contains the value of
000641  ** element iField of the vector.
000642  **
000643  ** If pVector is a TK_SELECT expression, then code for it must have
000644  ** already been generated using the exprCodeSubselect() routine. In this
000645  ** case parameter regSelect should be the first in an array of registers
000646  ** containing the results of the sub-select.
000647  **
000648  ** If pVector is of type TK_VECTOR, then code for the requested field
000649  ** is generated. In this case (*pRegFree) may be set to the number of
000650  ** a temporary register to be freed by the caller before returning.
000651  **
000652  ** Before returning, output parameter (*ppExpr) is set to point to the
000653  ** Expr object corresponding to element iElem of the vector.
000654  */
000655  static int exprVectorRegister(
000656    Parse *pParse,                  /* Parse context */
000657    Expr *pVector,                  /* Vector to extract element from */
000658    int iField,                     /* Field to extract from pVector */
000659    int regSelect,                  /* First in array of registers */
000660    Expr **ppExpr,                  /* OUT: Expression element */
000661    int *pRegFree                   /* OUT: Temp register to free */
000662  ){
000663    u8 op = pVector->op;
000664    assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
000665    if( op==TK_REGISTER ){
000666      *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
000667      return pVector->iTable+iField;
000668    }
000669    if( op==TK_SELECT ){
000670      assert( ExprUseXSelect(pVector) );
000671      *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
000672       return regSelect+iField;
000673    }
000674    if( op==TK_VECTOR ){
000675      assert( ExprUseXList(pVector) );
000676      *ppExpr = pVector->x.pList->a[iField].pExpr;
000677      return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
000678    }
000679    return 0;
000680  }
000681  
000682  /*
000683  ** Expression pExpr is a comparison between two vector values. Compute
000684  ** the result of the comparison (1, 0, or NULL) and write that
000685  ** result into register dest.
000686  **
000687  ** The caller must satisfy the following preconditions:
000688  **
000689  **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
000690  **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
000691  **    otherwise:                op==pExpr->op and p5==0
000692  */
000693  static void codeVectorCompare(
000694    Parse *pParse,        /* Code generator context */
000695    Expr *pExpr,          /* The comparison operation */
000696    int dest,             /* Write results into this register */
000697    u8 op,                /* Comparison operator */
000698    u8 p5                 /* SQLITE_NULLEQ or zero */
000699  ){
000700    Vdbe *v = pParse->pVdbe;
000701    Expr *pLeft = pExpr->pLeft;
000702    Expr *pRight = pExpr->pRight;
000703    int nLeft = sqlite3ExprVectorSize(pLeft);
000704    int i;
000705    int regLeft = 0;
000706    int regRight = 0;
000707    u8 opx = op;
000708    int addrCmp = 0;
000709    int addrDone = sqlite3VdbeMakeLabel(pParse);
000710    int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
000711  
000712    assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
000713    if( pParse->nErr ) return;
000714    if( nLeft!=sqlite3ExprVectorSize(pRight) ){
000715      sqlite3ErrorMsg(pParse, "row value misused");
000716      return;
000717    }
000718    assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
000719         || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
000720         || pExpr->op==TK_LT || pExpr->op==TK_GT
000721         || pExpr->op==TK_LE || pExpr->op==TK_GE
000722    );
000723    assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
000724              || (pExpr->op==TK_ISNOT && op==TK_NE) );
000725    assert( p5==0 || pExpr->op!=op );
000726    assert( p5==SQLITE_NULLEQ || pExpr->op==op );
000727  
000728    if( op==TK_LE ) opx = TK_LT;
000729    if( op==TK_GE ) opx = TK_GT;
000730    if( op==TK_NE ) opx = TK_EQ;
000731  
000732    regLeft = exprCodeSubselect(pParse, pLeft);
000733    regRight = exprCodeSubselect(pParse, pRight);
000734  
000735    sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
000736    for(i=0; 1 /*Loop exits by "break"*/; i++){
000737      int regFree1 = 0, regFree2 = 0;
000738      Expr *pL = 0, *pR = 0;
000739      int r1, r2;
000740      assert( i>=0 && i<nLeft );
000741      if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
000742      r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
000743      r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
000744      addrCmp = sqlite3VdbeCurrentAddr(v);
000745      codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
000746      testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
000747      testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
000748      testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
000749      testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
000750      testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
000751      testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
000752      sqlite3ReleaseTempReg(pParse, regFree1);
000753      sqlite3ReleaseTempReg(pParse, regFree2);
000754      if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
000755        addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
000756        testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
000757        testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
000758      }
000759      if( p5==SQLITE_NULLEQ ){
000760        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
000761      }else{
000762        sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
000763      }
000764      if( i==nLeft-1 ){
000765        break;
000766      }
000767      if( opx==TK_EQ ){
000768        sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
000769      }else{
000770        assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
000771        sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
000772        if( i==nLeft-2 ) opx = op;
000773      }
000774    }
000775    sqlite3VdbeJumpHere(v, addrCmp);
000776    sqlite3VdbeResolveLabel(v, addrDone);
000777    if( op==TK_NE ){
000778      sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
000779    }
000780  }
000781  
000782  #if SQLITE_MAX_EXPR_DEPTH>0
000783  /*
000784  ** Check that argument nHeight is less than or equal to the maximum
000785  ** expression depth allowed. If it is not, leave an error message in
000786  ** pParse.
000787  */
000788  int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
000789    int rc = SQLITE_OK;
000790    int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
000791    if( nHeight>mxHeight ){
000792      sqlite3ErrorMsg(pParse,
000793         "Expression tree is too large (maximum depth %d)", mxHeight
000794      );
000795      rc = SQLITE_ERROR;
000796    }
000797    return rc;
000798  }
000799  
000800  /* The following three functions, heightOfExpr(), heightOfExprList()
000801  ** and heightOfSelect(), are used to determine the maximum height
000802  ** of any expression tree referenced by the structure passed as the
000803  ** first argument.
000804  **
000805  ** If this maximum height is greater than the current value pointed
000806  ** to by pnHeight, the second parameter, then set *pnHeight to that
000807  ** value.
000808  */
000809  static void heightOfExpr(const Expr *p, int *pnHeight){
000810    if( p ){
000811      if( p->nHeight>*pnHeight ){
000812        *pnHeight = p->nHeight;
000813      }
000814    }
000815  }
000816  static void heightOfExprList(const ExprList *p, int *pnHeight){
000817    if( p ){
000818      int i;
000819      for(i=0; i<p->nExpr; i++){
000820        heightOfExpr(p->a[i].pExpr, pnHeight);
000821      }
000822    }
000823  }
000824  static void heightOfSelect(const Select *pSelect, int *pnHeight){
000825    const Select *p;
000826    for(p=pSelect; p; p=p->pPrior){
000827      heightOfExpr(p->pWhere, pnHeight);
000828      heightOfExpr(p->pHaving, pnHeight);
000829      heightOfExpr(p->pLimit, pnHeight);
000830      heightOfExprList(p->pEList, pnHeight);
000831      heightOfExprList(p->pGroupBy, pnHeight);
000832      heightOfExprList(p->pOrderBy, pnHeight);
000833    }
000834  }
000835  
000836  /*
000837  ** Set the Expr.nHeight variable in the structure passed as an
000838  ** argument. An expression with no children, Expr.pList or
000839  ** Expr.pSelect member has a height of 1. Any other expression
000840  ** has a height equal to the maximum height of any other
000841  ** referenced Expr plus one.
000842  **
000843  ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
000844  ** if appropriate.
000845  */
000846  static void exprSetHeight(Expr *p){
000847    int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
000848    if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
000849      nHeight = p->pRight->nHeight;
000850    }
000851    if( ExprUseXSelect(p) ){
000852      heightOfSelect(p->x.pSelect, &nHeight);
000853    }else if( p->x.pList ){
000854      heightOfExprList(p->x.pList, &nHeight);
000855      p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
000856    }
000857    p->nHeight = nHeight + 1;
000858  }
000859  
000860  /*
000861  ** Set the Expr.nHeight variable using the exprSetHeight() function. If
000862  ** the height is greater than the maximum allowed expression depth,
000863  ** leave an error in pParse.
000864  **
000865  ** Also propagate all EP_Propagate flags from the Expr.x.pList into
000866  ** Expr.flags.
000867  */
000868  void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
000869    if( pParse->nErr ) return;
000870    exprSetHeight(p);
000871    sqlite3ExprCheckHeight(pParse, p->nHeight);
000872  }
000873  
000874  /*
000875  ** Return the maximum height of any expression tree referenced
000876  ** by the select statement passed as an argument.
000877  */
000878  int sqlite3SelectExprHeight(const Select *p){
000879    int nHeight = 0;
000880    heightOfSelect(p, &nHeight);
000881    return nHeight;
000882  }
000883  #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
000884  /*
000885  ** Propagate all EP_Propagate flags from the Expr.x.pList into
000886  ** Expr.flags.
000887  */
000888  void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
000889    if( pParse->nErr ) return;
000890    if( p && ExprUseXList(p) && p->x.pList ){
000891      p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
000892    }
000893  }
000894  #define exprSetHeight(y)
000895  #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
000896  
000897  /*
000898  ** Set the error offset for an Expr node, if possible.
000899  */
000900  void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){
000901    if( pExpr==0 ) return;
000902    if( NEVER(ExprUseWJoin(pExpr)) ) return;
000903    pExpr->w.iOfst = iOfst;
000904  }
000905  
000906  /*
000907  ** This routine is the core allocator for Expr nodes.
000908  **
000909  ** Construct a new expression node and return a pointer to it.  Memory
000910  ** for this node and for the pToken argument is a single allocation
000911  ** obtained from sqlite3DbMalloc().  The calling function
000912  ** is responsible for making sure the node eventually gets freed.
000913  **
000914  ** If dequote is true, then the token (if it exists) is dequoted.
000915  ** If dequote is false, no dequoting is performed.  The deQuote
000916  ** parameter is ignored if pToken is NULL or if the token does not
000917  ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
000918  ** then the EP_DblQuoted flag is set on the expression node.
000919  **
000920  ** Special case (tag-20240227-a):  If op==TK_INTEGER and pToken points to
000921  ** a string that can be translated into a 32-bit integer, then the token is
000922  ** not stored in u.zToken.  Instead, the integer values is written
000923  ** into u.iValue and the EP_IntValue flag is set. No extra storage
000924  ** is allocated to hold the integer text and the dequote flag is ignored.
000925  ** See also tag-20240227-b.
000926  */
000927  Expr *sqlite3ExprAlloc(
000928    sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
000929    int op,                 /* Expression opcode */
000930    const Token *pToken,    /* Token argument.  Might be NULL */
000931    int dequote             /* True to dequote */
000932  ){
000933    Expr *pNew;
000934    int nExtra = 0;
000935    int iValue = 0;
000936  
000937    assert( db!=0 );
000938    if( pToken ){
000939      if( op!=TK_INTEGER || pToken->z==0
000940            || sqlite3GetInt32(pToken->z, &iValue)==0 ){
000941        nExtra = pToken->n+1;  /* tag-20240227-a */
000942        assert( iValue>=0 );
000943      }
000944    }
000945    pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
000946    if( pNew ){
000947      memset(pNew, 0, sizeof(Expr));
000948      pNew->op = (u8)op;
000949      pNew->iAgg = -1;
000950      if( pToken ){
000951        if( nExtra==0 ){
000952          pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
000953          pNew->u.iValue = iValue;
000954        }else{
000955          pNew->u.zToken = (char*)&pNew[1];
000956          assert( pToken->z!=0 || pToken->n==0 );
000957          if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
000958          pNew->u.zToken[pToken->n] = 0;
000959          if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
000960            sqlite3DequoteExpr(pNew);
000961          }
000962        }
000963      }
000964  #if SQLITE_MAX_EXPR_DEPTH>0
000965      pNew->nHeight = 1;
000966  #endif 
000967    }
000968    return pNew;
000969  }
000970  
000971  /*
000972  ** Allocate a new expression node from a zero-terminated token that has
000973  ** already been dequoted.
000974  */
000975  Expr *sqlite3Expr(
000976    sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
000977    int op,                 /* Expression opcode */
000978    const char *zToken      /* Token argument.  Might be NULL */
000979  ){
000980    Token x;
000981    x.z = zToken;
000982    x.n = sqlite3Strlen30(zToken);
000983    return sqlite3ExprAlloc(db, op, &x, 0);
000984  }
000985  
000986  /*
000987  ** Attach subtrees pLeft and pRight to the Expr node pRoot.
000988  **
000989  ** If pRoot==NULL that means that a memory allocation error has occurred.
000990  ** In that case, delete the subtrees pLeft and pRight.
000991  */
000992  void sqlite3ExprAttachSubtrees(
000993    sqlite3 *db,
000994    Expr *pRoot,
000995    Expr *pLeft,
000996    Expr *pRight
000997  ){
000998    if( pRoot==0 ){
000999      assert( db->mallocFailed );
001000      sqlite3ExprDelete(db, pLeft);
001001      sqlite3ExprDelete(db, pRight);
001002    }else{
001003      assert( ExprUseXList(pRoot) );
001004      assert( pRoot->x.pSelect==0 );
001005      if( pRight ){
001006        pRoot->pRight = pRight;
001007        pRoot->flags |= EP_Propagate & pRight->flags;
001008  #if SQLITE_MAX_EXPR_DEPTH>0
001009        pRoot->nHeight = pRight->nHeight+1;
001010      }else{
001011        pRoot->nHeight = 1;
001012  #endif
001013      }
001014      if( pLeft ){
001015        pRoot->pLeft = pLeft;
001016        pRoot->flags |= EP_Propagate & pLeft->flags;
001017  #if SQLITE_MAX_EXPR_DEPTH>0
001018        if( pLeft->nHeight>=pRoot->nHeight ){
001019          pRoot->nHeight = pLeft->nHeight+1;
001020        }
001021  #endif
001022      }
001023    }
001024  }
001025  
001026  /*
001027  ** Allocate an Expr node which joins as many as two subtrees.
001028  **
001029  ** One or both of the subtrees can be NULL.  Return a pointer to the new
001030  ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
001031  ** free the subtrees and return NULL.
001032  */
001033  Expr *sqlite3PExpr(
001034    Parse *pParse,          /* Parsing context */
001035    int op,                 /* Expression opcode */
001036    Expr *pLeft,            /* Left operand */
001037    Expr *pRight            /* Right operand */
001038  ){
001039    Expr *p;
001040    p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
001041    if( p ){
001042      memset(p, 0, sizeof(Expr));
001043      p->op = op & 0xff;
001044      p->iAgg = -1;
001045      sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
001046      sqlite3ExprCheckHeight(pParse, p->nHeight);
001047    }else{
001048      sqlite3ExprDelete(pParse->db, pLeft);
001049      sqlite3ExprDelete(pParse->db, pRight);
001050    }
001051    return p;
001052  }
001053  
001054  /*
001055  ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
001056  ** do a memory allocation failure) then delete the pSelect object.
001057  */
001058  void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
001059    if( pExpr ){
001060      pExpr->x.pSelect = pSelect;
001061      ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
001062      sqlite3ExprSetHeightAndFlags(pParse, pExpr);
001063    }else{
001064      assert( pParse->db->mallocFailed );
001065      sqlite3SelectDelete(pParse->db, pSelect);
001066    }
001067  }
001068  
001069  /*
001070  ** Expression list pEList is a list of vector values. This function
001071  ** converts the contents of pEList to a VALUES(...) Select statement
001072  ** returning 1 row for each element of the list. For example, the
001073  ** expression list:
001074  **
001075  **   ( (1,2), (3,4) (5,6) )
001076  **
001077  ** is translated to the equivalent of:
001078  **
001079  **   VALUES(1,2), (3,4), (5,6)
001080  **
001081  ** Each of the vector values in pEList must contain exactly nElem terms.
001082  ** If a list element that is not a vector or does not contain nElem terms,
001083  ** an error message is left in pParse.
001084  **
001085  ** This is used as part of processing IN(...) expressions with a list
001086  ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
001087  */
001088  Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
001089    int ii;
001090    Select *pRet = 0;
001091    assert( nElem>1 );
001092    for(ii=0; ii<pEList->nExpr; ii++){
001093      Select *pSel;
001094      Expr *pExpr = pEList->a[ii].pExpr;
001095      int nExprElem;
001096      if( pExpr->op==TK_VECTOR ){
001097        assert( ExprUseXList(pExpr) );
001098        nExprElem = pExpr->x.pList->nExpr;
001099      }else{
001100        nExprElem = 1;
001101      }
001102      if( nExprElem!=nElem ){
001103        sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
001104            nExprElem, nExprElem>1?"s":"", nElem
001105        );
001106        break;
001107      }
001108      assert( ExprUseXList(pExpr) );
001109      pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
001110      pExpr->x.pList = 0;
001111      if( pSel ){
001112        if( pRet ){
001113          pSel->op = TK_ALL;
001114          pSel->pPrior = pRet;
001115        }
001116        pRet = pSel;
001117      }
001118    }
001119  
001120    if( pRet && pRet->pPrior ){
001121      pRet->selFlags |= SF_MultiValue;
001122    }
001123    sqlite3ExprListDelete(pParse->db, pEList);
001124    return pRet;
001125  }
001126  
001127  /*
001128  ** Join two expressions using an AND operator.  If either expression is
001129  ** NULL, then just return the other expression.
001130  **
001131  ** If one side or the other of the AND is known to be false, and neither side
001132  ** is part of an ON clause, then instead of returning an AND expression,
001133  ** just return a constant expression with a value of false.
001134  */
001135  Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
001136    sqlite3 *db = pParse->db;
001137    if( pLeft==0  ){
001138      return pRight;
001139    }else if( pRight==0 ){
001140      return pLeft;
001141    }else{
001142      u32 f = pLeft->flags | pRight->flags;
001143      if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse
001144       && !IN_RENAME_OBJECT
001145      ){
001146        sqlite3ExprDeferredDelete(pParse, pLeft);
001147        sqlite3ExprDeferredDelete(pParse, pRight);
001148        return sqlite3Expr(db, TK_INTEGER, "0");
001149      }else{
001150        return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
001151      }
001152    }
001153  }
001154  
001155  /*
001156  ** Construct a new expression node for a function with multiple
001157  ** arguments.
001158  */
001159  Expr *sqlite3ExprFunction(
001160    Parse *pParse,        /* Parsing context */
001161    ExprList *pList,      /* Argument list */
001162    const Token *pToken,  /* Name of the function */
001163    int eDistinct         /* SF_Distinct or SF_ALL or 0 */
001164  ){
001165    Expr *pNew;
001166    sqlite3 *db = pParse->db;
001167    assert( pToken );
001168    pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
001169    if( pNew==0 ){
001170      sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
001171      return 0;
001172    }
001173    assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
001174    pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
001175    if( pList
001176     && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
001177     && !pParse->nested
001178    ){
001179      sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
001180    }
001181    pNew->x.pList = pList;
001182    ExprSetProperty(pNew, EP_HasFunc);
001183    assert( ExprUseXList(pNew) );
001184    sqlite3ExprSetHeightAndFlags(pParse, pNew);
001185    if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
001186    return pNew;
001187  }
001188  
001189  /*
001190  ** Report an error when attempting to use an ORDER BY clause within
001191  ** the arguments of a non-aggregate function.
001192  */
001193  void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){
001194    sqlite3ErrorMsg(pParse,
001195       "ORDER BY may not be used with non-aggregate %#T()", p
001196    );
001197  }
001198  
001199  /*
001200  ** Attach an ORDER BY clause to a function call.
001201  **
001202  **     functionname( arguments ORDER BY sortlist )
001203  **     \_____________________/          \______/
001204  **             pExpr                    pOrderBy
001205  **
001206  ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER
001207  ** and added to the Expr.pLeft field of the parent TK_FUNCTION node.
001208  */
001209  void sqlite3ExprAddFunctionOrderBy(
001210    Parse *pParse,        /* Parsing context */
001211    Expr *pExpr,          /* The function call to which ORDER BY is to be added */
001212    ExprList *pOrderBy    /* The ORDER BY clause to add */
001213  ){
001214    Expr *pOB;
001215    sqlite3 *db = pParse->db;
001216    if( NEVER(pOrderBy==0) ){
001217      assert( db->mallocFailed );
001218      return;
001219    }
001220    if( pExpr==0 ){
001221      assert( db->mallocFailed );
001222      sqlite3ExprListDelete(db, pOrderBy);
001223      return;
001224    }
001225    assert( pExpr->op==TK_FUNCTION );
001226    assert( pExpr->pLeft==0 );
001227    assert( ExprUseXList(pExpr) );
001228    if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){
001229      /* Ignore ORDER BY on zero-argument aggregates */
001230      sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pOrderBy);
001231      return;
001232    }
001233    if( IsWindowFunc(pExpr) ){
001234      sqlite3ExprOrderByAggregateError(pParse, pExpr);
001235      sqlite3ExprListDelete(db, pOrderBy);
001236      return;
001237    }
001238  
001239    pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0);
001240    if( pOB==0 ){
001241      sqlite3ExprListDelete(db, pOrderBy);
001242      return;
001243    }
001244    pOB->x.pList = pOrderBy;
001245    assert( ExprUseXList(pOB) );
001246    pExpr->pLeft = pOB;
001247    ExprSetProperty(pOB, EP_FullSize);
001248  }
001249  
001250  /*
001251  ** Check to see if a function is usable according to current access
001252  ** rules:
001253  **
001254  **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
001255  **
001256  **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
001257  **                                top-level SQL
001258  **
001259  ** If the function is not usable, create an error.
001260  */
001261  void sqlite3ExprFunctionUsable(
001262    Parse *pParse,         /* Parsing and code generating context */
001263    const Expr *pExpr,     /* The function invocation */
001264    const FuncDef *pDef    /* The function being invoked */
001265  ){
001266    assert( !IN_RENAME_OBJECT );
001267    assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
001268    if( ExprHasProperty(pExpr, EP_FromDDL) ){
001269      if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
001270       || (pParse->db->flags & SQLITE_TrustedSchema)==0
001271      ){
001272        /* Functions prohibited in triggers and views if:
001273        **     (1) tagged with SQLITE_DIRECTONLY
001274        **     (2) not tagged with SQLITE_INNOCUOUS (which means it
001275        **         is tagged with SQLITE_FUNC_UNSAFE) and
001276        **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
001277        **         that the schema is possibly tainted).
001278        */
001279        sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
001280      }
001281    }
001282  }
001283  
001284  /*
001285  ** Assign a variable number to an expression that encodes a wildcard
001286  ** in the original SQL statement. 
001287  **
001288  ** Wildcards consisting of a single "?" are assigned the next sequential
001289  ** variable number.
001290  **
001291  ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
001292  ** sure "nnn" is not too big to avoid a denial of service attack when
001293  ** the SQL statement comes from an external source.
001294  **
001295  ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
001296  ** as the previous instance of the same wildcard.  Or if this is the first
001297  ** instance of the wildcard, the next sequential variable number is
001298  ** assigned.
001299  */
001300  void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
001301    sqlite3 *db = pParse->db;
001302    const char *z;
001303    ynVar x;
001304  
001305    if( pExpr==0 ) return;
001306    assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
001307    z = pExpr->u.zToken;
001308    assert( z!=0 );
001309    assert( z[0]!=0 );
001310    assert( n==(u32)sqlite3Strlen30(z) );
001311    if( z[1]==0 ){
001312      /* Wildcard of the form "?".  Assign the next variable number */
001313      assert( z[0]=='?' );
001314      x = (ynVar)(++pParse->nVar);
001315    }else{
001316      int doAdd = 0;
001317      if( z[0]=='?' ){
001318        /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
001319        ** use it as the variable number */
001320        i64 i;
001321        int bOk;
001322        if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
001323          i = z[1]-'0';  /* The common case of ?N for a single digit N */
001324          bOk = 1;
001325        }else{
001326          bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
001327        }
001328        testcase( i==0 );
001329        testcase( i==1 );
001330        testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
001331        testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
001332        if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
001333          sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
001334              db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
001335          sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
001336          return;
001337        }
001338        x = (ynVar)i;
001339        if( x>pParse->nVar ){
001340          pParse->nVar = (int)x;
001341          doAdd = 1;
001342        }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
001343          doAdd = 1;
001344        }
001345      }else{
001346        /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
001347        ** number as the prior appearance of the same name, or if the name
001348        ** has never appeared before, reuse the same variable number
001349        */
001350        x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
001351        if( x==0 ){
001352          x = (ynVar)(++pParse->nVar);
001353          doAdd = 1;
001354        }
001355      }
001356      if( doAdd ){
001357        pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
001358      }
001359    }
001360    pExpr->iColumn = x;
001361    if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
001362      sqlite3ErrorMsg(pParse, "too many SQL variables");
001363      sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
001364    }
001365  }
001366  
001367  /*
001368  ** Recursively delete an expression tree.
001369  */
001370  static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
001371    assert( p!=0 );
001372    assert( db!=0 );
001373  exprDeleteRestart:
001374    assert( !ExprUseUValue(p) || p->u.iValue>=0 );
001375    assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
001376    assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
001377    assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
001378  #ifdef SQLITE_DEBUG
001379    if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
001380      assert( p->pLeft==0 );
001381      assert( p->pRight==0 );
001382      assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
001383      assert( !ExprUseXList(p) || p->x.pList==0 );
001384    }
001385  #endif
001386    if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
001387      /* The Expr.x union is never used at the same time as Expr.pRight */
001388      assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
001389      if( p->pRight ){
001390        assert( !ExprHasProperty(p, EP_WinFunc) );
001391        sqlite3ExprDeleteNN(db, p->pRight);
001392      }else if( ExprUseXSelect(p) ){
001393        assert( !ExprHasProperty(p, EP_WinFunc) );
001394        sqlite3SelectDelete(db, p->x.pSelect);
001395      }else{
001396        sqlite3ExprListDelete(db, p->x.pList);
001397  #ifndef SQLITE_OMIT_WINDOWFUNC
001398        if( ExprHasProperty(p, EP_WinFunc) ){
001399          sqlite3WindowDelete(db, p->y.pWin);
001400        }
001401  #endif
001402      }
001403      if( p->pLeft && p->op!=TK_SELECT_COLUMN ){
001404        Expr *pLeft = p->pLeft;
001405        if( !ExprHasProperty(p, EP_Static)
001406         && !ExprHasProperty(pLeft, EP_Static)
001407        ){
001408          /* Avoid unnecessary recursion on unary operators */
001409          sqlite3DbNNFreeNN(db, p);
001410          p = pLeft;
001411          goto exprDeleteRestart;
001412        }else{
001413          sqlite3ExprDeleteNN(db, pLeft);
001414        }
001415      }
001416    }
001417    if( !ExprHasProperty(p, EP_Static) ){
001418      sqlite3DbNNFreeNN(db, p);
001419    }
001420  }
001421  void sqlite3ExprDelete(sqlite3 *db, Expr *p){
001422    if( p ) sqlite3ExprDeleteNN(db, p);
001423  }
001424  void sqlite3ExprDeleteGeneric(sqlite3 *db, void *p){
001425    if( ALWAYS(p) ) sqlite3ExprDeleteNN(db, (Expr*)p);
001426  }
001427  
001428  /*
001429  ** Clear both elements of an OnOrUsing object
001430  */
001431  void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
001432    if( p==0 ){
001433      /* Nothing to clear */
001434    }else if( p->pOn ){
001435      sqlite3ExprDeleteNN(db, p->pOn);
001436    }else if( p->pUsing ){
001437      sqlite3IdListDelete(db, p->pUsing);
001438    }
001439  }
001440  
001441  /*
001442  ** Arrange to cause pExpr to be deleted when the pParse is deleted.
001443  ** This is similar to sqlite3ExprDelete() except that the delete is
001444  ** deferred until the pParse is deleted.
001445  **
001446  ** The pExpr might be deleted immediately on an OOM error.
001447  **
001448  ** Return 0 if the delete was successfully deferred.  Return non-zero
001449  ** if the delete happened immediately because of an OOM.
001450  */
001451  int sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
001452    return 0==sqlite3ParserAddCleanup(pParse, sqlite3ExprDeleteGeneric, pExpr);
001453  }
001454  
001455  /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
001456  ** expression.
001457  */
001458  void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
001459    if( p ){
001460      if( IN_RENAME_OBJECT ){
001461        sqlite3RenameExprUnmap(pParse, p);
001462      }
001463      sqlite3ExprDeleteNN(pParse->db, p);
001464    }
001465  }
001466  
001467  /*
001468  ** Return the number of bytes allocated for the expression structure
001469  ** passed as the first argument. This is always one of EXPR_FULLSIZE,
001470  ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
001471  */
001472  static int exprStructSize(const Expr *p){
001473    if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
001474    if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
001475    return EXPR_FULLSIZE;
001476  }
001477  
001478  /*
001479  ** The dupedExpr*Size() routines each return the number of bytes required
001480  ** to store a copy of an expression or expression tree.  They differ in
001481  ** how much of the tree is measured.
001482  **
001483  **     dupedExprStructSize()     Size of only the Expr structure
001484  **     dupedExprNodeSize()       Size of Expr + space for token
001485  **     dupedExprSize()           Expr + token + subtree components
001486  **
001487  ***************************************************************************
001488  **
001489  ** The dupedExprStructSize() function returns two values OR-ed together: 
001490  ** (1) the space required for a copy of the Expr structure only and
001491  ** (2) the EP_xxx flags that indicate what the structure size should be.
001492  ** The return values is always one of:
001493  **
001494  **      EXPR_FULLSIZE
001495  **      EXPR_REDUCEDSIZE   | EP_Reduced
001496  **      EXPR_TOKENONLYSIZE | EP_TokenOnly
001497  **
001498  ** The size of the structure can be found by masking the return value
001499  ** of this routine with 0xfff.  The flags can be found by masking the
001500  ** return value with EP_Reduced|EP_TokenOnly.
001501  **
001502  ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
001503  ** (unreduced) Expr objects as they or originally constructed by the parser.
001504  ** During expression analysis, extra information is computed and moved into
001505  ** later parts of the Expr object and that extra information might get chopped
001506  ** off if the expression is reduced.  Note also that it does not work to
001507  ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
001508  ** to reduce a pristine expression tree from the parser.  The implementation
001509  ** of dupedExprStructSize() contain multiple assert() statements that attempt
001510  ** to enforce this constraint.
001511  */
001512  static int dupedExprStructSize(const Expr *p, int flags){
001513    int nSize;
001514    assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
001515    assert( EXPR_FULLSIZE<=0xfff );
001516    assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
001517    if( 0==flags || ExprHasProperty(p, EP_FullSize) ){
001518      nSize = EXPR_FULLSIZE;
001519    }else{
001520      assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
001521      assert( !ExprHasProperty(p, EP_OuterON) );
001522      assert( !ExprHasVVAProperty(p, EP_NoReduce) );
001523      if( p->pLeft || p->x.pList ){
001524        nSize = EXPR_REDUCEDSIZE | EP_Reduced;
001525      }else{
001526        assert( p->pRight==0 );
001527        nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
001528      }
001529    }
001530    return nSize;
001531  }
001532  
001533  /*
001534  ** This function returns the space in bytes required to store the copy
001535  ** of the Expr structure and a copy of the Expr.u.zToken string (if that
001536  ** string is defined.)
001537  */
001538  static int dupedExprNodeSize(const Expr *p, int flags){
001539    int nByte = dupedExprStructSize(p, flags) & 0xfff;
001540    if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
001541      nByte += sqlite3Strlen30NN(p->u.zToken)+1;
001542    }
001543    return ROUND8(nByte);
001544  }
001545  
001546  /*
001547  ** Return the number of bytes required to create a duplicate of the
001548  ** expression passed as the first argument.
001549  **
001550  ** The value returned includes space to create a copy of the Expr struct
001551  ** itself and the buffer referred to by Expr.u.zToken, if any.
001552  **
001553  ** The return value includes space to duplicate all Expr nodes in the
001554  ** tree formed by Expr.pLeft and Expr.pRight, but not any other
001555  ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin.
001556  */
001557  static int dupedExprSize(const Expr *p){
001558    int nByte;
001559    assert( p!=0 );
001560    nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE);
001561    if( p->pLeft ) nByte += dupedExprSize(p->pLeft);
001562    if( p->pRight ) nByte += dupedExprSize(p->pRight);
001563    assert( nByte==ROUND8(nByte) );
001564    return nByte;
001565  }
001566  
001567  /*
001568  ** An EdupBuf is a memory allocation used to stored multiple Expr objects
001569  ** together with their Expr.zToken content.  This is used to help implement
001570  ** compression while doing sqlite3ExprDup().  The top-level Expr does the
001571  ** allocation for itself and many of its decendents, then passes an instance
001572  ** of the structure down into exprDup() so that they decendents can have
001573  ** access to that memory.
001574  */
001575  typedef struct EdupBuf EdupBuf;
001576  struct EdupBuf {
001577    u8 *zAlloc;          /* Memory space available for storage */
001578  #ifdef SQLITE_DEBUG
001579    u8 *zEnd;            /* First byte past the end of memory */
001580  #endif
001581  };
001582  
001583  /*
001584  ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf
001585  ** is not NULL then it points to memory that can be used to store a copy
001586  ** of the input Expr p together with its p->u.zToken (if any).  pEdupBuf
001587  ** is updated with the new buffer tail prior to returning.
001588  */
001589  static Expr *exprDup(
001590    sqlite3 *db,          /* Database connection (for memory allocation) */
001591    const Expr *p,        /* Expr tree to be duplicated */
001592    int dupFlags,         /* EXPRDUP_REDUCE for compression.  0 if not */
001593    EdupBuf *pEdupBuf     /* Preallocated storage space, or NULL */
001594  ){
001595    Expr *pNew;           /* Value to return */
001596    EdupBuf sEdupBuf;     /* Memory space from which to build Expr object */
001597    u32 staticFlag;       /* EP_Static if space not obtained from malloc */
001598    int nToken = -1;       /* Space needed for p->u.zToken.  -1 means unknown */
001599  
001600    assert( db!=0 );
001601    assert( p );
001602    assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
001603    assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE );
001604  
001605    /* Figure out where to write the new Expr structure. */
001606    if( pEdupBuf ){
001607      sEdupBuf.zAlloc = pEdupBuf->zAlloc;
001608  #ifdef SQLITE_DEBUG
001609      sEdupBuf.zEnd = pEdupBuf->zEnd;
001610  #endif
001611      staticFlag = EP_Static;
001612      assert( sEdupBuf.zAlloc!=0 );
001613      assert( dupFlags==EXPRDUP_REDUCE );
001614    }else{
001615      int nAlloc;
001616      if( dupFlags ){
001617        nAlloc = dupedExprSize(p);
001618      }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
001619        nToken = sqlite3Strlen30NN(p->u.zToken)+1;
001620        nAlloc = ROUND8(EXPR_FULLSIZE + nToken);
001621      }else{
001622        nToken = 0;
001623        nAlloc = ROUND8(EXPR_FULLSIZE);
001624      }
001625      assert( nAlloc==ROUND8(nAlloc) );
001626      sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc);
001627  #ifdef SQLITE_DEBUG
001628      sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0;
001629  #endif
001630      
001631      staticFlag = 0;
001632    }
001633    pNew = (Expr *)sEdupBuf.zAlloc;
001634    assert( EIGHT_BYTE_ALIGNMENT(pNew) );
001635  
001636    if( pNew ){
001637      /* Set nNewSize to the size allocated for the structure pointed to
001638      ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
001639      ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
001640      ** by the copy of the p->u.zToken string (if any).
001641      */
001642      const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
001643      int nNewSize = nStructSize & 0xfff;
001644      if( nToken<0 ){
001645        if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
001646          nToken = sqlite3Strlen30(p->u.zToken) + 1;
001647        }else{
001648          nToken = 0;
001649        }
001650      }
001651      if( dupFlags ){
001652        assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken );
001653        assert( ExprHasProperty(p, EP_Reduced)==0 );
001654        memcpy(sEdupBuf.zAlloc, p, nNewSize);
001655      }else{
001656        u32 nSize = (u32)exprStructSize(p);
001657        assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >=
001658                                                     (int)EXPR_FULLSIZE+nToken );
001659        memcpy(sEdupBuf.zAlloc, p, nSize);
001660        if( nSize<EXPR_FULLSIZE ){
001661          memset(&sEdupBuf.zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
001662        }
001663        nNewSize = EXPR_FULLSIZE;
001664      }
001665  
001666      /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
001667      pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
001668      pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
001669      pNew->flags |= staticFlag;
001670      ExprClearVVAProperties(pNew);
001671      if( dupFlags ){
001672        ExprSetVVAProperty(pNew, EP_Immutable);
001673      }
001674  
001675      /* Copy the p->u.zToken string, if any. */
001676      assert( nToken>=0 );
001677      if( nToken>0 ){
001678        char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize];
001679        memcpy(zToken, p->u.zToken, nToken);
001680        nNewSize += nToken;
001681      }
001682      sEdupBuf.zAlloc += ROUND8(nNewSize);
001683  
001684      if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){
001685  
001686        /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
001687        if( ExprUseXSelect(p) ){
001688          pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
001689        }else{
001690          pNew->x.pList = sqlite3ExprListDup(db, p->x.pList,
001691                             p->op!=TK_ORDER ? dupFlags : 0);
001692        }
001693  
001694  #ifndef SQLITE_OMIT_WINDOWFUNC
001695        if( ExprHasProperty(p, EP_WinFunc) ){
001696          pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
001697          assert( ExprHasProperty(pNew, EP_WinFunc) );
001698        }
001699  #endif /* SQLITE_OMIT_WINDOWFUNC */
001700  
001701        /* Fill in pNew->pLeft and pNew->pRight. */
001702        if( dupFlags ){
001703          if( p->op==TK_SELECT_COLUMN ){
001704            pNew->pLeft = p->pLeft;
001705            assert( p->pRight==0 
001706                 || p->pRight==p->pLeft
001707                 || ExprHasProperty(p->pLeft, EP_Subquery) );
001708          }else{
001709            pNew->pLeft = p->pLeft ?
001710                        exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0;
001711          }
001712          pNew->pRight = p->pRight ?
001713                         exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0;
001714        }else{
001715          if( p->op==TK_SELECT_COLUMN ){
001716            pNew->pLeft = p->pLeft;
001717            assert( p->pRight==0 
001718                 || p->pRight==p->pLeft
001719                 || ExprHasProperty(p->pLeft, EP_Subquery) );
001720          }else{
001721            pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
001722          }
001723          pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
001724        }
001725      }
001726    }
001727    if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf));
001728    assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd );
001729    return pNew;
001730  }
001731  
001732  /*
001733  ** Create and return a deep copy of the object passed as the second
001734  ** argument. If an OOM condition is encountered, NULL is returned
001735  ** and the db->mallocFailed flag set.
001736  */
001737  #ifndef SQLITE_OMIT_CTE
001738  With *sqlite3WithDup(sqlite3 *db, With *p){
001739    With *pRet = 0;
001740    if( p ){
001741      sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
001742      pRet = sqlite3DbMallocZero(db, nByte);
001743      if( pRet ){
001744        int i;
001745        pRet->nCte = p->nCte;
001746        for(i=0; i<p->nCte; i++){
001747          pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
001748          pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
001749          pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
001750          pRet->a[i].eM10d = p->a[i].eM10d;
001751        }
001752      }
001753    }
001754    return pRet;
001755  }
001756  #else
001757  # define sqlite3WithDup(x,y) 0
001758  #endif
001759  
001760  #ifndef SQLITE_OMIT_WINDOWFUNC
001761  /*
001762  ** The gatherSelectWindows() procedure and its helper routine
001763  ** gatherSelectWindowsCallback() are used to scan all the expressions
001764  ** an a newly duplicated SELECT statement and gather all of the Window
001765  ** objects found there, assembling them onto the linked list at Select->pWin.
001766  */
001767  static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
001768    if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
001769      Select *pSelect = pWalker->u.pSelect;
001770      Window *pWin = pExpr->y.pWin;
001771      assert( pWin );
001772      assert( IsWindowFunc(pExpr) );
001773      assert( pWin->ppThis==0 );
001774      sqlite3WindowLink(pSelect, pWin);
001775    }
001776    return WRC_Continue;
001777  }
001778  static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
001779    return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
001780  }
001781  static void gatherSelectWindows(Select *p){
001782    Walker w;
001783    w.xExprCallback = gatherSelectWindowsCallback;
001784    w.xSelectCallback = gatherSelectWindowsSelectCallback;
001785    w.xSelectCallback2 = 0;
001786    w.pParse = 0;
001787    w.u.pSelect = p;
001788    sqlite3WalkSelect(&w, p);
001789  }
001790  #endif
001791  
001792  
001793  /*
001794  ** The following group of routines make deep copies of expressions,
001795  ** expression lists, ID lists, and select statements.  The copies can
001796  ** be deleted (by being passed to their respective ...Delete() routines)
001797  ** without effecting the originals.
001798  **
001799  ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
001800  ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
001801  ** by subsequent calls to sqlite*ListAppend() routines.
001802  **
001803  ** Any tables that the SrcList might point to are not duplicated.
001804  **
001805  ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
001806  ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
001807  ** truncated version of the usual Expr structure that will be stored as
001808  ** part of the in-memory representation of the database schema.
001809  */
001810  Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
001811    assert( flags==0 || flags==EXPRDUP_REDUCE );
001812    return p ? exprDup(db, p, flags, 0) : 0;
001813  }
001814  ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
001815    ExprList *pNew;
001816    struct ExprList_item *pItem;
001817    const struct ExprList_item *pOldItem;
001818    int i;
001819    Expr *pPriorSelectColOld = 0;
001820    Expr *pPriorSelectColNew = 0;
001821    assert( db!=0 );
001822    if( p==0 ) return 0;
001823    pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
001824    if( pNew==0 ) return 0;
001825    pNew->nExpr = p->nExpr;
001826    pNew->nAlloc = p->nAlloc;
001827    pItem = pNew->a;
001828    pOldItem = p->a;
001829    for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
001830      Expr *pOldExpr = pOldItem->pExpr;
001831      Expr *pNewExpr;
001832      pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
001833      if( pOldExpr
001834       && pOldExpr->op==TK_SELECT_COLUMN
001835       && (pNewExpr = pItem->pExpr)!=0
001836      ){
001837        if( pNewExpr->pRight ){
001838          pPriorSelectColOld = pOldExpr->pRight;
001839          pPriorSelectColNew = pNewExpr->pRight;
001840          pNewExpr->pLeft = pNewExpr->pRight;
001841        }else{
001842          if( pOldExpr->pLeft!=pPriorSelectColOld ){
001843            pPriorSelectColOld = pOldExpr->pLeft;
001844            pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
001845            pNewExpr->pRight = pPriorSelectColNew;
001846          }
001847          pNewExpr->pLeft = pPriorSelectColNew;
001848        }
001849      }
001850      pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
001851      pItem->fg = pOldItem->fg;
001852      pItem->fg.done = 0;
001853      pItem->u = pOldItem->u;
001854    }
001855    return pNew;
001856  }
001857  
001858  /*
001859  ** If cursors, triggers, views and subqueries are all omitted from
001860  ** the build, then none of the following routines, except for
001861  ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
001862  ** called with a NULL argument.
001863  */
001864  #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
001865   || !defined(SQLITE_OMIT_SUBQUERY)
001866  SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
001867    SrcList *pNew;
001868    int i;
001869    int nByte;
001870    assert( db!=0 );
001871    if( p==0 ) return 0;
001872    nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
001873    pNew = sqlite3DbMallocRawNN(db, nByte );
001874    if( pNew==0 ) return 0;
001875    pNew->nSrc = pNew->nAlloc = p->nSrc;
001876    for(i=0; i<p->nSrc; i++){
001877      SrcItem *pNewItem = &pNew->a[i];
001878      const SrcItem *pOldItem = &p->a[i];
001879      Table *pTab;
001880      pNewItem->fg = pOldItem->fg;
001881      if( pOldItem->fg.isSubquery ){
001882        Subquery *pNewSubq = sqlite3DbMallocRaw(db, sizeof(Subquery));
001883        if( pNewSubq==0 ){
001884          assert( db->mallocFailed );
001885          pNewItem->fg.isSubquery = 0;
001886        }else{
001887          memcpy(pNewSubq, pOldItem->u4.pSubq, sizeof(*pNewSubq));
001888          pNewSubq->pSelect = sqlite3SelectDup(db, pNewSubq->pSelect, flags);
001889          if( pNewSubq->pSelect==0 ){
001890            sqlite3DbFree(db, pNewSubq);
001891            pNewSubq = 0;
001892            pNewItem->fg.isSubquery = 0;
001893          }
001894        }
001895        pNewItem->u4.pSubq = pNewSubq;
001896      }else if( pOldItem->fg.fixedSchema ){
001897        pNewItem->u4.pSchema = pOldItem->u4.pSchema;
001898      }else{
001899        pNewItem->u4.zDatabase = sqlite3DbStrDup(db, pOldItem->u4.zDatabase);
001900      }
001901      pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
001902      pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
001903      pNewItem->iCursor = pOldItem->iCursor;
001904      if( pNewItem->fg.isIndexedBy ){
001905        pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
001906      }else if( pNewItem->fg.isTabFunc ){
001907        pNewItem->u1.pFuncArg =
001908            sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
001909      }else{
001910        pNewItem->u1.nRow = pOldItem->u1.nRow;
001911      }
001912      pNewItem->u2 = pOldItem->u2;
001913      if( pNewItem->fg.isCte ){
001914        pNewItem->u2.pCteUse->nUse++;
001915      }
001916      pTab = pNewItem->pSTab = pOldItem->pSTab;
001917      if( pTab ){
001918        pTab->nTabRef++;
001919      }
001920      if( pOldItem->fg.isUsing ){
001921        assert( pNewItem->fg.isUsing );
001922        pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
001923      }else{
001924        pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
001925      }
001926      pNewItem->colUsed = pOldItem->colUsed;
001927    }
001928    return pNew;
001929  }
001930  IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
001931    IdList *pNew;
001932    int i;
001933    assert( db!=0 );
001934    if( p==0 ) return 0;
001935    pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
001936    if( pNew==0 ) return 0;
001937    pNew->nId = p->nId;
001938    for(i=0; i<p->nId; i++){
001939      struct IdList_item *pNewItem = &pNew->a[i];
001940      const struct IdList_item *pOldItem = &p->a[i];
001941      pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
001942    }
001943    return pNew;
001944  }
001945  Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
001946    Select *pRet = 0;
001947    Select *pNext = 0;
001948    Select **pp = &pRet;
001949    const Select *p;
001950  
001951    assert( db!=0 );
001952    for(p=pDup; p; p=p->pPrior){
001953      Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
001954      if( pNew==0 ) break;
001955      pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
001956      pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
001957      pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
001958      pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
001959      pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
001960      pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
001961      pNew->op = p->op;
001962      pNew->pNext = pNext;
001963      pNew->pPrior = 0;
001964      pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
001965      pNew->iLimit = 0;
001966      pNew->iOffset = 0;
001967      pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
001968      pNew->addrOpenEphm[0] = -1;
001969      pNew->addrOpenEphm[1] = -1;
001970      pNew->nSelectRow = p->nSelectRow;
001971      pNew->pWith = sqlite3WithDup(db, p->pWith);
001972  #ifndef SQLITE_OMIT_WINDOWFUNC
001973      pNew->pWin = 0;
001974      pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
001975      if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
001976  #endif
001977      pNew->selId = p->selId;
001978      if( db->mallocFailed ){
001979        /* Any prior OOM might have left the Select object incomplete.
001980        ** Delete the whole thing rather than allow an incomplete Select
001981        ** to be used by the code generator. */
001982        pNew->pNext = 0;
001983        sqlite3SelectDelete(db, pNew);
001984        break;
001985      }
001986      *pp = pNew;
001987      pp = &pNew->pPrior;
001988      pNext = pNew;
001989    }
001990    return pRet;
001991  }
001992  #else
001993  Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
001994    assert( p==0 );
001995    return 0;
001996  }
001997  #endif
001998  
001999  
002000  /*
002001  ** Add a new element to the end of an expression list.  If pList is
002002  ** initially NULL, then create a new expression list.
002003  **
002004  ** The pList argument must be either NULL or a pointer to an ExprList
002005  ** obtained from a prior call to sqlite3ExprListAppend().
002006  **
002007  ** If a memory allocation error occurs, the entire list is freed and
002008  ** NULL is returned.  If non-NULL is returned, then it is guaranteed
002009  ** that the new entry was successfully appended.
002010  */
002011  static const struct ExprList_item zeroItem = {0};
002012  SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
002013    sqlite3 *db,            /* Database handle.  Used for memory allocation */
002014    Expr *pExpr             /* Expression to be appended. Might be NULL */
002015  ){
002016    struct ExprList_item *pItem;
002017    ExprList *pList;
002018  
002019    pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
002020    if( pList==0 ){
002021      sqlite3ExprDelete(db, pExpr);
002022      return 0;
002023    }
002024    pList->nAlloc = 4;
002025    pList->nExpr = 1;
002026    pItem = &pList->a[0];
002027    *pItem = zeroItem;
002028    pItem->pExpr = pExpr;
002029    return pList;
002030  }
002031  SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
002032    sqlite3 *db,            /* Database handle.  Used for memory allocation */
002033    ExprList *pList,        /* List to which to append. Might be NULL */
002034    Expr *pExpr             /* Expression to be appended. Might be NULL */
002035  ){
002036    struct ExprList_item *pItem;
002037    ExprList *pNew;
002038    pList->nAlloc *= 2;
002039    pNew = sqlite3DbRealloc(db, pList,
002040         sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
002041    if( pNew==0 ){
002042      sqlite3ExprListDelete(db, pList);
002043      sqlite3ExprDelete(db, pExpr);
002044      return 0;
002045    }else{
002046      pList = pNew;
002047    }
002048    pItem = &pList->a[pList->nExpr++];
002049    *pItem = zeroItem;
002050    pItem->pExpr = pExpr;
002051    return pList;
002052  }
002053  ExprList *sqlite3ExprListAppend(
002054    Parse *pParse,          /* Parsing context */
002055    ExprList *pList,        /* List to which to append. Might be NULL */
002056    Expr *pExpr             /* Expression to be appended. Might be NULL */
002057  ){
002058    struct ExprList_item *pItem;
002059    if( pList==0 ){
002060      return sqlite3ExprListAppendNew(pParse->db,pExpr);
002061    }
002062    if( pList->nAlloc<pList->nExpr+1 ){
002063      return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
002064    }
002065    pItem = &pList->a[pList->nExpr++];
002066    *pItem = zeroItem;
002067    pItem->pExpr = pExpr;
002068    return pList;
002069  }
002070  
002071  /*
002072  ** pColumns and pExpr form a vector assignment which is part of the SET
002073  ** clause of an UPDATE statement.  Like this:
002074  **
002075  **        (a,b,c) = (expr1,expr2,expr3)
002076  ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
002077  **
002078  ** For each term of the vector assignment, append new entries to the
002079  ** expression list pList.  In the case of a subquery on the RHS, append
002080  ** TK_SELECT_COLUMN expressions.
002081  */
002082  ExprList *sqlite3ExprListAppendVector(
002083    Parse *pParse,         /* Parsing context */
002084    ExprList *pList,       /* List to which to append. Might be NULL */
002085    IdList *pColumns,      /* List of names of LHS of the assignment */
002086    Expr *pExpr            /* Vector expression to be appended. Might be NULL */
002087  ){
002088    sqlite3 *db = pParse->db;
002089    int n;
002090    int i;
002091    int iFirst = pList ? pList->nExpr : 0;
002092    /* pColumns can only be NULL due to an OOM but an OOM will cause an
002093    ** exit prior to this routine being invoked */
002094    if( NEVER(pColumns==0) ) goto vector_append_error;
002095    if( pExpr==0 ) goto vector_append_error;
002096  
002097    /* If the RHS is a vector, then we can immediately check to see that
002098    ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
002099    ** wildcards ("*") in the result set of the SELECT must be expanded before
002100    ** we can do the size check, so defer the size check until code generation.
002101    */
002102    if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
002103      sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
002104                      pColumns->nId, n);
002105      goto vector_append_error;
002106    }
002107  
002108    for(i=0; i<pColumns->nId; i++){
002109      Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
002110      assert( pSubExpr!=0 || db->mallocFailed );
002111      if( pSubExpr==0 ) continue;
002112      pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
002113      if( pList ){
002114        assert( pList->nExpr==iFirst+i+1 );
002115        pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
002116        pColumns->a[i].zName = 0;
002117      }
002118    }
002119  
002120    if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
002121      Expr *pFirst = pList->a[iFirst].pExpr;
002122      assert( pFirst!=0 );
002123      assert( pFirst->op==TK_SELECT_COLUMN );
002124      
002125      /* Store the SELECT statement in pRight so it will be deleted when
002126      ** sqlite3ExprListDelete() is called */
002127      pFirst->pRight = pExpr;
002128      pExpr = 0;
002129  
002130      /* Remember the size of the LHS in iTable so that we can check that
002131      ** the RHS and LHS sizes match during code generation. */
002132      pFirst->iTable = pColumns->nId;
002133    }
002134  
002135  vector_append_error:
002136    sqlite3ExprUnmapAndDelete(pParse, pExpr);
002137    sqlite3IdListDelete(db, pColumns);
002138    return pList;
002139  }
002140  
002141  /*
002142  ** Set the sort order for the last element on the given ExprList.
002143  */
002144  void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
002145    struct ExprList_item *pItem;
002146    if( p==0 ) return;
002147    assert( p->nExpr>0 );
002148  
002149    assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
002150    assert( iSortOrder==SQLITE_SO_UNDEFINED
002151         || iSortOrder==SQLITE_SO_ASC
002152         || iSortOrder==SQLITE_SO_DESC
002153    );
002154    assert( eNulls==SQLITE_SO_UNDEFINED
002155         || eNulls==SQLITE_SO_ASC
002156         || eNulls==SQLITE_SO_DESC
002157    );
002158  
002159    pItem = &p->a[p->nExpr-1];
002160    assert( pItem->fg.bNulls==0 );
002161    if( iSortOrder==SQLITE_SO_UNDEFINED ){
002162      iSortOrder = SQLITE_SO_ASC;
002163    }
002164    pItem->fg.sortFlags = (u8)iSortOrder;
002165  
002166    if( eNulls!=SQLITE_SO_UNDEFINED ){
002167      pItem->fg.bNulls = 1;
002168      if( iSortOrder!=eNulls ){
002169        pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
002170      }
002171    }
002172  }
002173  
002174  /*
002175  ** Set the ExprList.a[].zEName element of the most recently added item
002176  ** on the expression list.
002177  **
002178  ** pList might be NULL following an OOM error.  But pName should never be
002179  ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
002180  ** is set.
002181  */
002182  void sqlite3ExprListSetName(
002183    Parse *pParse,          /* Parsing context */
002184    ExprList *pList,        /* List to which to add the span. */
002185    const Token *pName,     /* Name to be added */
002186    int dequote             /* True to cause the name to be dequoted */
002187  ){
002188    assert( pList!=0 || pParse->db->mallocFailed!=0 );
002189    assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
002190    if( pList ){
002191      struct ExprList_item *pItem;
002192      assert( pList->nExpr>0 );
002193      pItem = &pList->a[pList->nExpr-1];
002194      assert( pItem->zEName==0 );
002195      assert( pItem->fg.eEName==ENAME_NAME );
002196      pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
002197      if( dequote ){
002198        /* If dequote==0, then pName->z does not point to part of a DDL
002199        ** statement handled by the parser. And so no token need be added
002200        ** to the token-map.  */
002201        sqlite3Dequote(pItem->zEName);
002202        if( IN_RENAME_OBJECT ){
002203          sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
002204        }
002205      }
002206    }
002207  }
002208  
002209  /*
002210  ** Set the ExprList.a[].zSpan element of the most recently added item
002211  ** on the expression list.
002212  **
002213  ** pList might be NULL following an OOM error.  But pSpan should never be
002214  ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
002215  ** is set.
002216  */
002217  void sqlite3ExprListSetSpan(
002218    Parse *pParse,          /* Parsing context */
002219    ExprList *pList,        /* List to which to add the span. */
002220    const char *zStart,     /* Start of the span */
002221    const char *zEnd        /* End of the span */
002222  ){
002223    sqlite3 *db = pParse->db;
002224    assert( pList!=0 || db->mallocFailed!=0 );
002225    if( pList ){
002226      struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
002227      assert( pList->nExpr>0 );
002228      if( pItem->zEName==0 ){
002229        pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
002230        pItem->fg.eEName = ENAME_SPAN;
002231      }
002232    }
002233  }
002234  
002235  /*
002236  ** If the expression list pEList contains more than iLimit elements,
002237  ** leave an error message in pParse.
002238  */
002239  void sqlite3ExprListCheckLength(
002240    Parse *pParse,
002241    ExprList *pEList,
002242    const char *zObject
002243  ){
002244    int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
002245    testcase( pEList && pEList->nExpr==mx );
002246    testcase( pEList && pEList->nExpr==mx+1 );
002247    if( pEList && pEList->nExpr>mx ){
002248      sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
002249    }
002250  }
002251  
002252  /*
002253  ** Delete an entire expression list.
002254  */
002255  static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
002256    int i = pList->nExpr;
002257    struct ExprList_item *pItem =  pList->a;
002258    assert( pList->nExpr>0 );
002259    assert( db!=0 );
002260    do{
002261      sqlite3ExprDelete(db, pItem->pExpr);
002262      if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
002263      pItem++;
002264    }while( --i>0 );
002265    sqlite3DbNNFreeNN(db, pList);
002266  }
002267  void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
002268    if( pList ) exprListDeleteNN(db, pList);
002269  }
002270  void sqlite3ExprListDeleteGeneric(sqlite3 *db, void *pList){
002271    if( ALWAYS(pList) ) exprListDeleteNN(db, (ExprList*)pList);
002272  }
002273  
002274  /*
002275  ** Return the bitwise-OR of all Expr.flags fields in the given
002276  ** ExprList.
002277  */
002278  u32 sqlite3ExprListFlags(const ExprList *pList){
002279    int i;
002280    u32 m = 0;
002281    assert( pList!=0 );
002282    for(i=0; i<pList->nExpr; i++){
002283       Expr *pExpr = pList->a[i].pExpr;
002284       assert( pExpr!=0 );
002285       m |= pExpr->flags;
002286    }
002287    return m;
002288  }
002289  
002290  /*
002291  ** This is a SELECT-node callback for the expression walker that
002292  ** always "fails".  By "fail" in this case, we mean set
002293  ** pWalker->eCode to zero and abort.
002294  **
002295  ** This callback is used by multiple expression walkers.
002296  */
002297  int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
002298    UNUSED_PARAMETER(NotUsed);
002299    pWalker->eCode = 0;
002300    return WRC_Abort;
002301  }
002302  
002303  /*
002304  ** Check the input string to see if it is "true" or "false" (in any case).
002305  **
002306  **       If the string is....           Return
002307  **         "true"                         EP_IsTrue
002308  **         "false"                        EP_IsFalse
002309  **         anything else                  0
002310  */
002311  u32 sqlite3IsTrueOrFalse(const char *zIn){
002312    if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
002313    if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
002314    return 0;
002315  }
002316  
002317  
002318  /*
002319  ** If the input expression is an ID with the name "true" or "false"
002320  ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
002321  ** the conversion happened, and zero if the expression is unaltered.
002322  */
002323  int sqlite3ExprIdToTrueFalse(Expr *pExpr){
002324    u32 v;
002325    assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
002326    if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
002327     && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
002328    ){
002329      pExpr->op = TK_TRUEFALSE;
002330      ExprSetProperty(pExpr, v);
002331      return 1;
002332    }
002333    return 0;
002334  }
002335  
002336  /*
002337  ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
002338  ** and 0 if it is FALSE.
002339  */
002340  int sqlite3ExprTruthValue(const Expr *pExpr){
002341    pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr);
002342    assert( pExpr->op==TK_TRUEFALSE );
002343    assert( !ExprHasProperty(pExpr, EP_IntValue) );
002344    assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
002345         || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
002346    return pExpr->u.zToken[4]==0;
002347  }
002348  
002349  /*
002350  ** If pExpr is an AND or OR expression, try to simplify it by eliminating
002351  ** terms that are always true or false.  Return the simplified expression.
002352  ** Or return the original expression if no simplification is possible.
002353  **
002354  ** Examples:
002355  **
002356  **     (x<10) AND true                =>   (x<10)
002357  **     (x<10) AND false               =>   false
002358  **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
002359  **     (x<10) AND (y=22 OR true)      =>   (x<10)
002360  **     (y=22) OR true                 =>   true
002361  */
002362  Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
002363    assert( pExpr!=0 );
002364    if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
002365      Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
002366      Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
002367      if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
002368        pExpr = pExpr->op==TK_AND ? pRight : pLeft;
002369      }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
002370        pExpr = pExpr->op==TK_AND ? pLeft : pRight;
002371      }
002372    }
002373    return pExpr;
002374  }
002375  
002376  /*
002377  ** pExpr is a TK_FUNCTION node.  Try to determine whether or not the
002378  ** function is a constant function.  A function is constant if all of
002379  ** the following are true:
002380  **
002381  **    (1)  It is a scalar function (not an aggregate or window function)
002382  **    (2)  It has either the SQLITE_FUNC_CONSTANT or SQLITE_FUNC_SLOCHNG
002383  **         property.
002384  **    (3)  All of its arguments are constants
002385  **
002386  ** This routine sets pWalker->eCode to 0 if pExpr is not a constant.
002387  ** It makes no changes to pWalker->eCode if pExpr is constant.  In
002388  ** every case, it returns WRC_Abort.
002389  **
002390  ** Called as a service subroutine from exprNodeIsConstant().
002391  */
002392  static SQLITE_NOINLINE int exprNodeIsConstantFunction(
002393    Walker *pWalker,
002394    Expr *pExpr
002395  ){
002396    int n;             /* Number of arguments */
002397    ExprList *pList;   /* List of arguments */
002398    FuncDef *pDef;     /* The function */
002399    sqlite3 *db;       /* The database */
002400  
002401    assert( pExpr->op==TK_FUNCTION );
002402    if( ExprHasProperty(pExpr, EP_TokenOnly)
002403     || (pList = pExpr->x.pList)==0
002404    ){;
002405      n = 0;
002406    }else{
002407      n = pList->nExpr;
002408      sqlite3WalkExprList(pWalker, pList);
002409      if( pWalker->eCode==0 ) return WRC_Abort;
002410    }
002411    db = pWalker->pParse->db;
002412    pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0);
002413    if( pDef==0
002414     || pDef->xFinalize!=0
002415     || (pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
002416     || ExprHasProperty(pExpr, EP_WinFunc)
002417    ){
002418      pWalker->eCode = 0;
002419      return WRC_Abort;
002420    }
002421    return WRC_Prune;
002422  }
002423  
002424  
002425  /*
002426  ** These routines are Walker callbacks used to check expressions to
002427  ** see if they are "constant" for some definition of constant.  The
002428  ** Walker.eCode value determines the type of "constant" we are looking
002429  ** for.
002430  **
002431  ** These callback routines are used to implement the following:
002432  **
002433  **     sqlite3ExprIsConstant()                  pWalker->eCode==1
002434  **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
002435  **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
002436  **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
002437  **
002438  ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
002439  ** is found to not be a constant.
002440  **
002441  ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
002442  ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
002443  ** when parsing an existing schema out of the sqlite_schema table and 4
002444  ** when processing a new CREATE TABLE statement.  A bound parameter raises
002445  ** an error for new statements, but is silently converted
002446  ** to NULL for existing schemas.  This allows sqlite_schema tables that
002447  ** contain a bound parameter because they were generated by older versions
002448  ** of SQLite to be parsed by newer versions of SQLite without raising a
002449  ** malformed schema error.
002450  */
002451  static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
002452    assert( pWalker->eCode>0 );
002453  
002454    /* If pWalker->eCode is 2 then any term of the expression that comes from
002455    ** the ON or USING clauses of an outer join disqualifies the expression
002456    ** from being considered constant. */
002457    if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
002458      pWalker->eCode = 0;
002459      return WRC_Abort;
002460    }
002461  
002462    switch( pExpr->op ){
002463      /* Consider functions to be constant if all their arguments are constant
002464      ** and either pWalker->eCode==4 or 5 or the function has the
002465      ** SQLITE_FUNC_CONST flag. */
002466      case TK_FUNCTION:
002467        if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
002468         && !ExprHasProperty(pExpr, EP_WinFunc)
002469        ){
002470          if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
002471          return WRC_Continue;
002472        }else if( pWalker->pParse ){
002473          return exprNodeIsConstantFunction(pWalker, pExpr);
002474        }else{
002475          pWalker->eCode = 0;
002476          return WRC_Abort;
002477        }
002478      case TK_ID:
002479        /* Convert "true" or "false" in a DEFAULT clause into the
002480        ** appropriate TK_TRUEFALSE operator */
002481        if( sqlite3ExprIdToTrueFalse(pExpr) ){
002482          return WRC_Prune;
002483        }
002484        /* no break */ deliberate_fall_through
002485      case TK_COLUMN:
002486      case TK_AGG_FUNCTION:
002487      case TK_AGG_COLUMN:
002488        testcase( pExpr->op==TK_ID );
002489        testcase( pExpr->op==TK_COLUMN );
002490        testcase( pExpr->op==TK_AGG_FUNCTION );
002491        testcase( pExpr->op==TK_AGG_COLUMN );
002492        if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
002493          return WRC_Continue;
002494        }
002495        if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
002496          return WRC_Continue;
002497        }
002498        /* no break */ deliberate_fall_through
002499      case TK_IF_NULL_ROW:
002500      case TK_REGISTER:
002501      case TK_DOT:
002502      case TK_RAISE:
002503        testcase( pExpr->op==TK_REGISTER );
002504        testcase( pExpr->op==TK_IF_NULL_ROW );
002505        testcase( pExpr->op==TK_DOT );
002506        testcase( pExpr->op==TK_RAISE );
002507        pWalker->eCode = 0;
002508        return WRC_Abort;
002509      case TK_VARIABLE:
002510        if( pWalker->eCode==5 ){
002511          /* Silently convert bound parameters that appear inside of CREATE
002512          ** statements into a NULL when parsing the CREATE statement text out
002513          ** of the sqlite_schema table */
002514          pExpr->op = TK_NULL;
002515        }else if( pWalker->eCode==4 ){
002516          /* A bound parameter in a CREATE statement that originates from
002517          ** sqlite3_prepare() causes an error */
002518          pWalker->eCode = 0;
002519          return WRC_Abort;
002520        }
002521        /* no break */ deliberate_fall_through
002522      default:
002523        testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
002524        testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
002525        return WRC_Continue;
002526    }
002527  }
002528  static int exprIsConst(Parse *pParse, Expr *p, int initFlag){
002529    Walker w;
002530    w.eCode = initFlag;
002531    w.pParse = pParse;
002532    w.xExprCallback = exprNodeIsConstant;
002533    w.xSelectCallback = sqlite3SelectWalkFail;
002534  #ifdef SQLITE_DEBUG
002535    w.xSelectCallback2 = sqlite3SelectWalkAssert2;
002536  #endif
002537    sqlite3WalkExpr(&w, p);
002538    return w.eCode;
002539  }
002540  
002541  /*
002542  ** Walk an expression tree.  Return non-zero if the expression is constant
002543  ** and 0 if it involves variables or function calls.
002544  **
002545  ** For the purposes of this function, a double-quoted string (ex: "abc")
002546  ** is considered a variable but a single-quoted string (ex: 'abc') is
002547  ** a constant.
002548  **
002549  ** The pParse parameter may be NULL.  But if it is NULL, there is no way
002550  ** to determine if function calls are constant or not, and hence all
002551  ** function calls will be considered to be non-constant.  If pParse is
002552  ** not NULL, then a function call might be constant, depending on the
002553  ** function and on its parameters.
002554  */
002555  int sqlite3ExprIsConstant(Parse *pParse, Expr *p){
002556    return exprIsConst(pParse, p, 1);
002557  }
002558  
002559  /*
002560  ** Walk an expression tree.  Return non-zero if
002561  **
002562  **   (1) the expression is constant, and
002563  **   (2) the expression does originate in the ON or USING clause
002564  **       of a LEFT JOIN, and
002565  **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
002566  **       operands created by the constant propagation optimization.
002567  **
002568  ** When this routine returns true, it indicates that the expression
002569  ** can be added to the pParse->pConstExpr list and evaluated once when
002570  ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
002571  */
002572  static int sqlite3ExprIsConstantNotJoin(Parse *pParse, Expr *p){
002573    return exprIsConst(pParse, p, 2);
002574  }
002575  
002576  /*
002577  ** This routine examines sub-SELECT statements as an expression is being
002578  ** walked as part of sqlite3ExprIsTableConstant().  Sub-SELECTs are considered
002579  ** constant as long as they are uncorrelated - meaning that they do not
002580  ** contain any terms from outer contexts.
002581  */
002582  static int exprSelectWalkTableConstant(Walker *pWalker, Select *pSelect){
002583    assert( pSelect!=0 );
002584    assert( pWalker->eCode==3 || pWalker->eCode==0 );
002585    if( (pSelect->selFlags & SF_Correlated)!=0 ){
002586      pWalker->eCode = 0;
002587      return WRC_Abort;
002588    }
002589    return WRC_Prune;
002590  }
002591  
002592  /*
002593  ** Walk an expression tree.  Return non-zero if the expression is constant
002594  ** for any single row of the table with cursor iCur.  In other words, the
002595  ** expression must not refer to any non-deterministic function nor any
002596  ** table other than iCur.
002597  **
002598  ** Consider uncorrelated subqueries to be constants if the bAllowSubq
002599  ** parameter is true.
002600  */
002601  static int sqlite3ExprIsTableConstant(Expr *p, int iCur, int bAllowSubq){
002602    Walker w;
002603    w.eCode = 3;
002604    w.pParse = 0;
002605    w.xExprCallback = exprNodeIsConstant;
002606    if( bAllowSubq ){
002607      w.xSelectCallback = exprSelectWalkTableConstant;
002608    }else{
002609      w.xSelectCallback = sqlite3SelectWalkFail;
002610  #ifdef SQLITE_DEBUG
002611      w.xSelectCallback2 = sqlite3SelectWalkAssert2;
002612  #endif
002613    }
002614    w.u.iCur = iCur;
002615    sqlite3WalkExpr(&w, p);
002616    return w.eCode;
002617  }
002618  
002619  /*
002620  ** Check pExpr to see if it is an constraint on the single data source
002621  ** pSrc = &pSrcList->a[iSrc].  In other words, check to see if pExpr
002622  ** constrains pSrc but does not depend on any other tables or data
002623  ** sources anywhere else in the query.  Return true (non-zero) if pExpr
002624  ** is a constraint on pSrc only.
002625  **
002626  ** This is an optimization.  False negatives will perhaps cause slower
002627  ** queries, but false positives will yield incorrect answers.  So when in
002628  ** doubt, return 0.
002629  **
002630  ** To be an single-source constraint, the following must be true:
002631  **
002632  **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
002633  **
002634  **   (2a) pExpr cannot use subqueries unless the bAllowSubq parameter is
002635  **        true and the subquery is non-correlated
002636  **
002637  **   (2b) pExpr cannot use non-deterministic functions.
002638  **
002639  **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
002640  **        (Is there some way to relax this constraint?)
002641  **
002642  **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
002643  **         (4a)  pExpr must come from an ON clause..
002644  **         (4b)  and specifically the ON clause associated with the LEFT JOIN.
002645  **
002646  **   (5)  If pSrc is the right operand of a LEFT JOIN or the left
002647  **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
002648  **        clause, not an ON clause.
002649  **
002650  **   (6) Either:
002651  **
002652  **       (6a) pExpr does not originate in an ON or USING clause, or
002653  **
002654  **       (6b) The ON or USING clause from which pExpr is derived is
002655  **            not to the left of a RIGHT JOIN (or FULL JOIN).
002656  **
002657  **       Without this restriction, accepting pExpr as a single-table
002658  **       constraint might move the the ON/USING filter expression
002659  **       from the left side of a RIGHT JOIN over to the right side,
002660  **       which leads to incorrect answers.  See also restriction (9)
002661  **       on push-down.
002662  */
002663  int sqlite3ExprIsSingleTableConstraint(
002664    Expr *pExpr,                 /* The constraint */
002665    const SrcList *pSrcList,     /* Complete FROM clause */
002666    int iSrc,                    /* Which element of pSrcList to use */
002667    int bAllowSubq               /* Allow non-correlated subqueries */
002668  ){
002669    const SrcItem *pSrc = &pSrcList->a[iSrc];
002670    if( pSrc->fg.jointype & JT_LTORJ ){
002671      return 0;  /* rule (3) */
002672    }
002673    if( pSrc->fg.jointype & JT_LEFT ){
002674      if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
002675      if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
002676    }else{
002677      if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
002678    }
002679    if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)  /* (6a) */
002680     && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0     /* Fast pre-test of (6b) */
002681    ){
002682      int jj;
002683      for(jj=0; jj<iSrc; jj++){
002684        if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){
002685          if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){
002686            return 0;  /* restriction (6) */
002687          }
002688          break;
002689        }
002690      }
002691    }
002692    /* Rules (1), (2a), and (2b) handled by the following: */
002693    return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor, bAllowSubq);
002694  }
002695  
002696  
002697  /*
002698  ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
002699  */
002700  static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
002701    ExprList *pGroupBy = pWalker->u.pGroupBy;
002702    int i;
002703  
002704    /* Check if pExpr is identical to any GROUP BY term. If so, consider
002705    ** it constant.  */
002706    for(i=0; i<pGroupBy->nExpr; i++){
002707      Expr *p = pGroupBy->a[i].pExpr;
002708      if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
002709        CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
002710        if( sqlite3IsBinary(pColl) ){
002711          return WRC_Prune;
002712        }
002713      }
002714    }
002715  
002716    /* Check if pExpr is a sub-select. If so, consider it variable. */
002717    if( ExprUseXSelect(pExpr) ){
002718      pWalker->eCode = 0;
002719      return WRC_Abort;
002720    }
002721  
002722    return exprNodeIsConstant(pWalker, pExpr);
002723  }
002724  
002725  /*
002726  ** Walk the expression tree passed as the first argument. Return non-zero
002727  ** if the expression consists entirely of constants or copies of terms
002728  ** in pGroupBy that sort with the BINARY collation sequence.
002729  **
002730  ** This routine is used to determine if a term of the HAVING clause can
002731  ** be promoted into the WHERE clause.  In order for such a promotion to work,
002732  ** the value of the HAVING clause term must be the same for all members of
002733  ** a "group".  The requirement that the GROUP BY term must be BINARY
002734  ** assumes that no other collating sequence will have a finer-grained
002735  ** grouping than binary.  In other words (A=B COLLATE binary) implies
002736  ** A=B in every other collating sequence.  The requirement that the
002737  ** GROUP BY be BINARY is stricter than necessary.  It would also work
002738  ** to promote HAVING clauses that use the same alternative collating
002739  ** sequence as the GROUP BY term, but that is much harder to check,
002740  ** alternative collating sequences are uncommon, and this is only an
002741  ** optimization, so we take the easy way out and simply require the
002742  ** GROUP BY to use the BINARY collating sequence.
002743  */
002744  int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
002745    Walker w;
002746    w.eCode = 1;
002747    w.xExprCallback = exprNodeIsConstantOrGroupBy;
002748    w.xSelectCallback = 0;
002749    w.u.pGroupBy = pGroupBy;
002750    w.pParse = pParse;
002751    sqlite3WalkExpr(&w, p);
002752    return w.eCode;
002753  }
002754  
002755  /*
002756  ** Walk an expression tree for the DEFAULT field of a column definition
002757  ** in a CREATE TABLE statement.  Return non-zero if the expression is
002758  ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
002759  ** the expression is constant or a function call with constant arguments.
002760  ** Return and 0 if there are any variables.
002761  **
002762  ** isInit is true when parsing from sqlite_schema.  isInit is false when
002763  ** processing a new CREATE TABLE statement.  When isInit is true, parameters
002764  ** (such as ? or $abc) in the expression are converted into NULL.  When
002765  ** isInit is false, parameters raise an error.  Parameters should not be
002766  ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
002767  ** allowed it, so we need to support it when reading sqlite_schema for
002768  ** backwards compatibility.
002769  **
002770  ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
002771  **
002772  ** For the purposes of this function, a double-quoted string (ex: "abc")
002773  ** is considered a variable but a single-quoted string (ex: 'abc') is
002774  ** a constant.
002775  */
002776  int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
002777    assert( isInit==0 || isInit==1 );
002778    return exprIsConst(0, p, 4+isInit);
002779  }
002780  
002781  #ifdef SQLITE_ENABLE_CURSOR_HINTS
002782  /*
002783  ** Walk an expression tree.  Return 1 if the expression contains a
002784  ** subquery of some kind.  Return 0 if there are no subqueries.
002785  */
002786  int sqlite3ExprContainsSubquery(Expr *p){
002787    Walker w;
002788    w.eCode = 1;
002789    w.xExprCallback = sqlite3ExprWalkNoop;
002790    w.xSelectCallback = sqlite3SelectWalkFail;
002791  #ifdef SQLITE_DEBUG
002792    w.xSelectCallback2 = sqlite3SelectWalkAssert2;
002793  #endif
002794    sqlite3WalkExpr(&w, p);
002795    return w.eCode==0;
002796  }
002797  #endif
002798  
002799  /*
002800  ** If the expression p codes a constant integer that is small enough
002801  ** to fit in a 32-bit integer, return 1 and put the value of the integer
002802  ** in *pValue.  If the expression is not an integer or if it is too big
002803  ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
002804  **
002805  ** If the pParse pointer is provided, then allow the expression p to be
002806  ** a parameter (TK_VARIABLE) that is bound to an integer.
002807  ** But if pParse is NULL, then p must be a pure integer literal.
002808  */
002809  int sqlite3ExprIsInteger(const Expr *p, int *pValue, Parse *pParse){
002810    int rc = 0;
002811    if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
002812  
002813    /* If an expression is an integer literal that fits in a signed 32-bit
002814    ** integer, then the EP_IntValue flag will have already been set */
002815    assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
002816             || sqlite3GetInt32(p->u.zToken, &rc)==0 );
002817  
002818    if( p->flags & EP_IntValue ){
002819      *pValue = p->u.iValue;
002820      return 1;
002821    }
002822    switch( p->op ){
002823      case TK_UPLUS: {
002824        rc = sqlite3ExprIsInteger(p->pLeft, pValue, 0);
002825        break;
002826      }
002827      case TK_UMINUS: {
002828        int v = 0;
002829        if( sqlite3ExprIsInteger(p->pLeft, &v, 0) ){
002830          assert( ((unsigned int)v)!=0x80000000 );
002831          *pValue = -v;
002832          rc = 1;
002833        }
002834        break;
002835      }
002836      case TK_VARIABLE: {
002837        sqlite3_value *pVal;
002838        if( pParse==0 ) break;
002839        if( NEVER(pParse->pVdbe==0) ) break;
002840        if( (pParse->db->flags & SQLITE_EnableQPSG)!=0 ) break;
002841        sqlite3VdbeSetVarmask(pParse->pVdbe, p->iColumn);
002842        pVal = sqlite3VdbeGetBoundValue(pParse->pReprepare, p->iColumn,
002843                                        SQLITE_AFF_BLOB);
002844        if( pVal ){
002845          if( sqlite3_value_type(pVal)==SQLITE_INTEGER ){
002846            sqlite3_int64 vv = sqlite3_value_int64(pVal);
002847            if( vv == (vv & 0x7fffffff) ){ /* non-negative numbers only */
002848              *pValue = (int)vv;
002849              rc = 1;
002850            }
002851          }
002852          sqlite3ValueFree(pVal);
002853        }
002854        break;
002855      }
002856      default: break;
002857    }
002858    return rc;
002859  }
002860  
002861  /*
002862  ** Return FALSE if there is no chance that the expression can be NULL.
002863  **
002864  ** If the expression might be NULL or if the expression is too complex
002865  ** to tell return TRUE. 
002866  **
002867  ** This routine is used as an optimization, to skip OP_IsNull opcodes
002868  ** when we know that a value cannot be NULL.  Hence, a false positive
002869  ** (returning TRUE when in fact the expression can never be NULL) might
002870  ** be a small performance hit but is otherwise harmless.  On the other
002871  ** hand, a false negative (returning FALSE when the result could be NULL)
002872  ** will likely result in an incorrect answer.  So when in doubt, return
002873  ** TRUE.
002874  */
002875  int sqlite3ExprCanBeNull(const Expr *p){
002876    u8 op;
002877    assert( p!=0 );
002878    while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
002879      p = p->pLeft;
002880      assert( p!=0 );
002881    }
002882    op = p->op;
002883    if( op==TK_REGISTER ) op = p->op2;
002884    switch( op ){
002885      case TK_INTEGER:
002886      case TK_STRING:
002887      case TK_FLOAT:
002888      case TK_BLOB:
002889        return 0;
002890      case TK_COLUMN:
002891        assert( ExprUseYTab(p) );
002892        return ExprHasProperty(p, EP_CanBeNull)
002893            || NEVER(p->y.pTab==0) /* Reference to column of index on expr */
002894  #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
002895            || (p->iColumn==XN_ROWID && IsView(p->y.pTab))
002896  #endif
002897            || (p->iColumn>=0
002898                && p->y.pTab->aCol!=0 /* Possible due to prior error */
002899                && ALWAYS(p->iColumn<p->y.pTab->nCol)
002900                && p->y.pTab->aCol[p->iColumn].notNull==0);
002901      default:
002902        return 1;
002903    }
002904  }
002905  
002906  /*
002907  ** Return TRUE if the given expression is a constant which would be
002908  ** unchanged by OP_Affinity with the affinity given in the second
002909  ** argument.
002910  **
002911  ** This routine is used to determine if the OP_Affinity operation
002912  ** can be omitted.  When in doubt return FALSE.  A false negative
002913  ** is harmless.  A false positive, however, can result in the wrong
002914  ** answer.
002915  */
002916  int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
002917    u8 op;
002918    int unaryMinus = 0;
002919    if( aff==SQLITE_AFF_BLOB ) return 1;
002920    while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
002921      if( p->op==TK_UMINUS ) unaryMinus = 1;
002922      p = p->pLeft;
002923    }
002924    op = p->op;
002925    if( op==TK_REGISTER ) op = p->op2;
002926    switch( op ){
002927      case TK_INTEGER: {
002928        return aff>=SQLITE_AFF_NUMERIC;
002929      }
002930      case TK_FLOAT: {
002931        return aff>=SQLITE_AFF_NUMERIC;
002932      }
002933      case TK_STRING: {
002934        return !unaryMinus && aff==SQLITE_AFF_TEXT;
002935      }
002936      case TK_BLOB: {
002937        return !unaryMinus;
002938      }
002939      case TK_COLUMN: {
002940        assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
002941        return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
002942      }
002943      default: {
002944        return 0;
002945      }
002946    }
002947  }
002948  
002949  /*
002950  ** Return TRUE if the given string is a row-id column name.
002951  */
002952  int sqlite3IsRowid(const char *z){
002953    if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
002954    if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
002955    if( sqlite3StrICmp(z, "OID")==0 ) return 1;
002956    return 0;
002957  }
002958  
002959  /*
002960  ** Return a pointer to a buffer containing a usable rowid alias for table
002961  ** pTab. An alias is usable if there is not an explicit user-defined column 
002962  ** of the same name.
002963  */
002964  const char *sqlite3RowidAlias(Table *pTab){
002965    const char *azOpt[] = {"_ROWID_", "ROWID", "OID"};
002966    int ii;
002967    assert( VisibleRowid(pTab) );
002968    for(ii=0; ii<ArraySize(azOpt); ii++){
002969      int iCol;
002970      for(iCol=0; iCol<pTab->nCol; iCol++){
002971        if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break;
002972      }
002973      if( iCol==pTab->nCol ){
002974        return azOpt[ii];
002975      }
002976    }
002977    return 0;
002978  }
002979  
002980  /*
002981  ** pX is the RHS of an IN operator.  If pX is a SELECT statement
002982  ** that can be simplified to a direct table access, then return
002983  ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
002984  ** or if the SELECT statement needs to be materialized into a transient
002985  ** table, then return NULL.
002986  */
002987  #ifndef SQLITE_OMIT_SUBQUERY
002988  static Select *isCandidateForInOpt(const Expr *pX){
002989    Select *p;
002990    SrcList *pSrc;
002991    ExprList *pEList;
002992    Table *pTab;
002993    int i;
002994    if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
002995    if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
002996    p = pX->x.pSelect;
002997    if( p->pPrior ) return 0;              /* Not a compound SELECT */
002998    if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
002999      testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
003000      testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
003001      return 0; /* No DISTINCT keyword and no aggregate functions */
003002    }
003003    assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
003004    if( p->pLimit ) return 0;              /* Has no LIMIT clause */
003005    if( p->pWhere ) return 0;              /* Has no WHERE clause */
003006    pSrc = p->pSrc;
003007    assert( pSrc!=0 );
003008    if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
003009    if( pSrc->a[0].fg.isSubquery) return 0;/* FROM is not a subquery or view */
003010    pTab = pSrc->a[0].pSTab;
003011    assert( pTab!=0 );
003012    assert( !IsView(pTab)  );              /* FROM clause is not a view */
003013    if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
003014    pEList = p->pEList;
003015    assert( pEList!=0 );
003016    /* All SELECT results must be columns. */
003017    for(i=0; i<pEList->nExpr; i++){
003018      Expr *pRes = pEList->a[i].pExpr;
003019      if( pRes->op!=TK_COLUMN ) return 0;
003020      assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
003021    }
003022    return p;
003023  }
003024  #endif /* SQLITE_OMIT_SUBQUERY */
003025  
003026  #ifndef SQLITE_OMIT_SUBQUERY
003027  /*
003028  ** Generate code that checks the left-most column of index table iCur to see if
003029  ** it contains any NULL entries.  Cause the register at regHasNull to be set
003030  ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
003031  ** to be set to NULL if iCur contains one or more NULL values.
003032  */
003033  static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
003034    int addr1;
003035    sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
003036    addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
003037    sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
003038    sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
003039    VdbeComment((v, "first_entry_in(%d)", iCur));
003040    sqlite3VdbeJumpHere(v, addr1);
003041  }
003042  #endif
003043  
003044  
003045  #ifndef SQLITE_OMIT_SUBQUERY
003046  /*
003047  ** The argument is an IN operator with a list (not a subquery) on the
003048  ** right-hand side.  Return TRUE if that list is constant.
003049  */
003050  static int sqlite3InRhsIsConstant(Parse *pParse, Expr *pIn){
003051    Expr *pLHS;
003052    int res;
003053    assert( !ExprHasProperty(pIn, EP_xIsSelect) );
003054    pLHS = pIn->pLeft;
003055    pIn->pLeft = 0;
003056    res = sqlite3ExprIsConstant(pParse, pIn);
003057    pIn->pLeft = pLHS;
003058    return res;
003059  }
003060  #endif
003061  
003062  /*
003063  ** This function is used by the implementation of the IN (...) operator.
003064  ** The pX parameter is the expression on the RHS of the IN operator, which
003065  ** might be either a list of expressions or a subquery.
003066  **
003067  ** The job of this routine is to find or create a b-tree object that can
003068  ** be used either to test for membership in the RHS set or to iterate through
003069  ** all members of the RHS set, skipping duplicates.
003070  **
003071  ** A cursor is opened on the b-tree object that is the RHS of the IN operator
003072  ** and the *piTab parameter is set to the index of that cursor.
003073  **
003074  ** The returned value of this function indicates the b-tree type, as follows:
003075  **
003076  **   IN_INDEX_ROWID      - The cursor was opened on a database table.
003077  **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
003078  **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
003079  **   IN_INDEX_EPH        - The cursor was opened on a specially created and
003080  **                         populated ephemeral table.
003081  **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
003082  **                         implemented as a sequence of comparisons.
003083  **
003084  ** An existing b-tree might be used if the RHS expression pX is a simple
003085  ** subquery such as:
003086  **
003087  **     SELECT <column1>, <column2>... FROM <table>
003088  **
003089  ** If the RHS of the IN operator is a list or a more complex subquery, then
003090  ** an ephemeral table might need to be generated from the RHS and then
003091  ** pX->iTable made to point to the ephemeral table instead of an
003092  ** existing table.  In this case, the creation and initialization of the
003093  ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag
003094  ** will be set on pX and the pX->y.sub fields will be set to show where
003095  ** the subroutine is coded.
003096  **
003097  ** The inFlags parameter must contain, at a minimum, one of the bits
003098  ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
003099  ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
003100  ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
003101  ** be used to loop over all values of the RHS of the IN operator.
003102  **
003103  ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
003104  ** through the set members) then the b-tree must not contain duplicates.
003105  ** An ephemeral table will be created unless the selected columns are guaranteed
003106  ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
003107  ** a UNIQUE constraint or index.
003108  **
003109  ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
003110  ** for fast set membership tests) then an ephemeral table must
003111  ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
003112  ** index can be found with the specified <columns> as its left-most.
003113  **
003114  ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
003115  ** if the RHS of the IN operator is a list (not a subquery) then this
003116  ** routine might decide that creating an ephemeral b-tree for membership
003117  ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
003118  ** calling routine should implement the IN operator using a sequence
003119  ** of Eq or Ne comparison operations.
003120  **
003121  ** When the b-tree is being used for membership tests, the calling function
003122  ** might need to know whether or not the RHS side of the IN operator
003123  ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
003124  ** if there is any chance that the (...) might contain a NULL value at
003125  ** runtime, then a register is allocated and the register number written
003126  ** to *prRhsHasNull. If there is no chance that the (...) contains a
003127  ** NULL value, then *prRhsHasNull is left unchanged.
003128  **
003129  ** If a register is allocated and its location stored in *prRhsHasNull, then
003130  ** the value in that register will be NULL if the b-tree contains one or more
003131  ** NULL values, and it will be some non-NULL value if the b-tree contains no
003132  ** NULL values.
003133  **
003134  ** If the aiMap parameter is not NULL, it must point to an array containing
003135  ** one element for each column returned by the SELECT statement on the RHS
003136  ** of the IN(...) operator. The i'th entry of the array is populated with the
003137  ** offset of the index column that matches the i'th column returned by the
003138  ** SELECT. For example, if the expression and selected index are:
003139  **
003140  **   (?,?,?) IN (SELECT a, b, c FROM t1)
003141  **   CREATE INDEX i1 ON t1(b, c, a);
003142  **
003143  ** then aiMap[] is populated with {2, 0, 1}.
003144  */
003145  #ifndef SQLITE_OMIT_SUBQUERY
003146  int sqlite3FindInIndex(
003147    Parse *pParse,             /* Parsing context */
003148    Expr *pX,                  /* The IN expression */
003149    u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
003150    int *prRhsHasNull,         /* Register holding NULL status.  See notes */
003151    int *aiMap,                /* Mapping from Index fields to RHS fields */
003152    int *piTab                 /* OUT: index to use */
003153  ){
003154    Select *p;                            /* SELECT to the right of IN operator */
003155    int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
003156    int iTab;                             /* Cursor of the RHS table */
003157    int mustBeUnique;                     /* True if RHS must be unique */
003158    Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
003159  
003160    assert( pX->op==TK_IN );
003161    mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
003162    iTab = pParse->nTab++;
003163  
003164    /* If the RHS of this IN(...) operator is a SELECT, and if it matters
003165    ** whether or not the SELECT result contains NULL values, check whether
003166    ** or not NULL is actually possible (it may not be, for example, due
003167    ** to NOT NULL constraints in the schema). If no NULL values are possible,
003168    ** set prRhsHasNull to 0 before continuing.  */
003169    if( prRhsHasNull && ExprUseXSelect(pX) ){
003170      int i;
003171      ExprList *pEList = pX->x.pSelect->pEList;
003172      for(i=0; i<pEList->nExpr; i++){
003173        if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
003174      }
003175      if( i==pEList->nExpr ){
003176        prRhsHasNull = 0;
003177      }
003178    }
003179  
003180    /* Check to see if an existing table or index can be used to
003181    ** satisfy the query.  This is preferable to generating a new
003182    ** ephemeral table.  */
003183    if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
003184      sqlite3 *db = pParse->db;              /* Database connection */
003185      Table *pTab;                           /* Table <table>. */
003186      int iDb;                               /* Database idx for pTab */
003187      ExprList *pEList = p->pEList;
003188      int nExpr = pEList->nExpr;
003189  
003190      assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
003191      assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
003192      assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
003193      pTab = p->pSrc->a[0].pSTab;
003194  
003195      /* Code an OP_Transaction and OP_TableLock for <table>. */
003196      iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
003197      assert( iDb>=0 && iDb<SQLITE_MAX_DB );
003198      sqlite3CodeVerifySchema(pParse, iDb);
003199      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
003200  
003201      assert(v);  /* sqlite3GetVdbe() has always been previously called */
003202      if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
003203        /* The "x IN (SELECT rowid FROM table)" case */
003204        int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
003205        VdbeCoverage(v);
003206  
003207        sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
003208        eType = IN_INDEX_ROWID;
003209        ExplainQueryPlan((pParse, 0,
003210              "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
003211        sqlite3VdbeJumpHere(v, iAddr);
003212      }else{
003213        Index *pIdx;                         /* Iterator variable */
003214        int affinity_ok = 1;
003215        int i;
003216  
003217        /* Check that the affinity that will be used to perform each
003218        ** comparison is the same as the affinity of each column in table
003219        ** on the RHS of the IN operator.  If it not, it is not possible to
003220        ** use any index of the RHS table.  */
003221        for(i=0; i<nExpr && affinity_ok; i++){
003222          Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
003223          int iCol = pEList->a[i].pExpr->iColumn;
003224          char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
003225          char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
003226          testcase( cmpaff==SQLITE_AFF_BLOB );
003227          testcase( cmpaff==SQLITE_AFF_TEXT );
003228          switch( cmpaff ){
003229            case SQLITE_AFF_BLOB:
003230              break;
003231            case SQLITE_AFF_TEXT:
003232              /* sqlite3CompareAffinity() only returns TEXT if one side or the
003233              ** other has no affinity and the other side is TEXT.  Hence,
003234              ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
003235              ** and for the term on the LHS of the IN to have no affinity. */
003236              assert( idxaff==SQLITE_AFF_TEXT );
003237              break;
003238            default:
003239              affinity_ok = sqlite3IsNumericAffinity(idxaff);
003240          }
003241        }
003242  
003243        if( affinity_ok ){
003244          /* Search for an existing index that will work for this IN operator */
003245          for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
003246            Bitmask colUsed;      /* Columns of the index used */
003247            Bitmask mCol;         /* Mask for the current column */
003248            if( pIdx->nColumn<nExpr ) continue;
003249            if( pIdx->pPartIdxWhere!=0 ) continue;
003250            /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
003251            ** BITMASK(nExpr) without overflowing */
003252            testcase( pIdx->nColumn==BMS-2 );
003253            testcase( pIdx->nColumn==BMS-1 );
003254            if( pIdx->nColumn>=BMS-1 ) continue;
003255            if( mustBeUnique ){
003256              if( pIdx->nKeyCol>nExpr
003257               ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
003258              ){
003259                continue;  /* This index is not unique over the IN RHS columns */
003260              }
003261            }
003262   
003263            colUsed = 0;   /* Columns of index used so far */
003264            for(i=0; i<nExpr; i++){
003265              Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
003266              Expr *pRhs = pEList->a[i].pExpr;
003267              CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
003268              int j;
003269   
003270              for(j=0; j<nExpr; j++){
003271                if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
003272                assert( pIdx->azColl[j] );
003273                if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
003274                  continue;
003275                }
003276                break;
003277              }
003278              if( j==nExpr ) break;
003279              mCol = MASKBIT(j);
003280              if( mCol & colUsed ) break; /* Each column used only once */
003281              colUsed |= mCol;
003282              if( aiMap ) aiMap[i] = j;
003283            }
003284   
003285            assert( nExpr>0 && nExpr<BMS );
003286            assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
003287            if( colUsed==(MASKBIT(nExpr)-1) ){
003288              /* If we reach this point, that means the index pIdx is usable */
003289              int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003290              ExplainQueryPlan((pParse, 0,
003291                                "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
003292              sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
003293              sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
003294              VdbeComment((v, "%s", pIdx->zName));
003295              assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
003296              eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
003297   
003298              if( prRhsHasNull ){
003299  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
003300                i64 mask = (1<<nExpr)-1;
003301                sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
003302                    iTab, 0, 0, (u8*)&mask, P4_INT64);
003303  #endif
003304                *prRhsHasNull = ++pParse->nMem;
003305                if( nExpr==1 ){
003306                  sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
003307                }
003308              }
003309              sqlite3VdbeJumpHere(v, iAddr);
003310            }
003311          } /* End loop over indexes */
003312        } /* End if( affinity_ok ) */
003313      } /* End if not an rowid index */
003314    } /* End attempt to optimize using an index */
003315  
003316    /* If no preexisting index is available for the IN clause
003317    ** and IN_INDEX_NOOP is an allowed reply
003318    ** and the RHS of the IN operator is a list, not a subquery
003319    ** and the RHS is not constant or has two or fewer terms,
003320    ** then it is not worth creating an ephemeral table to evaluate
003321    ** the IN operator so return IN_INDEX_NOOP.
003322    */
003323    if( eType==0
003324     && (inFlags & IN_INDEX_NOOP_OK)
003325     && ExprUseXList(pX)
003326     && (!sqlite3InRhsIsConstant(pParse,pX) || pX->x.pList->nExpr<=2)
003327    ){
003328      pParse->nTab--;  /* Back out the allocation of the unused cursor */
003329      iTab = -1;       /* Cursor is not allocated */
003330      eType = IN_INDEX_NOOP;
003331    }
003332  
003333    if( eType==0 ){
003334      /* Could not find an existing table or index to use as the RHS b-tree.
003335      ** We will have to generate an ephemeral table to do the job.
003336      */
003337      u32 savedNQueryLoop = pParse->nQueryLoop;
003338      int rMayHaveNull = 0;
003339      eType = IN_INDEX_EPH;
003340      if( inFlags & IN_INDEX_LOOP ){
003341        pParse->nQueryLoop = 0;
003342      }else if( prRhsHasNull ){
003343        *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
003344      }
003345      assert( pX->op==TK_IN );
003346      sqlite3CodeRhsOfIN(pParse, pX, iTab);
003347      if( rMayHaveNull ){
003348        sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
003349      }
003350      pParse->nQueryLoop = savedNQueryLoop;
003351    }
003352  
003353    if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
003354      int i, n;
003355      n = sqlite3ExprVectorSize(pX->pLeft);
003356      for(i=0; i<n; i++) aiMap[i] = i;
003357    }
003358    *piTab = iTab;
003359    return eType;
003360  }
003361  #endif
003362  
003363  #ifndef SQLITE_OMIT_SUBQUERY
003364  /*
003365  ** Argument pExpr is an (?, ?...) IN(...) expression. This
003366  ** function allocates and returns a nul-terminated string containing
003367  ** the affinities to be used for each column of the comparison.
003368  **
003369  ** It is the responsibility of the caller to ensure that the returned
003370  ** string is eventually freed using sqlite3DbFree().
003371  */
003372  static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
003373    Expr *pLeft = pExpr->pLeft;
003374    int nVal = sqlite3ExprVectorSize(pLeft);
003375    Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
003376    char *zRet;
003377  
003378    assert( pExpr->op==TK_IN );
003379    zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
003380    if( zRet ){
003381      int i;
003382      for(i=0; i<nVal; i++){
003383        Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
003384        char a = sqlite3ExprAffinity(pA);
003385        if( pSelect ){
003386          zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
003387        }else{
003388          zRet[i] = a;
003389        }
003390      }
003391      zRet[nVal] = '\0';
003392    }
003393    return zRet;
003394  }
003395  #endif
003396  
003397  #ifndef SQLITE_OMIT_SUBQUERY
003398  /*
003399  ** Load the Parse object passed as the first argument with an error
003400  ** message of the form:
003401  **
003402  **   "sub-select returns N columns - expected M"
003403  */  
003404  void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
003405    if( pParse->nErr==0 ){
003406      const char *zFmt = "sub-select returns %d columns - expected %d";
003407      sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
003408    }
003409  }
003410  #endif
003411  
003412  /*
003413  ** Expression pExpr is a vector that has been used in a context where
003414  ** it is not permitted. If pExpr is a sub-select vector, this routine
003415  ** loads the Parse object with a message of the form:
003416  **
003417  **   "sub-select returns N columns - expected 1"
003418  **
003419  ** Or, if it is a regular scalar vector:
003420  **
003421  **   "row value misused"
003422  */  
003423  void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
003424  #ifndef SQLITE_OMIT_SUBQUERY
003425    if( ExprUseXSelect(pExpr) ){
003426      sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
003427    }else
003428  #endif
003429    {
003430      sqlite3ErrorMsg(pParse, "row value misused");
003431    }
003432  }
003433  
003434  #ifndef SQLITE_OMIT_SUBQUERY
003435  /*
003436  ** Scan all previously generated bytecode looking for an OP_BeginSubrtn
003437  ** that is compatible with pExpr.  If found, add the y.sub values
003438  ** to pExpr and return true.  If not found, return false.
003439  */
003440  static int findCompatibleInRhsSubrtn(
003441    Parse *pParse,          /* Parsing context */
003442    Expr *pExpr,            /* IN operator with RHS that we want to reuse */
003443    SubrtnSig *pNewSig      /* Signature for the IN operator */
003444  ){
003445    VdbeOp *pOp, *pEnd;
003446    SubrtnSig *pSig;
003447    Vdbe *v;
003448  
003449    if( pNewSig==0 ) return 0;
003450    if( (pParse->mSubrtnSig & (1<<(pNewSig->selId&7)))==0 ) return 0;
003451    assert( pExpr->op==TK_IN );
003452    assert( !ExprUseYSub(pExpr) );
003453    assert( ExprUseXSelect(pExpr) );
003454    assert( pExpr->x.pSelect!=0 );
003455    assert( (pExpr->x.pSelect->selFlags & SF_All)==0 );
003456    v = pParse->pVdbe;
003457    assert( v!=0 );
003458    pOp = sqlite3VdbeGetOp(v, 1);
003459    pEnd = sqlite3VdbeGetLastOp(v);
003460    for(; pOp<pEnd; pOp++){
003461      if( pOp->p4type!=P4_SUBRTNSIG ) continue;
003462      assert( pOp->opcode==OP_BeginSubrtn );
003463      pSig = pOp->p4.pSubrtnSig;
003464      assert( pSig!=0 );
003465      if( !pSig->bComplete ) continue;
003466      if( pNewSig->selId!=pSig->selId ) continue;
003467      if( strcmp(pNewSig->zAff,pSig->zAff)!=0 ) continue;
003468      pExpr->y.sub.iAddr = pSig->iAddr;
003469      pExpr->y.sub.regReturn = pSig->regReturn;
003470      pExpr->iTable = pSig->iTable;
003471      ExprSetProperty(pExpr, EP_Subrtn);
003472      return 1;
003473    }
003474    return 0;
003475  }
003476  #endif /* SQLITE_OMIT_SUBQUERY */
003477  
003478  #ifndef SQLITE_OMIT_SUBQUERY
003479  /*
003480  ** Generate code that will construct an ephemeral table containing all terms
003481  ** in the RHS of an IN operator.  The IN operator can be in either of two
003482  ** forms:
003483  **
003484  **     x IN (4,5,11)              -- IN operator with list on right-hand side
003485  **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
003486  **
003487  ** The pExpr parameter is the IN operator.  The cursor number for the
003488  ** constructed ephemeral table is returned.  The first time the ephemeral
003489  ** table is computed, the cursor number is also stored in pExpr->iTable,
003490  ** however the cursor number returned might not be the same, as it might
003491  ** have been duplicated using OP_OpenDup.
003492  **
003493  ** If the LHS expression ("x" in the examples) is a column value, or
003494  ** the SELECT statement returns a column value, then the affinity of that
003495  ** column is used to build the index keys. If both 'x' and the
003496  ** SELECT... statement are columns, then numeric affinity is used
003497  ** if either column has NUMERIC or INTEGER affinity. If neither
003498  ** 'x' nor the SELECT... statement are columns, then numeric affinity
003499  ** is used.
003500  */
003501  void sqlite3CodeRhsOfIN(
003502    Parse *pParse,          /* Parsing context */
003503    Expr *pExpr,            /* The IN operator */
003504    int iTab                /* Use this cursor number */
003505  ){
003506    int addrOnce = 0;           /* Address of the OP_Once instruction at top */
003507    int addr;                   /* Address of OP_OpenEphemeral instruction */
003508    Expr *pLeft;                /* the LHS of the IN operator */
003509    KeyInfo *pKeyInfo = 0;      /* Key information */
003510    int nVal;                   /* Size of vector pLeft */
003511    Vdbe *v;                    /* The prepared statement under construction */
003512    SubrtnSig *pSig = 0;        /* Signature for this subroutine */
003513  
003514    v = pParse->pVdbe;
003515    assert( v!=0 );
003516  
003517    /* The evaluation of the IN must be repeated every time it
003518    ** is encountered if any of the following is true:
003519    **
003520    **    *  The right-hand side is a correlated subquery
003521    **    *  The right-hand side is an expression list containing variables
003522    **    *  We are inside a trigger
003523    **
003524    ** If all of the above are false, then we can compute the RHS just once
003525    ** and reuse it many names.
003526    */
003527    if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
003528      /* Reuse of the RHS is allowed
003529      **
003530      ** Compute a signature for the RHS of the IN operator to facility
003531      ** finding and reusing prior instances of the same IN operator.
003532      */
003533      assert( !ExprUseXSelect(pExpr) || pExpr->x.pSelect!=0 );
003534      if( ExprUseXSelect(pExpr) && (pExpr->x.pSelect->selFlags & SF_All)==0 ){
003535        pSig = sqlite3DbMallocRawNN(pParse->db, sizeof(pSig[0]));
003536        if( pSig ){
003537          pSig->selId = pExpr->x.pSelect->selId;
003538          pSig->zAff = exprINAffinity(pParse, pExpr);
003539        }
003540      }
003541  
003542      /* Check to see if there is a prior materialization of the RHS of
003543      ** this IN operator.  If there is, then make use of that prior
003544      ** materialization rather than recomputing it.
003545      */
003546      if( ExprHasProperty(pExpr, EP_Subrtn) 
003547       || findCompatibleInRhsSubrtn(pParse, pExpr, pSig)
003548      ){
003549        addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003550        if( ExprUseXSelect(pExpr) ){
003551          ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
003552                pExpr->x.pSelect->selId));
003553        }
003554        assert( ExprUseYSub(pExpr) );
003555        sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
003556                          pExpr->y.sub.iAddr);
003557        assert( iTab!=pExpr->iTable );
003558        sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
003559        sqlite3VdbeJumpHere(v, addrOnce);
003560        if( pSig ){
003561          sqlite3DbFree(pParse->db, pSig->zAff);
003562          sqlite3DbFree(pParse->db, pSig);
003563        }
003564        return;
003565      }
003566  
003567      /* Begin coding the subroutine */
003568      assert( !ExprUseYWin(pExpr) );
003569      ExprSetProperty(pExpr, EP_Subrtn);
003570      assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
003571      pExpr->y.sub.regReturn = ++pParse->nMem;
003572      pExpr->y.sub.iAddr =
003573        sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
003574      if( pSig ){
003575        pSig->bComplete = 0;
003576        pSig->iAddr = pExpr->y.sub.iAddr;
003577        pSig->regReturn = pExpr->y.sub.regReturn;
003578        pSig->iTable = iTab;
003579        pParse->mSubrtnSig = 1 << (pSig->selId&7);
003580        sqlite3VdbeChangeP4(v, -1, (const char*)pSig, P4_SUBRTNSIG);
003581      }
003582      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003583    }
003584  
003585    /* Check to see if this is a vector IN operator */
003586    pLeft = pExpr->pLeft;
003587    nVal = sqlite3ExprVectorSize(pLeft);
003588  
003589    /* Construct the ephemeral table that will contain the content of
003590    ** RHS of the IN operator.
003591    */
003592    pExpr->iTable = iTab;
003593    addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
003594  #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
003595    if( ExprUseXSelect(pExpr) ){
003596      VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
003597    }else{
003598      VdbeComment((v, "RHS of IN operator"));
003599    }
003600  #endif
003601    pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
003602  
003603    if( ExprUseXSelect(pExpr) ){
003604      /* Case 1:     expr IN (SELECT ...)
003605      **
003606      ** Generate code to write the results of the select into the temporary
003607      ** table allocated and opened above.
003608      */
003609      Select *pSelect = pExpr->x.pSelect;
003610      ExprList *pEList = pSelect->pEList;
003611  
003612      ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
003613          addrOnce?"":"CORRELATED ", pSelect->selId
003614      ));
003615      /* If the LHS and RHS of the IN operator do not match, that
003616      ** error will have been caught long before we reach this point. */
003617      if( ALWAYS(pEList->nExpr==nVal) ){
003618        Select *pCopy;
003619        SelectDest dest;
003620        int i;
003621        int rc;
003622        int addrBloom = 0;
003623        sqlite3SelectDestInit(&dest, SRT_Set, iTab);
003624        dest.zAffSdst = exprINAffinity(pParse, pExpr);
003625        pSelect->iLimit = 0;
003626        if( addrOnce && OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
003627          int regBloom = ++pParse->nMem;
003628          addrBloom = sqlite3VdbeAddOp2(v, OP_Blob, 10000, regBloom);
003629          VdbeComment((v, "Bloom filter"));
003630          dest.iSDParm2 = regBloom;
003631        }
003632        testcase( pSelect->selFlags & SF_Distinct );
003633        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
003634        pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
003635        rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
003636        sqlite3SelectDelete(pParse->db, pCopy);
003637        sqlite3DbFree(pParse->db, dest.zAffSdst);
003638        if( addrBloom ){
003639          sqlite3VdbeGetOp(v, addrOnce)->p3 = dest.iSDParm2;
003640          if( dest.iSDParm2==0 ){
003641            sqlite3VdbeChangeToNoop(v, addrBloom);
003642          }else{
003643            sqlite3VdbeGetOp(v, addrOnce)->p3 = dest.iSDParm2;
003644          }
003645        }
003646        if( rc ){
003647          sqlite3KeyInfoUnref(pKeyInfo);
003648          return;
003649        }
003650        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
003651        assert( pEList!=0 );
003652        assert( pEList->nExpr>0 );
003653        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
003654        for(i=0; i<nVal; i++){
003655          Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
003656          pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
003657              pParse, p, pEList->a[i].pExpr
003658          );
003659        }
003660      }
003661    }else if( ALWAYS(pExpr->x.pList!=0) ){
003662      /* Case 2:     expr IN (exprlist)
003663      **
003664      ** For each expression, build an index key from the evaluation and
003665      ** store it in the temporary table. If <expr> is a column, then use
003666      ** that columns affinity when building index keys. If <expr> is not
003667      ** a column, use numeric affinity.
003668      */
003669      char affinity;            /* Affinity of the LHS of the IN */
003670      int i;
003671      ExprList *pList = pExpr->x.pList;
003672      struct ExprList_item *pItem;
003673      int r1, r2;
003674      affinity = sqlite3ExprAffinity(pLeft);
003675      if( affinity<=SQLITE_AFF_NONE ){
003676        affinity = SQLITE_AFF_BLOB;
003677      }else if( affinity==SQLITE_AFF_REAL ){
003678        affinity = SQLITE_AFF_NUMERIC;
003679      }
003680      if( pKeyInfo ){
003681        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
003682        pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
003683      }
003684  
003685      /* Loop through each expression in <exprlist>. */
003686      r1 = sqlite3GetTempReg(pParse);
003687      r2 = sqlite3GetTempReg(pParse);
003688      for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
003689        Expr *pE2 = pItem->pExpr;
003690  
003691        /* If the expression is not constant then we will need to
003692        ** disable the test that was generated above that makes sure
003693        ** this code only executes once.  Because for a non-constant
003694        ** expression we need to rerun this code each time.
003695        */
003696        if( addrOnce && !sqlite3ExprIsConstant(pParse, pE2) ){
003697          sqlite3VdbeChangeToNoop(v, addrOnce-1);
003698          sqlite3VdbeChangeToNoop(v, addrOnce);
003699          ExprClearProperty(pExpr, EP_Subrtn);
003700          addrOnce = 0;
003701        }
003702  
003703        /* Evaluate the expression and insert it into the temp table */
003704        sqlite3ExprCode(pParse, pE2, r1);
003705        sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
003706        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
003707      }
003708      sqlite3ReleaseTempReg(pParse, r1);
003709      sqlite3ReleaseTempReg(pParse, r2);
003710    }
003711    if( pSig ) pSig->bComplete = 1;
003712    if( pKeyInfo ){
003713      sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
003714    }
003715    if( addrOnce ){
003716      sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
003717      sqlite3VdbeJumpHere(v, addrOnce);
003718      /* Subroutine return */
003719      assert( ExprUseYSub(pExpr) );
003720      assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
003721              || pParse->nErr );
003722      sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
003723                        pExpr->y.sub.iAddr, 1);
003724      VdbeCoverage(v);
003725      sqlite3ClearTempRegCache(pParse);
003726    }
003727  }
003728  #endif /* SQLITE_OMIT_SUBQUERY */
003729  
003730  /*
003731  ** Generate code for scalar subqueries used as a subquery expression
003732  ** or EXISTS operator:
003733  **
003734  **     (SELECT a FROM b)          -- subquery
003735  **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
003736  **
003737  ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
003738  **
003739  ** Return the register that holds the result.  For a multi-column SELECT,
003740  ** the result is stored in a contiguous array of registers and the
003741  ** return value is the register of the left-most result column.
003742  ** Return 0 if an error occurs.
003743  */
003744  #ifndef SQLITE_OMIT_SUBQUERY
003745  int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
003746    int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
003747    int rReg = 0;               /* Register storing resulting */
003748    Select *pSel;               /* SELECT statement to encode */
003749    SelectDest dest;            /* How to deal with SELECT result */
003750    int nReg;                   /* Registers to allocate */
003751    Expr *pLimit;               /* New limit expression */
003752  #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
003753    int addrExplain;            /* Address of OP_Explain instruction */
003754  #endif
003755  
003756    Vdbe *v = pParse->pVdbe;
003757    assert( v!=0 );
003758    if( pParse->nErr ) return 0;
003759    testcase( pExpr->op==TK_EXISTS );
003760    testcase( pExpr->op==TK_SELECT );
003761    assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
003762    assert( ExprUseXSelect(pExpr) );
003763    pSel = pExpr->x.pSelect;
003764  
003765    /* If this routine has already been coded, then invoke it as a
003766    ** subroutine. */
003767    if( ExprHasProperty(pExpr, EP_Subrtn) ){
003768      ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
003769      assert( ExprUseYSub(pExpr) );
003770      sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
003771                        pExpr->y.sub.iAddr);
003772      return pExpr->iTable;
003773    }
003774  
003775    /* Begin coding the subroutine */
003776    assert( !ExprUseYWin(pExpr) );
003777    assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
003778    ExprSetProperty(pExpr, EP_Subrtn);
003779    pExpr->y.sub.regReturn = ++pParse->nMem;
003780    pExpr->y.sub.iAddr =
003781      sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
003782  
003783    /* The evaluation of the EXISTS/SELECT must be repeated every time it
003784    ** is encountered if any of the following is true:
003785    **
003786    **    *  The right-hand side is a correlated subquery
003787    **    *  The right-hand side is an expression list containing variables
003788    **    *  We are inside a trigger
003789    **
003790    ** If all of the above are false, then we can run this code just once
003791    ** save the results, and reuse the same result on subsequent invocations.
003792    */
003793    if( !ExprHasProperty(pExpr, EP_VarSelect) ){
003794      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003795    }
003796   
003797    /* For a SELECT, generate code to put the values for all columns of
003798    ** the first row into an array of registers and return the index of
003799    ** the first register.
003800    **
003801    ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
003802    ** into a register and return that register number.
003803    **
003804    ** In both cases, the query is augmented with "LIMIT 1".  Any
003805    ** preexisting limit is discarded in place of the new LIMIT 1.
003806    */
003807    ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d",
003808          addrOnce?"":"CORRELATED ", pSel->selId));
003809    sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1);
003810    nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
003811    sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
003812    pParse->nMem += nReg;
003813    if( pExpr->op==TK_SELECT ){
003814      dest.eDest = SRT_Mem;
003815      dest.iSdst = dest.iSDParm;
003816      dest.nSdst = nReg;
003817      sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
003818      VdbeComment((v, "Init subquery result"));
003819    }else{
003820      dest.eDest = SRT_Exists;
003821      sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
003822      VdbeComment((v, "Init EXISTS result"));
003823    }
003824    if( pSel->pLimit ){
003825      /* The subquery already has a limit.  If the pre-existing limit is X
003826      ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
003827      sqlite3 *db = pParse->db;
003828      pLimit = sqlite3Expr(db, TK_INTEGER, "0");
003829      if( pLimit ){
003830        pLimit->affExpr = SQLITE_AFF_NUMERIC;
003831        pLimit = sqlite3PExpr(pParse, TK_NE,
003832                              sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
003833      }
003834      sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
003835      pSel->pLimit->pLeft = pLimit;
003836    }else{
003837      /* If there is no pre-existing limit add a limit of 1 */
003838      pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
003839      pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
003840    }
003841    pSel->iLimit = 0;
003842    if( sqlite3Select(pParse, pSel, &dest) ){
003843      pExpr->op2 = pExpr->op;
003844      pExpr->op = TK_ERROR;
003845      return 0;
003846    }
003847    pExpr->iTable = rReg = dest.iSDParm;
003848    ExprSetVVAProperty(pExpr, EP_NoReduce);
003849    if( addrOnce ){
003850      sqlite3VdbeJumpHere(v, addrOnce);
003851    }
003852    sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
003853  
003854    /* Subroutine return */
003855    assert( ExprUseYSub(pExpr) );
003856    assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
003857            || pParse->nErr );
003858    sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
003859                      pExpr->y.sub.iAddr, 1);
003860    VdbeCoverage(v);
003861    sqlite3ClearTempRegCache(pParse);
003862    return rReg;
003863  }
003864  #endif /* SQLITE_OMIT_SUBQUERY */
003865  
003866  #ifndef SQLITE_OMIT_SUBQUERY
003867  /*
003868  ** Expr pIn is an IN(...) expression. This function checks that the
003869  ** sub-select on the RHS of the IN() operator has the same number of
003870  ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
003871  ** a sub-query, that the LHS is a vector of size 1.
003872  */
003873  int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
003874    int nVector = sqlite3ExprVectorSize(pIn->pLeft);
003875    if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
003876      if( nVector!=pIn->x.pSelect->pEList->nExpr ){
003877        sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
003878        return 1;
003879      }
003880    }else if( nVector!=1 ){
003881      sqlite3VectorErrorMsg(pParse, pIn->pLeft);
003882      return 1;
003883    }
003884    return 0;
003885  }
003886  #endif
003887  
003888  #ifndef SQLITE_OMIT_SUBQUERY
003889  /*
003890  ** Generate code for an IN expression.
003891  **
003892  **      x IN (SELECT ...)
003893  **      x IN (value, value, ...)
003894  **
003895  ** The left-hand side (LHS) is a scalar or vector expression.  The
003896  ** right-hand side (RHS) is an array of zero or more scalar values, or a
003897  ** subquery.  If the RHS is a subquery, the number of result columns must
003898  ** match the number of columns in the vector on the LHS.  If the RHS is
003899  ** a list of values, the LHS must be a scalar.
003900  **
003901  ** The IN operator is true if the LHS value is contained within the RHS.
003902  ** The result is false if the LHS is definitely not in the RHS.  The
003903  ** result is NULL if the presence of the LHS in the RHS cannot be
003904  ** determined due to NULLs.
003905  **
003906  ** This routine generates code that jumps to destIfFalse if the LHS is not
003907  ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
003908  ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
003909  ** within the RHS then fall through.
003910  **
003911  ** See the separate in-operator.md documentation file in the canonical
003912  ** SQLite source tree for additional information.
003913  */
003914  static void sqlite3ExprCodeIN(
003915    Parse *pParse,        /* Parsing and code generating context */
003916    Expr *pExpr,          /* The IN expression */
003917    int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
003918    int destIfNull        /* Jump here if the results are unknown due to NULLs */
003919  ){
003920    int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
003921    int eType;            /* Type of the RHS */
003922    int rLhs;             /* Register(s) holding the LHS values */
003923    int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
003924    Vdbe *v;              /* Statement under construction */
003925    int *aiMap = 0;       /* Map from vector field to index column */
003926    char *zAff = 0;       /* Affinity string for comparisons */
003927    int nVector;          /* Size of vectors for this IN operator */
003928    int iDummy;           /* Dummy parameter to exprCodeVector() */
003929    Expr *pLeft;          /* The LHS of the IN operator */
003930    int i;                /* loop counter */
003931    int destStep2;        /* Where to jump when NULLs seen in step 2 */
003932    int destStep6 = 0;    /* Start of code for Step 6 */
003933    int addrTruthOp;      /* Address of opcode that determines the IN is true */
003934    int destNotNull;      /* Jump here if a comparison is not true in step 6 */
003935    int addrTop;          /* Top of the step-6 loop */
003936    int iTab = 0;         /* Index to use */
003937    u8 okConstFactor = pParse->okConstFactor;
003938  
003939    assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
003940    pLeft = pExpr->pLeft;
003941    if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
003942    zAff = exprINAffinity(pParse, pExpr);
003943    nVector = sqlite3ExprVectorSize(pExpr->pLeft);
003944    aiMap = (int*)sqlite3DbMallocZero(pParse->db, nVector*sizeof(int));
003945    if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
003946  
003947    /* Attempt to compute the RHS. After this step, if anything other than
003948    ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
003949    ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
003950    ** the RHS has not yet been coded.  */
003951    v = pParse->pVdbe;
003952    assert( v!=0 );       /* OOM detected prior to this routine */
003953    VdbeNoopComment((v, "begin IN expr"));
003954    eType = sqlite3FindInIndex(pParse, pExpr,
003955                               IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
003956                               destIfFalse==destIfNull ? 0 : &rRhsHasNull,
003957                               aiMap, &iTab);
003958  
003959    assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
003960         || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
003961    );
003962  #ifdef SQLITE_DEBUG
003963    /* Confirm that aiMap[] contains nVector integer values between 0 and
003964    ** nVector-1. */
003965    for(i=0; i<nVector; i++){
003966      int j, cnt;
003967      for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
003968      assert( cnt==1 );
003969    }
003970  #endif
003971  
003972    /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
003973    ** vector, then it is stored in an array of nVector registers starting
003974    ** at r1.
003975    **
003976    ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
003977    ** so that the fields are in the same order as an existing index.   The
003978    ** aiMap[] array contains a mapping from the original LHS field order to
003979    ** the field order that matches the RHS index.
003980    **
003981    ** Avoid factoring the LHS of the IN(...) expression out of the loop,
003982    ** even if it is constant, as OP_Affinity may be used on the register
003983    ** by code generated below.  */
003984    assert( pParse->okConstFactor==okConstFactor );
003985    pParse->okConstFactor = 0;
003986    rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
003987    pParse->okConstFactor = okConstFactor;
003988    for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
003989    if( i==nVector ){
003990      /* LHS fields are not reordered */
003991      rLhs = rLhsOrig;
003992    }else{
003993      /* Need to reorder the LHS fields according to aiMap */
003994      rLhs = sqlite3GetTempRange(pParse, nVector);
003995      for(i=0; i<nVector; i++){
003996        sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
003997      }
003998    }
003999  
004000    /* If sqlite3FindInIndex() did not find or create an index that is
004001    ** suitable for evaluating the IN operator, then evaluate using a
004002    ** sequence of comparisons.
004003    **
004004    ** This is step (1) in the in-operator.md optimized algorithm.
004005    */
004006    if( eType==IN_INDEX_NOOP ){
004007      ExprList *pList;
004008      CollSeq *pColl;
004009      int labelOk = sqlite3VdbeMakeLabel(pParse);
004010      int r2, regToFree;
004011      int regCkNull = 0;
004012      int ii;
004013      assert( ExprUseXList(pExpr) );
004014      pList = pExpr->x.pList;
004015      pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
004016      if( destIfNull!=destIfFalse ){
004017        regCkNull = sqlite3GetTempReg(pParse);
004018        sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
004019      }
004020      for(ii=0; ii<pList->nExpr; ii++){
004021        r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
004022        if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
004023          sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
004024        }
004025        sqlite3ReleaseTempReg(pParse, regToFree);
004026        if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
004027          int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
004028          sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
004029                            (void*)pColl, P4_COLLSEQ);
004030          VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
004031          VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
004032          VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
004033          VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
004034          sqlite3VdbeChangeP5(v, zAff[0]);
004035        }else{
004036          int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
004037          assert( destIfNull==destIfFalse );
004038          sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
004039                            (void*)pColl, P4_COLLSEQ);
004040          VdbeCoverageIf(v, op==OP_Ne);
004041          VdbeCoverageIf(v, op==OP_IsNull);
004042          sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
004043        }
004044      }
004045      if( regCkNull ){
004046        sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
004047        sqlite3VdbeGoto(v, destIfFalse);
004048      }
004049      sqlite3VdbeResolveLabel(v, labelOk);
004050      sqlite3ReleaseTempReg(pParse, regCkNull);
004051      goto sqlite3ExprCodeIN_finished;
004052    }
004053  
004054    /* Step 2: Check to see if the LHS contains any NULL columns.  If the
004055    ** LHS does contain NULLs then the result must be either FALSE or NULL.
004056    ** We will then skip the binary search of the RHS.
004057    */
004058    if( destIfNull==destIfFalse ){
004059      destStep2 = destIfFalse;
004060    }else{
004061      destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
004062    }
004063    for(i=0; i<nVector; i++){
004064      Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
004065      if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
004066      if( sqlite3ExprCanBeNull(p) ){
004067        sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
004068        VdbeCoverage(v);
004069      }
004070    }
004071  
004072    /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
004073    ** of the RHS using the LHS as a probe.  If found, the result is
004074    ** true.
004075    */
004076    if( eType==IN_INDEX_ROWID ){
004077      /* In this case, the RHS is the ROWID of table b-tree and so we also
004078      ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
004079      ** into a single opcode. */
004080      sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
004081      VdbeCoverage(v);
004082      addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
004083    }else{
004084      sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
004085      if( destIfFalse==destIfNull ){
004086        /* Combine Step 3 and Step 5 into a single opcode */
004087        if( ExprHasProperty(pExpr, EP_Subrtn) ){
004088          const VdbeOp *pOp = sqlite3VdbeGetOp(v, pExpr->y.sub.iAddr);
004089          assert( pOp->opcode==OP_Once || pParse->nErr );
004090          if( pOp->opcode==OP_Once && pOp->p3>0 ){
004091            assert( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) );
004092            sqlite3VdbeAddOp4Int(v, OP_Filter, pOp->p3, destIfFalse,
004093                                 rLhs, nVector); VdbeCoverage(v);
004094          }
004095        }
004096        sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
004097                             rLhs, nVector); VdbeCoverage(v);
004098        goto sqlite3ExprCodeIN_finished;
004099      }
004100      /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
004101      addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
004102                                        rLhs, nVector); VdbeCoverage(v);
004103    }
004104  
004105    /* Step 4.  If the RHS is known to be non-NULL and we did not find
004106    ** an match on the search above, then the result must be FALSE.
004107    */
004108    if( rRhsHasNull && nVector==1 ){
004109      sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
004110      VdbeCoverage(v);
004111    }
004112  
004113    /* Step 5.  If we do not care about the difference between NULL and
004114    ** FALSE, then just return false.
004115    */
004116    if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
004117  
004118    /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
004119    ** If any comparison is NULL, then the result is NULL.  If all
004120    ** comparisons are FALSE then the final result is FALSE.
004121    **
004122    ** For a scalar LHS, it is sufficient to check just the first row
004123    ** of the RHS.
004124    */
004125    if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
004126    addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
004127    VdbeCoverage(v);
004128    if( nVector>1 ){
004129      destNotNull = sqlite3VdbeMakeLabel(pParse);
004130    }else{
004131      /* For nVector==1, combine steps 6 and 7 by immediately returning
004132      ** FALSE if the first comparison is not NULL */
004133      destNotNull = destIfFalse;
004134    }
004135    for(i=0; i<nVector; i++){
004136      Expr *p;
004137      CollSeq *pColl;
004138      int r3 = sqlite3GetTempReg(pParse);
004139      p = sqlite3VectorFieldSubexpr(pLeft, i);
004140      pColl = sqlite3ExprCollSeq(pParse, p);
004141      sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
004142      sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
004143                        (void*)pColl, P4_COLLSEQ);
004144      VdbeCoverage(v);
004145      sqlite3ReleaseTempReg(pParse, r3);
004146    }
004147    sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
004148    if( nVector>1 ){
004149      sqlite3VdbeResolveLabel(v, destNotNull);
004150      sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
004151      VdbeCoverage(v);
004152  
004153      /* Step 7:  If we reach this point, we know that the result must
004154      ** be false. */
004155      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
004156    }
004157  
004158    /* Jumps here in order to return true. */
004159    sqlite3VdbeJumpHere(v, addrTruthOp);
004160  
004161  sqlite3ExprCodeIN_finished:
004162    if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
004163    VdbeComment((v, "end IN expr"));
004164  sqlite3ExprCodeIN_oom_error:
004165    sqlite3DbFree(pParse->db, aiMap);
004166    sqlite3DbFree(pParse->db, zAff);
004167  }
004168  #endif /* SQLITE_OMIT_SUBQUERY */
004169  
004170  #ifndef SQLITE_OMIT_FLOATING_POINT
004171  /*
004172  ** Generate an instruction that will put the floating point
004173  ** value described by z[0..n-1] into register iMem.
004174  **
004175  ** The z[] string will probably not be zero-terminated.  But the
004176  ** z[n] character is guaranteed to be something that does not look
004177  ** like the continuation of the number.
004178  */
004179  static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
004180    if( ALWAYS(z!=0) ){
004181      double value;
004182      sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
004183      assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
004184      if( negateFlag ) value = -value;
004185      sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
004186    }
004187  }
004188  #endif
004189  
004190  
004191  /*
004192  ** Generate an instruction that will put the integer describe by
004193  ** text z[0..n-1] into register iMem.
004194  **
004195  ** Expr.u.zToken is always UTF8 and zero-terminated.
004196  */
004197  static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
004198    Vdbe *v = pParse->pVdbe;
004199    if( pExpr->flags & EP_IntValue ){
004200      int i = pExpr->u.iValue;
004201      assert( i>=0 );
004202      if( negFlag ) i = -i;
004203      sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
004204    }else{
004205      int c;
004206      i64 value;
004207      const char *z = pExpr->u.zToken;
004208      assert( z!=0 );
004209      c = sqlite3DecOrHexToI64(z, &value);
004210      if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
004211  #ifdef SQLITE_OMIT_FLOATING_POINT
004212        sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
004213  #else
004214  #ifndef SQLITE_OMIT_HEX_INTEGER
004215        if( sqlite3_strnicmp(z,"0x",2)==0 ){
004216          sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
004217                          negFlag?"-":"",pExpr);
004218        }else
004219  #endif
004220        {
004221          codeReal(v, z, negFlag, iMem);
004222        }
004223  #endif
004224      }else{
004225        if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
004226        sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
004227      }
004228    }
004229  }
004230  
004231  
004232  /* Generate code that will load into register regOut a value that is
004233  ** appropriate for the iIdxCol-th column of index pIdx.
004234  */
004235  void sqlite3ExprCodeLoadIndexColumn(
004236    Parse *pParse,  /* The parsing context */
004237    Index *pIdx,    /* The index whose column is to be loaded */
004238    int iTabCur,    /* Cursor pointing to a table row */
004239    int iIdxCol,    /* The column of the index to be loaded */
004240    int regOut      /* Store the index column value in this register */
004241  ){
004242    i16 iTabCol = pIdx->aiColumn[iIdxCol];
004243    if( iTabCol==XN_EXPR ){
004244      assert( pIdx->aColExpr );
004245      assert( pIdx->aColExpr->nExpr>iIdxCol );
004246      pParse->iSelfTab = iTabCur + 1;
004247      sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
004248      pParse->iSelfTab = 0;
004249    }else{
004250      sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
004251                                      iTabCol, regOut);
004252    }
004253  }
004254  
004255  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
004256  /*
004257  ** Generate code that will compute the value of generated column pCol
004258  ** and store the result in register regOut
004259  */
004260  void sqlite3ExprCodeGeneratedColumn(
004261    Parse *pParse,     /* Parsing context */
004262    Table *pTab,       /* Table containing the generated column */
004263    Column *pCol,      /* The generated column */
004264    int regOut         /* Put the result in this register */
004265  ){
004266    int iAddr;
004267    Vdbe *v = pParse->pVdbe;
004268    int nErr = pParse->nErr;
004269    assert( v!=0 );
004270    assert( pParse->iSelfTab!=0 );
004271    if( pParse->iSelfTab>0 ){
004272      iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
004273    }else{
004274      iAddr = 0;
004275    }
004276    sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
004277    if( pCol->affinity>=SQLITE_AFF_TEXT ){
004278      sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
004279    }
004280    if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
004281    if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1;
004282  }
004283  #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
004284  
004285  /*
004286  ** Generate code to extract the value of the iCol-th column of a table.
004287  */
004288  void sqlite3ExprCodeGetColumnOfTable(
004289    Vdbe *v,        /* Parsing context */
004290    Table *pTab,    /* The table containing the value */
004291    int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
004292    int iCol,       /* Index of the column to extract */
004293    int regOut      /* Extract the value into this register */
004294  ){
004295    Column *pCol;
004296    assert( v!=0 );
004297    assert( pTab!=0 );
004298    assert( iCol!=XN_EXPR );
004299    if( iCol<0 || iCol==pTab->iPKey ){
004300      sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
004301      VdbeComment((v, "%s.rowid", pTab->zName));
004302    }else{
004303      int op;
004304      int x;
004305      if( IsVirtual(pTab) ){
004306        op = OP_VColumn;
004307        x = iCol;
004308  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
004309      }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
004310        Parse *pParse = sqlite3VdbeParser(v);
004311        if( pCol->colFlags & COLFLAG_BUSY ){
004312          sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
004313                          pCol->zCnName);
004314        }else{
004315          int savedSelfTab = pParse->iSelfTab;
004316          pCol->colFlags |= COLFLAG_BUSY;
004317          pParse->iSelfTab = iTabCur+1;
004318          sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
004319          pParse->iSelfTab = savedSelfTab;
004320          pCol->colFlags &= ~COLFLAG_BUSY;
004321        }
004322        return;
004323  #endif
004324      }else if( !HasRowid(pTab) ){
004325        testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
004326        x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
004327        op = OP_Column;
004328      }else{
004329        x = sqlite3TableColumnToStorage(pTab,iCol);
004330        testcase( x!=iCol );
004331        op = OP_Column;
004332      }
004333      sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
004334      sqlite3ColumnDefault(v, pTab, iCol, regOut);
004335    }
004336  }
004337  
004338  /*
004339  ** Generate code that will extract the iColumn-th column from
004340  ** table pTab and store the column value in register iReg.
004341  **
004342  ** There must be an open cursor to pTab in iTable when this routine
004343  ** is called.  If iColumn<0 then code is generated that extracts the rowid.
004344  */
004345  int sqlite3ExprCodeGetColumn(
004346    Parse *pParse,   /* Parsing and code generating context */
004347    Table *pTab,     /* Description of the table we are reading from */
004348    int iColumn,     /* Index of the table column */
004349    int iTable,      /* The cursor pointing to the table */
004350    int iReg,        /* Store results here */
004351    u8 p5            /* P5 value for OP_Column + FLAGS */
004352  ){
004353    assert( pParse->pVdbe!=0 );
004354    assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 );
004355    assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 );
004356    sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
004357    if( p5 ){
004358      VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
004359      if( pOp->opcode==OP_Column ) pOp->p5 = p5;
004360      if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG);
004361    }
004362    return iReg;
004363  }
004364  
004365  /*
004366  ** Generate code to move content from registers iFrom...iFrom+nReg-1
004367  ** over to iTo..iTo+nReg-1.
004368  */
004369  void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
004370    sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
004371  }
004372  
004373  /*
004374  ** Convert a scalar expression node to a TK_REGISTER referencing
004375  ** register iReg.  The caller must ensure that iReg already contains
004376  ** the correct value for the expression.
004377  */
004378  void sqlite3ExprToRegister(Expr *pExpr, int iReg){
004379    Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
004380    if( NEVER(p==0) ) return;
004381    if( p->op==TK_REGISTER ){
004382      assert( p->iTable==iReg );
004383    }else{
004384      p->op2 = p->op;
004385      p->op = TK_REGISTER;
004386      p->iTable = iReg;
004387      ExprClearProperty(p, EP_Skip);
004388    }
004389  }
004390  
004391  /*
004392  ** Evaluate an expression (either a vector or a scalar expression) and store
004393  ** the result in contiguous temporary registers.  Return the index of
004394  ** the first register used to store the result.
004395  **
004396  ** If the returned result register is a temporary scalar, then also write
004397  ** that register number into *piFreeable.  If the returned result register
004398  ** is not a temporary or if the expression is a vector set *piFreeable
004399  ** to 0.
004400  */
004401  static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
004402    int iResult;
004403    int nResult = sqlite3ExprVectorSize(p);
004404    if( nResult==1 ){
004405      iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
004406    }else{
004407      *piFreeable = 0;
004408      if( p->op==TK_SELECT ){
004409  #if SQLITE_OMIT_SUBQUERY
004410        iResult = 0;
004411  #else
004412        iResult = sqlite3CodeSubselect(pParse, p);
004413  #endif
004414      }else{
004415        int i;
004416        iResult = pParse->nMem+1;
004417        pParse->nMem += nResult;
004418        assert( ExprUseXList(p) );
004419        for(i=0; i<nResult; i++){
004420          sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
004421        }
004422      }
004423    }
004424    return iResult;
004425  }
004426  
004427  /*
004428  ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
004429  ** so that a subsequent copy will not be merged into this one.
004430  */
004431  static void setDoNotMergeFlagOnCopy(Vdbe *v){
004432    if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
004433      sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergeable */
004434    }
004435  }
004436  
004437  /*
004438  ** Generate code to implement special SQL functions that are implemented
004439  ** in-line rather than by using the usual callbacks.
004440  */
004441  static int exprCodeInlineFunction(
004442    Parse *pParse,        /* Parsing context */
004443    ExprList *pFarg,      /* List of function arguments */
004444    int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
004445    int target            /* Store function result in this register */
004446  ){
004447    int nFarg;
004448    Vdbe *v = pParse->pVdbe;
004449    assert( v!=0 );
004450    assert( pFarg!=0 );
004451    nFarg = pFarg->nExpr;
004452    assert( nFarg>0 );  /* All in-line functions have at least one argument */
004453    switch( iFuncId ){
004454      case INLINEFUNC_coalesce: {
004455        /* Attempt a direct implementation of the built-in COALESCE() and
004456        ** IFNULL() functions.  This avoids unnecessary evaluation of
004457        ** arguments past the first non-NULL argument.
004458        */
004459        int endCoalesce = sqlite3VdbeMakeLabel(pParse);
004460        int i;
004461        assert( nFarg>=2 );
004462        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
004463        for(i=1; i<nFarg; i++){
004464          sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
004465          VdbeCoverage(v);
004466          sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
004467        }
004468        setDoNotMergeFlagOnCopy(v);
004469        sqlite3VdbeResolveLabel(v, endCoalesce);
004470        break;
004471      }
004472      case INLINEFUNC_iif: {
004473        Expr caseExpr;
004474        memset(&caseExpr, 0, sizeof(caseExpr));
004475        caseExpr.op = TK_CASE;
004476        caseExpr.x.pList = pFarg;
004477        return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
004478      }
004479  #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
004480      case INLINEFUNC_sqlite_offset: {
004481        Expr *pArg = pFarg->a[0].pExpr;
004482        if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
004483          sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
004484        }else{
004485          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004486        }
004487        break;
004488      }
004489  #endif
004490      default: {  
004491        /* The UNLIKELY() function is a no-op.  The result is the value
004492        ** of the first argument.
004493        */
004494        assert( nFarg==1 || nFarg==2 );
004495        target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
004496        break;
004497      }
004498  
004499    /***********************************************************************
004500    ** Test-only SQL functions that are only usable if enabled
004501    ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
004502    */
004503  #if !defined(SQLITE_UNTESTABLE)
004504      case INLINEFUNC_expr_compare: {
004505        /* Compare two expressions using sqlite3ExprCompare() */
004506        assert( nFarg==2 );
004507        sqlite3VdbeAddOp2(v, OP_Integer,
004508           sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
004509           target);
004510        break;
004511      }
004512  
004513      case INLINEFUNC_expr_implies_expr: {
004514        /* Compare two expressions using sqlite3ExprImpliesExpr() */
004515        assert( nFarg==2 );
004516        sqlite3VdbeAddOp2(v, OP_Integer,
004517           sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
004518           target);
004519        break;
004520      }
004521  
004522      case INLINEFUNC_implies_nonnull_row: {
004523        /* Result of sqlite3ExprImpliesNonNullRow() */
004524        Expr *pA1;
004525        assert( nFarg==2 );
004526        pA1 = pFarg->a[1].pExpr;
004527        if( pA1->op==TK_COLUMN ){
004528          sqlite3VdbeAddOp2(v, OP_Integer,
004529             sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1),
004530             target);
004531        }else{
004532          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004533        }
004534        break;
004535      }
004536  
004537      case INLINEFUNC_affinity: {
004538        /* The AFFINITY() function evaluates to a string that describes
004539        ** the type affinity of the argument.  This is used for testing of
004540        ** the SQLite type logic.
004541        */
004542        const char *azAff[] = { "blob", "text", "numeric", "integer",
004543                                "real", "flexnum" };
004544        char aff;
004545        assert( nFarg==1 );
004546        aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
004547        assert( aff<=SQLITE_AFF_NONE
004548             || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) );
004549        sqlite3VdbeLoadString(v, target,
004550                (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
004551        break;
004552      }
004553  #endif /* !defined(SQLITE_UNTESTABLE) */
004554    }
004555    return target;
004556  }
004557  
004558  /*
004559  ** Expression Node callback for sqlite3ExprCanReturnSubtype().
004560  **
004561  ** Only a function call is able to return a subtype.  So if the node
004562  ** is not a function call, return WRC_Prune immediately.
004563  **
004564  ** A function call is able to return a subtype if it has the
004565  ** SQLITE_RESULT_SUBTYPE property.
004566  **
004567  ** Assume that every function is able to pass-through a subtype from
004568  ** one of its argument (using sqlite3_result_value()).  Most functions
004569  ** are not this way, but we don't have a mechanism to distinguish those
004570  ** that are from those that are not, so assume they all work this way.
004571  ** That means that if one of its arguments is another function and that
004572  ** other function is able to return a subtype, then this function is
004573  ** able to return a subtype.
004574  */
004575  static int exprNodeCanReturnSubtype(Walker *pWalker, Expr *pExpr){
004576    int n;
004577    FuncDef *pDef;
004578    sqlite3 *db;
004579    if( pExpr->op!=TK_FUNCTION ){
004580      return WRC_Prune;
004581    }
004582    assert( ExprUseXList(pExpr) );
004583    db = pWalker->pParse->db;
004584    n = ALWAYS(pExpr->x.pList) ? pExpr->x.pList->nExpr : 0;
004585    pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0);
004586    if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_RESULT_SUBTYPE)!=0 ){
004587      pWalker->eCode = 1;
004588      return WRC_Prune;
004589    }
004590    return WRC_Continue;
004591  }
004592  
004593  /*
004594  ** Return TRUE if expression pExpr is able to return a subtype.
004595  **
004596  ** A TRUE return does not guarantee that a subtype will be returned.
004597  ** It only indicates that a subtype return is possible.  False positives
004598  ** are acceptable as they only disable an optimization.  False negatives,
004599  ** on the other hand, can lead to incorrect answers.
004600  */
004601  static int sqlite3ExprCanReturnSubtype(Parse *pParse, Expr *pExpr){
004602    Walker w;
004603    memset(&w, 0, sizeof(w));
004604    w.pParse = pParse;
004605    w.xExprCallback = exprNodeCanReturnSubtype;
004606    sqlite3WalkExpr(&w, pExpr);
004607    return w.eCode;
004608  }
004609  
004610  
004611  /*
004612  ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
004613  ** If it is, then resolve the expression by reading from the index and
004614  ** return the register into which the value has been read.  If pExpr is
004615  ** not an indexed expression, then return negative.
004616  */
004617  static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
004618    Parse *pParse,   /* The parsing context */
004619    Expr *pExpr,     /* The expression to potentially bypass */
004620    int target       /* Where to store the result of the expression */
004621  ){
004622    IndexedExpr *p;
004623    Vdbe *v;
004624    for(p=pParse->pIdxEpr; p; p=p->pIENext){
004625      u8 exprAff;
004626      int iDataCur = p->iDataCur;
004627      if( iDataCur<0 ) continue;
004628      if( pParse->iSelfTab ){
004629        if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
004630        iDataCur = -1;
004631      }
004632      if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
004633      assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC );
004634      exprAff = sqlite3ExprAffinity(pExpr);
004635      if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB)
004636       || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT)
004637       || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC)
004638      ){
004639        /* Affinity mismatch on a generated column */
004640        continue;
004641      }
004642  
004643  
004644      /* Functions that might set a subtype should not be replaced by the
004645      ** value taken from an expression index if they are themselves an
004646      ** argument to another scalar function or aggregate. 
004647      ** https://sqlite.org/forum/forumpost/68d284c86b082c3e */
004648      if( ExprHasProperty(pExpr, EP_SubtArg)
004649       && sqlite3ExprCanReturnSubtype(pParse, pExpr) 
004650      ){
004651        continue;
004652      }
004653  
004654      v = pParse->pVdbe;
004655      assert( v!=0 );
004656      if( p->bMaybeNullRow ){
004657        /* If the index is on a NULL row due to an outer join, then we
004658        ** cannot extract the value from the index.  The value must be
004659        ** computed using the original expression. */
004660        int addr = sqlite3VdbeCurrentAddr(v);
004661        sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
004662        VdbeCoverage(v);
004663        sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
004664        VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
004665        sqlite3VdbeGoto(v, 0);
004666        p = pParse->pIdxEpr;
004667        pParse->pIdxEpr = 0;
004668        sqlite3ExprCode(pParse, pExpr, target);
004669        pParse->pIdxEpr = p;
004670        sqlite3VdbeJumpHere(v, addr+2);
004671      }else{
004672        sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
004673        VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
004674      }
004675      return target;
004676    }
004677    return -1;  /* Not found */
004678  }
004679  
004680  
004681  /*
004682  ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This
004683  ** function checks the Parse.pIdxPartExpr list to see if this column
004684  ** can be replaced with a constant value. If so, it generates code to
004685  ** put the constant value in a register (ideally, but not necessarily, 
004686  ** register iTarget) and returns the register number.
004687  **
004688  ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is 
004689  ** returned.
004690  */
004691  static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){
004692    IndexedExpr *p;
004693    for(p=pParse->pIdxPartExpr; p; p=p->pIENext){
004694      if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){
004695        Vdbe *v = pParse->pVdbe;
004696        int addr = 0;
004697        int ret;
004698  
004699        if( p->bMaybeNullRow ){
004700          addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur);
004701        }
004702        ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget);
004703        sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0,
004704                          (const char*)&p->aff, 1);
004705        if( addr ){
004706          sqlite3VdbeJumpHere(v, addr);
004707          sqlite3VdbeChangeP3(v, addr, ret);
004708        }
004709        return ret;
004710      }
004711    }
004712    return 0;
004713  }
004714  
004715  
004716  /*
004717  ** Generate code into the current Vdbe to evaluate the given
004718  ** expression.  Attempt to store the results in register "target".
004719  ** Return the register where results are stored.
004720  **
004721  ** With this routine, there is no guarantee that results will
004722  ** be stored in target.  The result might be stored in some other
004723  ** register if it is convenient to do so.  The calling function
004724  ** must check the return code and move the results to the desired
004725  ** register.
004726  */
004727  int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
004728    Vdbe *v = pParse->pVdbe;  /* The VM under construction */
004729    int op;                   /* The opcode being coded */
004730    int inReg = target;       /* Results stored in register inReg */
004731    int regFree1 = 0;         /* If non-zero free this temporary register */
004732    int regFree2 = 0;         /* If non-zero free this temporary register */
004733    int r1, r2;               /* Various register numbers */
004734    Expr tempX;               /* Temporary expression node */
004735    int p5 = 0;
004736  
004737    assert( target>0 && target<=pParse->nMem );
004738    assert( v!=0 );
004739  
004740  expr_code_doover:
004741    if( pExpr==0 ){
004742      op = TK_NULL;
004743    }else if( pParse->pIdxEpr!=0
004744     && !ExprHasProperty(pExpr, EP_Leaf)
004745     && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
004746    ){
004747      return r1;
004748    }else{
004749      assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
004750      op = pExpr->op;
004751    }
004752    assert( op!=TK_ORDER );
004753    switch( op ){
004754      case TK_AGG_COLUMN: {
004755        AggInfo *pAggInfo = pExpr->pAggInfo;
004756        struct AggInfo_col *pCol;
004757        assert( pAggInfo!=0 );
004758        assert( pExpr->iAgg>=0 );
004759        if( pExpr->iAgg>=pAggInfo->nColumn ){
004760          /* Happens when the left table of a RIGHT JOIN is null and
004761          ** is using an expression index */
004762          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004763  #ifdef SQLITE_VDBE_COVERAGE
004764          /* Verify that the OP_Null above is exercised by tests
004765          ** tag-20230325-2 */
004766          sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325);
004767          VdbeCoverageNeverTaken(v);
004768  #endif
004769          break;
004770        }
004771        pCol = &pAggInfo->aCol[pExpr->iAgg];
004772        if( !pAggInfo->directMode ){
004773          return AggInfoColumnReg(pAggInfo, pExpr->iAgg);
004774        }else if( pAggInfo->useSortingIdx ){
004775          Table *pTab = pCol->pTab;
004776          sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
004777                                pCol->iSorterColumn, target);
004778          if( pTab==0 ){
004779            /* No comment added */
004780          }else if( pCol->iColumn<0 ){
004781            VdbeComment((v,"%s.rowid",pTab->zName));
004782          }else{
004783            VdbeComment((v,"%s.%s",
004784                pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
004785            if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
004786              sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
004787            }
004788          }
004789          return target;
004790        }else if( pExpr->y.pTab==0 ){
004791          /* This case happens when the argument to an aggregate function
004792          ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
004793          sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target);
004794          return target;
004795        }
004796        /* Otherwise, fall thru into the TK_COLUMN case */
004797        /* no break */ deliberate_fall_through
004798      }
004799      case TK_COLUMN: {
004800        int iTab = pExpr->iTable;
004801        int iReg;
004802        if( ExprHasProperty(pExpr, EP_FixedCol) ){
004803          /* This COLUMN expression is really a constant due to WHERE clause
004804          ** constraints, and that constant is coded by the pExpr->pLeft
004805          ** expression.  However, make sure the constant has the correct
004806          ** datatype by applying the Affinity of the table column to the
004807          ** constant.
004808          */
004809          int aff;
004810          iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
004811          assert( ExprUseYTab(pExpr) );
004812          assert( pExpr->y.pTab!=0 );
004813          aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
004814          if( aff>SQLITE_AFF_BLOB ){
004815            static const char zAff[] = "B\000C\000D\000E\000F";
004816            assert( SQLITE_AFF_BLOB=='A' );
004817            assert( SQLITE_AFF_TEXT=='B' );
004818            sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
004819                              &zAff[(aff-'B')*2], P4_STATIC);
004820          }
004821          return iReg;
004822        }
004823        if( iTab<0 ){
004824          if( pParse->iSelfTab<0 ){
004825            /* Other columns in the same row for CHECK constraints or
004826            ** generated columns or for inserting into partial index.
004827            ** The row is unpacked into registers beginning at
004828            ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
004829            ** immediately prior to the first column.
004830            */
004831            Column *pCol;
004832            Table *pTab;
004833            int iSrc;
004834            int iCol = pExpr->iColumn;
004835            assert( ExprUseYTab(pExpr) );
004836            pTab = pExpr->y.pTab;
004837            assert( pTab!=0 );
004838            assert( iCol>=XN_ROWID );
004839            assert( iCol<pTab->nCol );
004840            if( iCol<0 ){
004841              return -1-pParse->iSelfTab;
004842            }
004843            pCol = pTab->aCol + iCol;
004844            testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
004845            iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
004846  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
004847            if( pCol->colFlags & COLFLAG_GENERATED ){
004848              if( pCol->colFlags & COLFLAG_BUSY ){
004849                sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
004850                                pCol->zCnName);
004851                return 0;
004852              }
004853              pCol->colFlags |= COLFLAG_BUSY;
004854              if( pCol->colFlags & COLFLAG_NOTAVAIL ){
004855                sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
004856              }
004857              pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
004858              return iSrc;
004859            }else
004860  #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
004861            if( pCol->affinity==SQLITE_AFF_REAL ){
004862              sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
004863              sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
004864              return target;
004865            }else{
004866              return iSrc;
004867            }
004868          }else{
004869            /* Coding an expression that is part of an index where column names
004870            ** in the index refer to the table to which the index belongs */
004871            iTab = pParse->iSelfTab - 1;
004872          }
004873        }
004874        else if( pParse->pIdxPartExpr 
004875         && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target))
004876        ){
004877          return r1;
004878        }
004879        assert( ExprUseYTab(pExpr) );
004880        assert( pExpr->y.pTab!=0 );
004881        iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
004882                                 pExpr->iColumn, iTab, target,
004883                                 pExpr->op2);
004884        return iReg;
004885      }
004886      case TK_INTEGER: {
004887        codeInteger(pParse, pExpr, 0, target);
004888        return target;
004889      }
004890      case TK_TRUEFALSE: {
004891        sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
004892        return target;
004893      }
004894  #ifndef SQLITE_OMIT_FLOATING_POINT
004895      case TK_FLOAT: {
004896        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004897        codeReal(v, pExpr->u.zToken, 0, target);
004898        return target;
004899      }
004900  #endif
004901      case TK_STRING: {
004902        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004903        sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
004904        return target;
004905      }
004906      default: {
004907        /* Make NULL the default case so that if a bug causes an illegal
004908        ** Expr node to be passed into this function, it will be handled
004909        ** sanely and not crash.  But keep the assert() to bring the problem
004910        ** to the attention of the developers. */
004911        assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
004912        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004913        return target;
004914      }
004915  #ifndef SQLITE_OMIT_BLOB_LITERAL
004916      case TK_BLOB: {
004917        int n;
004918        const char *z;
004919        char *zBlob;
004920        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004921        assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
004922        assert( pExpr->u.zToken[1]=='\'' );
004923        z = &pExpr->u.zToken[2];
004924        n = sqlite3Strlen30(z) - 1;
004925        assert( z[n]=='\'' );
004926        zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
004927        sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
004928        return target;
004929      }
004930  #endif
004931      case TK_VARIABLE: {
004932        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004933        assert( pExpr->u.zToken!=0 );
004934        assert( pExpr->u.zToken[0]!=0 );
004935        sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
004936        return target;
004937      }
004938      case TK_REGISTER: {
004939        return pExpr->iTable;
004940      }
004941  #ifndef SQLITE_OMIT_CAST
004942      case TK_CAST: {
004943        /* Expressions of the form:   CAST(pLeft AS token) */
004944        sqlite3ExprCode(pParse, pExpr->pLeft, target);
004945        assert( inReg==target );
004946        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004947        sqlite3VdbeAddOp2(v, OP_Cast, target,
004948                          sqlite3AffinityType(pExpr->u.zToken, 0));
004949        return inReg;
004950      }
004951  #endif /* SQLITE_OMIT_CAST */
004952      case TK_IS:
004953      case TK_ISNOT:
004954        op = (op==TK_IS) ? TK_EQ : TK_NE;
004955        p5 = SQLITE_NULLEQ;
004956        /* fall-through */
004957      case TK_LT:
004958      case TK_LE:
004959      case TK_GT:
004960      case TK_GE:
004961      case TK_NE:
004962      case TK_EQ: {
004963        Expr *pLeft = pExpr->pLeft;
004964        if( sqlite3ExprIsVector(pLeft) ){
004965          codeVectorCompare(pParse, pExpr, target, op, p5);
004966        }else{
004967          r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
004968          r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
004969          sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
004970          codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
004971              sqlite3VdbeCurrentAddr(v)+2, p5,
004972              ExprHasProperty(pExpr,EP_Commuted));
004973          assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
004974          assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
004975          assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
004976          assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
004977          assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
004978          assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
004979          if( p5==SQLITE_NULLEQ ){
004980            sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
004981          }else{
004982            sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
004983          }
004984          testcase( regFree1==0 );
004985          testcase( regFree2==0 );
004986        }
004987        break;
004988      }
004989      case TK_AND:
004990      case TK_OR:
004991      case TK_PLUS:
004992      case TK_STAR:
004993      case TK_MINUS:
004994      case TK_REM:
004995      case TK_BITAND:
004996      case TK_BITOR:
004997      case TK_SLASH:
004998      case TK_LSHIFT:
004999      case TK_RSHIFT:
005000      case TK_CONCAT: {
005001        assert( TK_AND==OP_And );            testcase( op==TK_AND );
005002        assert( TK_OR==OP_Or );              testcase( op==TK_OR );
005003        assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
005004        assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
005005        assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
005006        assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
005007        assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
005008        assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
005009        assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
005010        assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
005011        assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
005012        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005013        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
005014        sqlite3VdbeAddOp3(v, op, r2, r1, target);
005015        testcase( regFree1==0 );
005016        testcase( regFree2==0 );
005017        break;
005018      }
005019      case TK_UMINUS: {
005020        Expr *pLeft = pExpr->pLeft;
005021        assert( pLeft );
005022        if( pLeft->op==TK_INTEGER ){
005023          codeInteger(pParse, pLeft, 1, target);
005024          return target;
005025  #ifndef SQLITE_OMIT_FLOATING_POINT
005026        }else if( pLeft->op==TK_FLOAT ){
005027          assert( !ExprHasProperty(pExpr, EP_IntValue) );
005028          codeReal(v, pLeft->u.zToken, 1, target);
005029          return target;
005030  #endif
005031        }else{
005032          tempX.op = TK_INTEGER;
005033          tempX.flags = EP_IntValue|EP_TokenOnly;
005034          tempX.u.iValue = 0;
005035          ExprClearVVAProperties(&tempX);
005036          r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
005037          r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
005038          sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
005039          testcase( regFree2==0 );
005040        }
005041        break;
005042      }
005043      case TK_BITNOT:
005044      case TK_NOT: {
005045        assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
005046        assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
005047        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005048        testcase( regFree1==0 );
005049        sqlite3VdbeAddOp2(v, op, r1, inReg);
005050        break;
005051      }
005052      case TK_TRUTH: {
005053        int isTrue;    /* IS TRUE or IS NOT TRUE */
005054        int bNormal;   /* IS TRUE or IS FALSE */
005055        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005056        testcase( regFree1==0 );
005057        isTrue = sqlite3ExprTruthValue(pExpr->pRight);
005058        bNormal = pExpr->op2==TK_IS;
005059        testcase( isTrue && bNormal);
005060        testcase( !isTrue && bNormal);
005061        sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
005062        break;
005063      }
005064      case TK_ISNULL:
005065      case TK_NOTNULL: {
005066        int addr;
005067        assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
005068        assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
005069        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
005070        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005071        testcase( regFree1==0 );
005072        addr = sqlite3VdbeAddOp1(v, op, r1);
005073        VdbeCoverageIf(v, op==TK_ISNULL);
005074        VdbeCoverageIf(v, op==TK_NOTNULL);
005075        sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
005076        sqlite3VdbeJumpHere(v, addr);
005077        break;
005078      }
005079      case TK_AGG_FUNCTION: {
005080        AggInfo *pInfo = pExpr->pAggInfo;
005081        if( pInfo==0
005082         || NEVER(pExpr->iAgg<0)
005083         || NEVER(pExpr->iAgg>=pInfo->nFunc)
005084        ){
005085          assert( !ExprHasProperty(pExpr, EP_IntValue) );
005086          sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
005087        }else{
005088          return AggInfoFuncReg(pInfo, pExpr->iAgg);
005089        }
005090        break;
005091      }
005092      case TK_FUNCTION: {
005093        ExprList *pFarg;       /* List of function arguments */
005094        int nFarg;             /* Number of function arguments */
005095        FuncDef *pDef;         /* The function definition object */
005096        const char *zId;       /* The function name */
005097        u32 constMask = 0;     /* Mask of function arguments that are constant */
005098        int i;                 /* Loop counter */
005099        sqlite3 *db = pParse->db;  /* The database connection */
005100        u8 enc = ENC(db);      /* The text encoding used by this database */
005101        CollSeq *pColl = 0;    /* A collating sequence */
005102  
005103  #ifndef SQLITE_OMIT_WINDOWFUNC
005104        if( ExprHasProperty(pExpr, EP_WinFunc) ){
005105          return pExpr->y.pWin->regResult;
005106        }
005107  #endif
005108  
005109        if( ConstFactorOk(pParse)
005110         && sqlite3ExprIsConstantNotJoin(pParse,pExpr)
005111        ){
005112          /* SQL functions can be expensive. So try to avoid running them
005113          ** multiple times if we know they always give the same result */
005114          return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
005115        }
005116        assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
005117        assert( ExprUseXList(pExpr) );
005118        pFarg = pExpr->x.pList;
005119        nFarg = pFarg ? pFarg->nExpr : 0;
005120        assert( !ExprHasProperty(pExpr, EP_IntValue) );
005121        zId = pExpr->u.zToken;
005122        pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
005123  #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
005124        if( pDef==0 && pParse->explain ){
005125          pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
005126        }
005127  #endif
005128        if( pDef==0 || pDef->xFinalize!=0 ){
005129          sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
005130          break;
005131        }
005132        if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){
005133          assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
005134          assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
005135          return exprCodeInlineFunction(pParse, pFarg,
005136               SQLITE_PTR_TO_INT(pDef->pUserData), target);
005137        }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
005138          sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
005139        }
005140  
005141        for(i=0; i<nFarg; i++){
005142          if( i<32 && sqlite3ExprIsConstant(pParse, pFarg->a[i].pExpr) ){
005143            testcase( i==31 );
005144            constMask |= MASKBIT32(i);
005145          }
005146          if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
005147            pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
005148          }
005149        }
005150        if( pFarg ){
005151          if( constMask ){
005152            r1 = pParse->nMem+1;
005153            pParse->nMem += nFarg;
005154          }else{
005155            r1 = sqlite3GetTempRange(pParse, nFarg);
005156          }
005157  
005158          /* For length() and typeof() and octet_length() functions,
005159          ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
005160          ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid
005161          ** unnecessary data loading.
005162          */
005163          if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
005164            u8 exprOp;
005165            assert( nFarg==1 );
005166            assert( pFarg->a[0].pExpr!=0 );
005167            exprOp = pFarg->a[0].pExpr->op;
005168            if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
005169              assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
005170              assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
005171              assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG );
005172              assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG );
005173              testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG );
005174              testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG );
005175              testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG);
005176              pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG;
005177            }
005178          }
005179  
005180          sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR);
005181        }else{
005182          r1 = 0;
005183        }
005184  #ifndef SQLITE_OMIT_VIRTUALTABLE
005185        /* Possibly overload the function if the first argument is
005186        ** a virtual table column.
005187        **
005188        ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
005189        ** second argument, not the first, as the argument to test to
005190        ** see if it is a column in a virtual table.  This is done because
005191        ** the left operand of infix functions (the operand we want to
005192        ** control overloading) ends up as the second argument to the
005193        ** function.  The expression "A glob B" is equivalent to
005194        ** "glob(B,A).  We want to use the A in "A glob B" to test
005195        ** for function overloading.  But we use the B term in "glob(B,A)".
005196        */
005197        if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
005198          pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
005199        }else if( nFarg>0 ){
005200          pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
005201        }
005202  #endif
005203        if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
005204          if( !pColl ) pColl = db->pDfltColl;
005205          sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
005206        }
005207        sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
005208                                   pDef, pExpr->op2);
005209        if( nFarg ){
005210          if( constMask==0 ){
005211            sqlite3ReleaseTempRange(pParse, r1, nFarg);
005212          }else{
005213            sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
005214          }
005215        }
005216        return target;
005217      }
005218  #ifndef SQLITE_OMIT_SUBQUERY
005219      case TK_EXISTS:
005220      case TK_SELECT: {
005221        int nCol;
005222        testcase( op==TK_EXISTS );
005223        testcase( op==TK_SELECT );
005224        if( pParse->db->mallocFailed ){
005225          return 0;
005226        }else if( op==TK_SELECT
005227               && ALWAYS( ExprUseXSelect(pExpr) )
005228               && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
005229        ){
005230          sqlite3SubselectError(pParse, nCol, 1);
005231        }else{
005232          return sqlite3CodeSubselect(pParse, pExpr);
005233        }
005234        break;
005235      }
005236      case TK_SELECT_COLUMN: {
005237        int n;
005238        Expr *pLeft = pExpr->pLeft;
005239        if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
005240          pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
005241          pLeft->op2 = pParse->withinRJSubrtn;
005242        }
005243        assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
005244        n = sqlite3ExprVectorSize(pLeft);
005245        if( pExpr->iTable!=n ){
005246          sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
005247                                  pExpr->iTable, n);
005248        }
005249        return pLeft->iTable + pExpr->iColumn;
005250      }
005251      case TK_IN: {
005252        int destIfFalse = sqlite3VdbeMakeLabel(pParse);
005253        int destIfNull = sqlite3VdbeMakeLabel(pParse);
005254        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
005255        sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
005256        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
005257        sqlite3VdbeResolveLabel(v, destIfFalse);
005258        sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
005259        sqlite3VdbeResolveLabel(v, destIfNull);
005260        return target;
005261      }
005262  #endif /* SQLITE_OMIT_SUBQUERY */
005263  
005264  
005265      /*
005266      **    x BETWEEN y AND z
005267      **
005268      ** This is equivalent to
005269      **
005270      **    x>=y AND x<=z
005271      **
005272      ** X is stored in pExpr->pLeft.
005273      ** Y is stored in pExpr->pList->a[0].pExpr.
005274      ** Z is stored in pExpr->pList->a[1].pExpr.
005275      */
005276      case TK_BETWEEN: {
005277        exprCodeBetween(pParse, pExpr, target, 0, 0);
005278        return target;
005279      }
005280      case TK_COLLATE: {
005281        if( !ExprHasProperty(pExpr, EP_Collate) ){
005282          /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
005283          ** "SOFT-COLLATE" that is added to constraints that are pushed down
005284          ** from outer queries into sub-queries by the WHERE-clause push-down
005285          ** optimization. Clear subtypes as subtypes may not cross a subquery
005286          ** boundary.
005287          */
005288          assert( pExpr->pLeft );
005289          sqlite3ExprCode(pParse, pExpr->pLeft, target);
005290          sqlite3VdbeAddOp1(v, OP_ClrSubtype, target);
005291          return target;
005292        }else{
005293          pExpr = pExpr->pLeft;
005294          goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
005295        }
005296      }
005297      case TK_SPAN:
005298      case TK_UPLUS: {
005299        pExpr = pExpr->pLeft;
005300        goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
005301      }
005302  
005303      case TK_TRIGGER: {
005304        /* If the opcode is TK_TRIGGER, then the expression is a reference
005305        ** to a column in the new.* or old.* pseudo-tables available to
005306        ** trigger programs. In this case Expr.iTable is set to 1 for the
005307        ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
005308        ** is set to the column of the pseudo-table to read, or to -1 to
005309        ** read the rowid field.
005310        **
005311        ** The expression is implemented using an OP_Param opcode. The p1
005312        ** parameter is set to 0 for an old.rowid reference, or to (i+1)
005313        ** to reference another column of the old.* pseudo-table, where
005314        ** i is the index of the column. For a new.rowid reference, p1 is
005315        ** set to (n+1), where n is the number of columns in each pseudo-table.
005316        ** For a reference to any other column in the new.* pseudo-table, p1
005317        ** is set to (n+2+i), where n and i are as defined previously. For
005318        ** example, if the table on which triggers are being fired is
005319        ** declared as:
005320        **
005321        **   CREATE TABLE t1(a, b);
005322        **
005323        ** Then p1 is interpreted as follows:
005324        **
005325        **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
005326        **   p1==1   ->    old.a         p1==4   ->    new.a
005327        **   p1==2   ->    old.b         p1==5   ->    new.b      
005328        */
005329        Table *pTab;
005330        int iCol;
005331        int p1;
005332  
005333        assert( ExprUseYTab(pExpr) );
005334        pTab = pExpr->y.pTab;
005335        iCol = pExpr->iColumn;
005336        p1 = pExpr->iTable * (pTab->nCol+1) + 1
005337                       + sqlite3TableColumnToStorage(pTab, iCol);
005338  
005339        assert( pExpr->iTable==0 || pExpr->iTable==1 );
005340        assert( iCol>=-1 && iCol<pTab->nCol );
005341        assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
005342        assert( p1>=0 && p1<(pTab->nCol*2+2) );
005343  
005344        sqlite3VdbeAddOp2(v, OP_Param, p1, target);
005345        VdbeComment((v, "r[%d]=%s.%s", target,
005346          (pExpr->iTable ? "new" : "old"),
005347          (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
005348        ));
005349  
005350  #ifndef SQLITE_OMIT_FLOATING_POINT
005351        /* If the column has REAL affinity, it may currently be stored as an
005352        ** integer. Use OP_RealAffinity to make sure it is really real.
005353        **
005354        ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
005355        ** floating point when extracting it from the record.  */
005356        if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
005357          sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
005358        }
005359  #endif
005360        break;
005361      }
005362  
005363      case TK_VECTOR: {
005364        sqlite3ErrorMsg(pParse, "row value misused");
005365        break;
005366      }
005367  
005368      /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
005369      ** that derive from the right-hand table of a LEFT JOIN.  The
005370      ** Expr.iTable value is the table number for the right-hand table.
005371      ** The expression is only evaluated if that table is not currently
005372      ** on a LEFT JOIN NULL row.
005373      */
005374      case TK_IF_NULL_ROW: {
005375        int addrINR;
005376        u8 okConstFactor = pParse->okConstFactor;
005377        AggInfo *pAggInfo = pExpr->pAggInfo;
005378        if( pAggInfo ){
005379          assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
005380          if( !pAggInfo->directMode ){
005381            inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg);
005382            break;
005383          }
005384          if( pExpr->pAggInfo->useSortingIdx ){
005385            sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
005386                              pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
005387                              target);
005388            inReg = target;
005389            break;
005390          }
005391        }
005392        addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target);
005393        /* The OP_IfNullRow opcode above can overwrite the result register with
005394        ** NULL.  So we have to ensure that the result register is not a value
005395        ** that is suppose to be a constant.  Two defenses are needed:
005396        **   (1)  Temporarily disable factoring of constant expressions
005397        **   (2)  Make sure the computed value really is stored in register
005398        **        "target" and not someplace else.
005399        */
005400        pParse->okConstFactor = 0;   /* note (1) above */
005401        sqlite3ExprCode(pParse, pExpr->pLeft, target);
005402        assert( target==inReg );
005403        pParse->okConstFactor = okConstFactor;
005404        sqlite3VdbeJumpHere(v, addrINR);
005405        break;
005406      }
005407  
005408      /*
005409      ** Form A:
005410      **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
005411      **
005412      ** Form B:
005413      **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
005414      **
005415      ** Form A is can be transformed into the equivalent form B as follows:
005416      **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
005417      **        WHEN x=eN THEN rN ELSE y END
005418      **
005419      ** X (if it exists) is in pExpr->pLeft.
005420      ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
005421      ** odd.  The Y is also optional.  If the number of elements in x.pList
005422      ** is even, then Y is omitted and the "otherwise" result is NULL.
005423      ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
005424      **
005425      ** The result of the expression is the Ri for the first matching Ei,
005426      ** or if there is no matching Ei, the ELSE term Y, or if there is
005427      ** no ELSE term, NULL.
005428      */
005429      case TK_CASE: {
005430        int endLabel;                     /* GOTO label for end of CASE stmt */
005431        int nextCase;                     /* GOTO label for next WHEN clause */
005432        int nExpr;                        /* 2x number of WHEN terms */
005433        int i;                            /* Loop counter */
005434        ExprList *pEList;                 /* List of WHEN terms */
005435        struct ExprList_item *aListelem;  /* Array of WHEN terms */
005436        Expr opCompare;                   /* The X==Ei expression */
005437        Expr *pX;                         /* The X expression */
005438        Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
005439        Expr *pDel = 0;
005440        sqlite3 *db = pParse->db;
005441  
005442        assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
005443        assert(pExpr->x.pList->nExpr > 0);
005444        pEList = pExpr->x.pList;
005445        aListelem = pEList->a;
005446        nExpr = pEList->nExpr;
005447        endLabel = sqlite3VdbeMakeLabel(pParse);
005448        if( (pX = pExpr->pLeft)!=0 ){
005449          pDel = sqlite3ExprDup(db, pX, 0);
005450          if( db->mallocFailed ){
005451            sqlite3ExprDelete(db, pDel);
005452            break;
005453          }
005454          testcase( pX->op==TK_COLUMN );
005455          sqlite3ExprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
005456          testcase( regFree1==0 );
005457          memset(&opCompare, 0, sizeof(opCompare));
005458          opCompare.op = TK_EQ;
005459          opCompare.pLeft = pDel;
005460          pTest = &opCompare;
005461          /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
005462          ** The value in regFree1 might get SCopy-ed into the file result.
005463          ** So make sure that the regFree1 register is not reused for other
005464          ** purposes and possibly overwritten.  */
005465          regFree1 = 0;
005466        }
005467        for(i=0; i<nExpr-1; i=i+2){
005468          if( pX ){
005469            assert( pTest!=0 );
005470            opCompare.pRight = aListelem[i].pExpr;
005471          }else{
005472            pTest = aListelem[i].pExpr;
005473          }
005474          nextCase = sqlite3VdbeMakeLabel(pParse);
005475          testcase( pTest->op==TK_COLUMN );
005476          sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
005477          testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
005478          sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
005479          sqlite3VdbeGoto(v, endLabel);
005480          sqlite3VdbeResolveLabel(v, nextCase);
005481        }
005482        if( (nExpr&1)!=0 ){
005483          sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
005484        }else{
005485          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
005486        }
005487        sqlite3ExprDelete(db, pDel);
005488        setDoNotMergeFlagOnCopy(v);
005489        sqlite3VdbeResolveLabel(v, endLabel);
005490        break;
005491      }
005492  #ifndef SQLITE_OMIT_TRIGGER
005493      case TK_RAISE: {
005494        assert( pExpr->affExpr==OE_Rollback
005495             || pExpr->affExpr==OE_Abort
005496             || pExpr->affExpr==OE_Fail
005497             || pExpr->affExpr==OE_Ignore
005498        );
005499        if( !pParse->pTriggerTab && !pParse->nested ){
005500          sqlite3ErrorMsg(pParse,
005501                         "RAISE() may only be used within a trigger-program");
005502          return 0;
005503        }
005504        if( pExpr->affExpr==OE_Abort ){
005505          sqlite3MayAbort(pParse);
005506        }
005507        assert( !ExprHasProperty(pExpr, EP_IntValue) );
005508        if( pExpr->affExpr==OE_Ignore ){
005509          sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, OE_Ignore);
005510          VdbeCoverage(v);
005511        }else{
005512          r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005513          sqlite3VdbeAddOp3(v, OP_Halt, 
005514               pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
005515               pExpr->affExpr, r1);
005516        }
005517        break;
005518      }
005519  #endif
005520    }
005521    sqlite3ReleaseTempReg(pParse, regFree1);
005522    sqlite3ReleaseTempReg(pParse, regFree2);
005523    return inReg;
005524  }
005525  
005526  /*
005527  ** Generate code that will evaluate expression pExpr just one time
005528  ** per prepared statement execution.
005529  **
005530  ** If the expression uses functions (that might throw an exception) then
005531  ** guard them with an OP_Once opcode to ensure that the code is only executed
005532  ** once. If no functions are involved, then factor the code out and put it at
005533  ** the end of the prepared statement in the initialization section.
005534  **
005535  ** If regDest>0 then the result is always stored in that register and the
005536  ** result is not reusable.  If regDest<0 then this routine is free to
005537  ** store the value wherever it wants.  The register where the expression
005538  ** is stored is returned.  When regDest<0, two identical expressions might
005539  ** code to the same register, if they do not contain function calls and hence
005540  ** are factored out into the initialization section at the end of the
005541  ** prepared statement.
005542  */
005543  int sqlite3ExprCodeRunJustOnce(
005544    Parse *pParse,    /* Parsing context */
005545    Expr *pExpr,      /* The expression to code when the VDBE initializes */
005546    int regDest       /* Store the value in this register */
005547  ){
005548    ExprList *p;
005549    assert( ConstFactorOk(pParse) );
005550    assert( regDest!=0 );
005551    p = pParse->pConstExpr;
005552    if( regDest<0 && p ){
005553      struct ExprList_item *pItem;
005554      int i;
005555      for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
005556        if( pItem->fg.reusable
005557         && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
005558        ){
005559          return pItem->u.iConstExprReg;
005560        }
005561      }
005562    }
005563    pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
005564    if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
005565      Vdbe *v = pParse->pVdbe;
005566      int addr;
005567      assert( v );
005568      addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
005569      pParse->okConstFactor = 0;
005570      if( !pParse->db->mallocFailed ){
005571        if( regDest<0 ) regDest = ++pParse->nMem;
005572        sqlite3ExprCode(pParse, pExpr, regDest);
005573      }
005574      pParse->okConstFactor = 1;
005575      sqlite3ExprDelete(pParse->db, pExpr);
005576      sqlite3VdbeJumpHere(v, addr);
005577    }else{
005578      p = sqlite3ExprListAppend(pParse, p, pExpr);
005579      if( p ){
005580         struct ExprList_item *pItem = &p->a[p->nExpr-1];
005581         pItem->fg.reusable = regDest<0;
005582         if( regDest<0 ) regDest = ++pParse->nMem;
005583         pItem->u.iConstExprReg = regDest;
005584      }
005585      pParse->pConstExpr = p;
005586    }
005587    return regDest;
005588  }
005589  
005590  /*
005591  ** Generate code to evaluate an expression and store the results
005592  ** into a register.  Return the register number where the results
005593  ** are stored.
005594  **
005595  ** If the register is a temporary register that can be deallocated,
005596  ** then write its number into *pReg.  If the result register is not
005597  ** a temporary, then set *pReg to zero.
005598  **
005599  ** If pExpr is a constant, then this routine might generate this
005600  ** code to fill the register in the initialization section of the
005601  ** VDBE program, in order to factor it out of the evaluation loop.
005602  */
005603  int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
005604    int r2;
005605    pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
005606    if( ConstFactorOk(pParse)
005607     && ALWAYS(pExpr!=0)
005608     && pExpr->op!=TK_REGISTER
005609     && sqlite3ExprIsConstantNotJoin(pParse, pExpr)
005610    ){
005611      *pReg  = 0;
005612      r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
005613    }else{
005614      int r1 = sqlite3GetTempReg(pParse);
005615      r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
005616      if( r2==r1 ){
005617        *pReg = r1;
005618      }else{
005619        sqlite3ReleaseTempReg(pParse, r1);
005620        *pReg = 0;
005621      }
005622    }
005623    return r2;
005624  }
005625  
005626  /*
005627  ** Generate code that will evaluate expression pExpr and store the
005628  ** results in register target.  The results are guaranteed to appear
005629  ** in register target.
005630  */
005631  void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
005632    int inReg;
005633  
005634    assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
005635    assert( target>0 && target<=pParse->nMem );
005636    assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
005637    if( pParse->pVdbe==0 ) return;
005638    inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
005639    if( inReg!=target ){
005640      u8 op;
005641      Expr *pX = sqlite3ExprSkipCollateAndLikely(pExpr);
005642      testcase( pX!=pExpr );
005643      if( ALWAYS(pX)
005644       && (ExprHasProperty(pX,EP_Subquery) || pX->op==TK_REGISTER)
005645      ){
005646        op = OP_Copy;
005647      }else{
005648        op = OP_SCopy;
005649      }
005650      sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
005651    }
005652  }
005653  
005654  /*
005655  ** Make a transient copy of expression pExpr and then code it using
005656  ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
005657  ** except that the input expression is guaranteed to be unchanged.
005658  */
005659  void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
005660    sqlite3 *db = pParse->db;
005661    pExpr = sqlite3ExprDup(db, pExpr, 0);
005662    if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
005663    sqlite3ExprDelete(db, pExpr);
005664  }
005665  
005666  /*
005667  ** Generate code that will evaluate expression pExpr and store the
005668  ** results in register target.  The results are guaranteed to appear
005669  ** in register target.  If the expression is constant, then this routine
005670  ** might choose to code the expression at initialization time.
005671  */
005672  void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
005673    if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pParse,pExpr) ){
005674      sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
005675    }else{
005676      sqlite3ExprCodeCopy(pParse, pExpr, target);
005677    }
005678  }
005679  
005680  /*
005681  ** Generate code that pushes the value of every element of the given
005682  ** expression list into a sequence of registers beginning at target.
005683  **
005684  ** Return the number of elements evaluated.  The number returned will
005685  ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
005686  ** is defined.
005687  **
005688  ** The SQLITE_ECEL_DUP flag prevents the arguments from being
005689  ** filled using OP_SCopy.  OP_Copy must be used instead.
005690  **
005691  ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
005692  ** factored out into initialization code.
005693  **
005694  ** The SQLITE_ECEL_REF flag means that expressions in the list with
005695  ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
005696  ** in registers at srcReg, and so the value can be copied from there.
005697  ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
005698  ** are simply omitted rather than being copied from srcReg.
005699  */
005700  int sqlite3ExprCodeExprList(
005701    Parse *pParse,     /* Parsing context */
005702    ExprList *pList,   /* The expression list to be coded */
005703    int target,        /* Where to write results */
005704    int srcReg,        /* Source registers if SQLITE_ECEL_REF */
005705    u8 flags           /* SQLITE_ECEL_* flags */
005706  ){
005707    struct ExprList_item *pItem;
005708    int i, j, n;
005709    u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
005710    Vdbe *v = pParse->pVdbe;
005711    assert( pList!=0 );
005712    assert( target>0 );
005713    assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
005714    n = pList->nExpr;
005715    if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
005716    for(pItem=pList->a, i=0; i<n; i++, pItem++){
005717      Expr *pExpr = pItem->pExpr;
005718  #ifdef SQLITE_ENABLE_SORTER_REFERENCES
005719      if( pItem->fg.bSorterRef ){
005720        i--;
005721        n--;
005722      }else
005723  #endif
005724      if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
005725        if( flags & SQLITE_ECEL_OMITREF ){
005726          i--;
005727          n--;
005728        }else{
005729          sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
005730        }
005731      }else if( (flags & SQLITE_ECEL_FACTOR)!=0
005732             && sqlite3ExprIsConstantNotJoin(pParse,pExpr)
005733      ){
005734        sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
005735      }else{
005736        int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
005737        if( inReg!=target+i ){
005738          VdbeOp *pOp;
005739          if( copyOp==OP_Copy
005740           && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
005741           && pOp->p1+pOp->p3+1==inReg
005742           && pOp->p2+pOp->p3+1==target+i
005743           && pOp->p5==0  /* The do-not-merge flag must be clear */
005744          ){
005745            pOp->p3++;
005746          }else{
005747            sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
005748          }
005749        }
005750      }
005751    }
005752    return n;
005753  }
005754  
005755  /*
005756  ** Generate code for a BETWEEN operator.
005757  **
005758  **    x BETWEEN y AND z
005759  **
005760  ** The above is equivalent to
005761  **
005762  **    x>=y AND x<=z
005763  **
005764  ** Code it as such, taking care to do the common subexpression
005765  ** elimination of x.
005766  **
005767  ** The xJumpIf parameter determines details:
005768  **
005769  **    NULL:                   Store the boolean result in reg[dest]
005770  **    sqlite3ExprIfTrue:      Jump to dest if true
005771  **    sqlite3ExprIfFalse:     Jump to dest if false
005772  **
005773  ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
005774  */
005775  static void exprCodeBetween(
005776    Parse *pParse,    /* Parsing and code generating context */
005777    Expr *pExpr,      /* The BETWEEN expression */
005778    int dest,         /* Jump destination or storage location */
005779    void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
005780    int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
005781  ){
005782    Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
005783    Expr compLeft;    /* The  x>=y  term */
005784    Expr compRight;   /* The  x<=z  term */
005785    int regFree1 = 0; /* Temporary use register */
005786    Expr *pDel = 0;
005787    sqlite3 *db = pParse->db;
005788  
005789    memset(&compLeft, 0, sizeof(Expr));
005790    memset(&compRight, 0, sizeof(Expr));
005791    memset(&exprAnd, 0, sizeof(Expr));
005792  
005793    assert( ExprUseXList(pExpr) );
005794    pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
005795    if( db->mallocFailed==0 ){
005796      exprAnd.op = TK_AND;
005797      exprAnd.pLeft = &compLeft;
005798      exprAnd.pRight = &compRight;
005799      compLeft.op = TK_GE;
005800      compLeft.pLeft = pDel;
005801      compLeft.pRight = pExpr->x.pList->a[0].pExpr;
005802      compRight.op = TK_LE;
005803      compRight.pLeft = pDel;
005804      compRight.pRight = pExpr->x.pList->a[1].pExpr;
005805      sqlite3ExprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
005806      if( xJump ){
005807        xJump(pParse, &exprAnd, dest, jumpIfNull);
005808      }else{
005809        /* Mark the expression is being from the ON or USING clause of a join
005810        ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
005811        ** it into the Parse.pConstExpr list.  We should use a new bit for this,
005812        ** for clarity, but we are out of bits in the Expr.flags field so we
005813        ** have to reuse the EP_OuterON bit.  Bummer. */
005814        pDel->flags |= EP_OuterON;
005815        sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
005816      }
005817      sqlite3ReleaseTempReg(pParse, regFree1);
005818    }
005819    sqlite3ExprDelete(db, pDel);
005820  
005821    /* Ensure adequate test coverage */
005822    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
005823    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
005824    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
005825    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
005826    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
005827    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
005828    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
005829    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
005830    testcase( xJump==0 );
005831  }
005832  
005833  /*
005834  ** Generate code for a boolean expression such that a jump is made
005835  ** to the label "dest" if the expression is true but execution
005836  ** continues straight thru if the expression is false.
005837  **
005838  ** If the expression evaluates to NULL (neither true nor false), then
005839  ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
005840  **
005841  ** This code depends on the fact that certain token values (ex: TK_EQ)
005842  ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
005843  ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
005844  ** the make process cause these values to align.  Assert()s in the code
005845  ** below verify that the numbers are aligned correctly.
005846  */
005847  void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
005848    Vdbe *v = pParse->pVdbe;
005849    int op = 0;
005850    int regFree1 = 0;
005851    int regFree2 = 0;
005852    int r1, r2;
005853  
005854    assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
005855    if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
005856    if( NEVER(pExpr==0) ) return;  /* No way this can happen */
005857    assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
005858    op = pExpr->op;
005859    switch( op ){
005860      case TK_AND:
005861      case TK_OR: {
005862        Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
005863        if( pAlt!=pExpr ){
005864          sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
005865        }else if( op==TK_AND ){
005866          int d2 = sqlite3VdbeMakeLabel(pParse);
005867          testcase( jumpIfNull==0 );
005868          sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
005869                             jumpIfNull^SQLITE_JUMPIFNULL);
005870          sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
005871          sqlite3VdbeResolveLabel(v, d2);
005872        }else{
005873          testcase( jumpIfNull==0 );
005874          sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
005875          sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
005876        }
005877        break;
005878      }
005879      case TK_NOT: {
005880        testcase( jumpIfNull==0 );
005881        sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
005882        break;
005883      }
005884      case TK_TRUTH: {
005885        int isNot;      /* IS NOT TRUE or IS NOT FALSE */
005886        int isTrue;     /* IS TRUE or IS NOT TRUE */
005887        testcase( jumpIfNull==0 );
005888        isNot = pExpr->op2==TK_ISNOT;
005889        isTrue = sqlite3ExprTruthValue(pExpr->pRight);
005890        testcase( isTrue && isNot );
005891        testcase( !isTrue && isNot );
005892        if( isTrue ^ isNot ){
005893          sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
005894                            isNot ? SQLITE_JUMPIFNULL : 0);
005895        }else{
005896          sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
005897                             isNot ? SQLITE_JUMPIFNULL : 0);
005898        }
005899        break;
005900      }
005901      case TK_IS:
005902      case TK_ISNOT:
005903        testcase( op==TK_IS );
005904        testcase( op==TK_ISNOT );
005905        op = (op==TK_IS) ? TK_EQ : TK_NE;
005906        jumpIfNull = SQLITE_NULLEQ;
005907        /* no break */ deliberate_fall_through
005908      case TK_LT:
005909      case TK_LE:
005910      case TK_GT:
005911      case TK_GE:
005912      case TK_NE:
005913      case TK_EQ: {
005914        if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
005915        testcase( jumpIfNull==0 );
005916        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005917        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
005918        codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
005919                    r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
005920        assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
005921        assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
005922        assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
005923        assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
005924        assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
005925        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
005926        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
005927        assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
005928        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
005929        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
005930        testcase( regFree1==0 );
005931        testcase( regFree2==0 );
005932        break;
005933      }
005934      case TK_ISNULL:
005935      case TK_NOTNULL: {
005936        assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
005937        assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
005938        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005939        sqlite3VdbeTypeofColumn(v, r1);
005940        sqlite3VdbeAddOp2(v, op, r1, dest);
005941        VdbeCoverageIf(v, op==TK_ISNULL);
005942        VdbeCoverageIf(v, op==TK_NOTNULL);
005943        testcase( regFree1==0 );
005944        break;
005945      }
005946      case TK_BETWEEN: {
005947        testcase( jumpIfNull==0 );
005948        exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
005949        break;
005950      }
005951  #ifndef SQLITE_OMIT_SUBQUERY
005952      case TK_IN: {
005953        int destIfFalse = sqlite3VdbeMakeLabel(pParse);
005954        int destIfNull = jumpIfNull ? dest : destIfFalse;
005955        sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
005956        sqlite3VdbeGoto(v, dest);
005957        sqlite3VdbeResolveLabel(v, destIfFalse);
005958        break;
005959      }
005960  #endif
005961      default: {
005962      default_expr:
005963        if( ExprAlwaysTrue(pExpr) ){
005964          sqlite3VdbeGoto(v, dest);
005965        }else if( ExprAlwaysFalse(pExpr) ){
005966          /* No-op */
005967        }else{
005968          r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
005969          sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
005970          VdbeCoverage(v);
005971          testcase( regFree1==0 );
005972          testcase( jumpIfNull==0 );
005973        }
005974        break;
005975      }
005976    }
005977    sqlite3ReleaseTempReg(pParse, regFree1);
005978    sqlite3ReleaseTempReg(pParse, regFree2); 
005979  }
005980  
005981  /*
005982  ** Generate code for a boolean expression such that a jump is made
005983  ** to the label "dest" if the expression is false but execution
005984  ** continues straight thru if the expression is true.
005985  **
005986  ** If the expression evaluates to NULL (neither true nor false) then
005987  ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
005988  ** is 0.
005989  */
005990  void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
005991    Vdbe *v = pParse->pVdbe;
005992    int op = 0;
005993    int regFree1 = 0;
005994    int regFree2 = 0;
005995    int r1, r2;
005996  
005997    assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
005998    if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
005999    if( pExpr==0 )    return;
006000    assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
006001  
006002    /* The value of pExpr->op and op are related as follows:
006003    **
006004    **       pExpr->op            op
006005    **       ---------          ----------
006006    **       TK_ISNULL          OP_NotNull
006007    **       TK_NOTNULL         OP_IsNull
006008    **       TK_NE              OP_Eq
006009    **       TK_EQ              OP_Ne
006010    **       TK_GT              OP_Le
006011    **       TK_LE              OP_Gt
006012    **       TK_GE              OP_Lt
006013    **       TK_LT              OP_Ge
006014    **
006015    ** For other values of pExpr->op, op is undefined and unused.
006016    ** The value of TK_ and OP_ constants are arranged such that we
006017    ** can compute the mapping above using the following expression.
006018    ** Assert()s verify that the computation is correct.
006019    */
006020    op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
006021  
006022    /* Verify correct alignment of TK_ and OP_ constants
006023    */
006024    assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
006025    assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
006026    assert( pExpr->op!=TK_NE || op==OP_Eq );
006027    assert( pExpr->op!=TK_EQ || op==OP_Ne );
006028    assert( pExpr->op!=TK_LT || op==OP_Ge );
006029    assert( pExpr->op!=TK_LE || op==OP_Gt );
006030    assert( pExpr->op!=TK_GT || op==OP_Le );
006031    assert( pExpr->op!=TK_GE || op==OP_Lt );
006032  
006033    switch( pExpr->op ){
006034      case TK_AND:
006035      case TK_OR: {
006036        Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
006037        if( pAlt!=pExpr ){
006038          sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
006039        }else if( pExpr->op==TK_AND ){
006040          testcase( jumpIfNull==0 );
006041          sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
006042          sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
006043        }else{
006044          int d2 = sqlite3VdbeMakeLabel(pParse);
006045          testcase( jumpIfNull==0 );
006046          sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
006047                            jumpIfNull^SQLITE_JUMPIFNULL);
006048          sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
006049          sqlite3VdbeResolveLabel(v, d2);
006050        }
006051        break;
006052      }
006053      case TK_NOT: {
006054        testcase( jumpIfNull==0 );
006055        sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
006056        break;
006057      }
006058      case TK_TRUTH: {
006059        int isNot;   /* IS NOT TRUE or IS NOT FALSE */
006060        int isTrue;  /* IS TRUE or IS NOT TRUE */
006061        testcase( jumpIfNull==0 );
006062        isNot = pExpr->op2==TK_ISNOT;
006063        isTrue = sqlite3ExprTruthValue(pExpr->pRight);
006064        testcase( isTrue && isNot );
006065        testcase( !isTrue && isNot );
006066        if( isTrue ^ isNot ){
006067          /* IS TRUE and IS NOT FALSE */
006068          sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
006069                             isNot ? 0 : SQLITE_JUMPIFNULL);
006070  
006071        }else{
006072          /* IS FALSE and IS NOT TRUE */
006073          sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
006074                            isNot ? 0 : SQLITE_JUMPIFNULL);
006075        }
006076        break;
006077      }
006078      case TK_IS:
006079      case TK_ISNOT:
006080        testcase( pExpr->op==TK_IS );
006081        testcase( pExpr->op==TK_ISNOT );
006082        op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
006083        jumpIfNull = SQLITE_NULLEQ;
006084        /* no break */ deliberate_fall_through
006085      case TK_LT:
006086      case TK_LE:
006087      case TK_GT:
006088      case TK_GE:
006089      case TK_NE:
006090      case TK_EQ: {
006091        if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
006092        testcase( jumpIfNull==0 );
006093        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
006094        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
006095        codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
006096                    r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
006097        assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
006098        assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
006099        assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
006100        assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
006101        assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
006102        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
006103        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
006104        assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
006105        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
006106        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
006107        testcase( regFree1==0 );
006108        testcase( regFree2==0 );
006109        break;
006110      }
006111      case TK_ISNULL:
006112      case TK_NOTNULL: {
006113        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
006114        sqlite3VdbeTypeofColumn(v, r1);
006115        sqlite3VdbeAddOp2(v, op, r1, dest);
006116        testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
006117        testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
006118        testcase( regFree1==0 );
006119        break;
006120      }
006121      case TK_BETWEEN: {
006122        testcase( jumpIfNull==0 );
006123        exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
006124        break;
006125      }
006126  #ifndef SQLITE_OMIT_SUBQUERY
006127      case TK_IN: {
006128        if( jumpIfNull ){
006129          sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
006130        }else{
006131          int destIfNull = sqlite3VdbeMakeLabel(pParse);
006132          sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
006133          sqlite3VdbeResolveLabel(v, destIfNull);
006134        }
006135        break;
006136      }
006137  #endif
006138      default: {
006139      default_expr:
006140        if( ExprAlwaysFalse(pExpr) ){
006141          sqlite3VdbeGoto(v, dest);
006142        }else if( ExprAlwaysTrue(pExpr) ){
006143          /* no-op */
006144        }else{
006145          r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
006146          sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
006147          VdbeCoverage(v);
006148          testcase( regFree1==0 );
006149          testcase( jumpIfNull==0 );
006150        }
006151        break;
006152      }
006153    }
006154    sqlite3ReleaseTempReg(pParse, regFree1);
006155    sqlite3ReleaseTempReg(pParse, regFree2);
006156  }
006157  
006158  /*
006159  ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
006160  ** code generation, and that copy is deleted after code generation. This
006161  ** ensures that the original pExpr is unchanged.
006162  */
006163  void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
006164    sqlite3 *db = pParse->db;
006165    Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
006166    if( db->mallocFailed==0 ){
006167      sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
006168    }
006169    sqlite3ExprDelete(db, pCopy);
006170  }
006171  
006172  /*
006173  ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
006174  ** type of expression.
006175  **
006176  ** If pExpr is a simple SQL value - an integer, real, string, blob
006177  ** or NULL value - then the VDBE currently being prepared is configured
006178  ** to re-prepare each time a new value is bound to variable pVar.
006179  **
006180  ** Additionally, if pExpr is a simple SQL value and the value is the
006181  ** same as that currently bound to variable pVar, non-zero is returned.
006182  ** Otherwise, if the values are not the same or if pExpr is not a simple
006183  ** SQL value, zero is returned.
006184  **
006185  ** If the SQLITE_EnableQPSG flag is set on the database connection, then
006186  ** this routine always returns false.
006187  */
006188  static SQLITE_NOINLINE int exprCompareVariable(
006189    const Parse *pParse,
006190    const Expr *pVar,
006191    const Expr *pExpr
006192  ){
006193    int res = 2;
006194    int iVar;
006195    sqlite3_value *pL, *pR = 0;
006196   
006197    if( pExpr->op==TK_VARIABLE && pVar->iColumn==pExpr->iColumn ){
006198      return 0;
006199    }
006200    if( (pParse->db->flags & SQLITE_EnableQPSG)!=0 ) return 2;
006201    sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
006202    if( pR ){
006203      iVar = pVar->iColumn;
006204      sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
006205      pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
006206      if( pL ){
006207        if( sqlite3_value_type(pL)==SQLITE_TEXT ){
006208          sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
006209        }
006210        res = sqlite3MemCompare(pL, pR, 0) ? 2 : 0;
006211      }
006212      sqlite3ValueFree(pR);
006213      sqlite3ValueFree(pL);
006214    }
006215    return res;
006216  }
006217  
006218  /*
006219  ** Do a deep comparison of two expression trees.  Return 0 if the two
006220  ** expressions are completely identical.  Return 1 if they differ only
006221  ** by a COLLATE operator at the top level.  Return 2 if there are differences
006222  ** other than the top-level COLLATE operator.
006223  **
006224  ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
006225  ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
006226  **
006227  ** The pA side might be using TK_REGISTER.  If that is the case and pB is
006228  ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
006229  **
006230  ** Sometimes this routine will return 2 even if the two expressions
006231  ** really are equivalent.  If we cannot prove that the expressions are
006232  ** identical, we return 2 just to be safe.  So if this routine
006233  ** returns 2, then you do not really know for certain if the two
006234  ** expressions are the same.  But if you get a 0 or 1 return, then you
006235  ** can be sure the expressions are the same.  In the places where
006236  ** this routine is used, it does not hurt to get an extra 2 - that
006237  ** just might result in some slightly slower code.  But returning
006238  ** an incorrect 0 or 1 could lead to a malfunction.
006239  **
006240  ** If pParse is not NULL and SQLITE_EnableQPSG is off then TK_VARIABLE
006241  ** terms in pA with bindings in pParse->pReprepare can be matched against
006242  ** literals in pB.  The pParse->pVdbe->expmask bitmask is updated for
006243  ** each variable referenced.
006244  */
006245  int sqlite3ExprCompare(
006246    const Parse *pParse,
006247    const Expr *pA,
006248    const Expr *pB,
006249    int iTab
006250  ){
006251    u32 combinedFlags;
006252    if( pA==0 || pB==0 ){
006253      return pB==pA ? 0 : 2;
006254    }
006255    if( pParse && pA->op==TK_VARIABLE ){
006256      return exprCompareVariable(pParse, pA, pB);
006257    }
006258    combinedFlags = pA->flags | pB->flags;
006259    if( combinedFlags & EP_IntValue ){
006260      if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
006261        return 0;
006262      }
006263      return 2;
006264    }
006265    if( pA->op!=pB->op || pA->op==TK_RAISE ){
006266      if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
006267        return 1;
006268      }
006269      if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
006270        return 1;
006271      }
006272      if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
006273       && pB->iTable<0 && pA->iTable==iTab
006274      ){
006275        /* fall through */
006276      }else{
006277        return 2;
006278      }
006279    }
006280    assert( !ExprHasProperty(pA, EP_IntValue) );
006281    assert( !ExprHasProperty(pB, EP_IntValue) );
006282    if( pA->u.zToken ){
006283      if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
006284        if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
006285  #ifndef SQLITE_OMIT_WINDOWFUNC
006286        assert( pA->op==pB->op );
006287        if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
006288          return 2;
006289        }
006290        if( ExprHasProperty(pA,EP_WinFunc) ){
006291          if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
006292            return 2;
006293          }
006294        }
006295  #endif
006296      }else if( pA->op==TK_NULL ){
006297        return 0;
006298      }else if( pA->op==TK_COLLATE ){
006299        if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
006300      }else
006301      if( pB->u.zToken!=0
006302       && pA->op!=TK_COLUMN
006303       && pA->op!=TK_AGG_COLUMN
006304       && strcmp(pA->u.zToken,pB->u.zToken)!=0
006305      ){
006306        return 2;
006307      }
006308    }
006309    if( (pA->flags & (EP_Distinct|EP_Commuted))
006310       != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
006311    if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
006312      if( combinedFlags & EP_xIsSelect ) return 2;
006313      if( (combinedFlags & EP_FixedCol)==0
006314       && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
006315      if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
006316      if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
006317      if( pA->op!=TK_STRING
006318       && pA->op!=TK_TRUEFALSE
006319       && ALWAYS((combinedFlags & EP_Reduced)==0)
006320      ){
006321        if( pA->iColumn!=pB->iColumn ) return 2;
006322        if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
006323        if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
006324          return 2;
006325        }
006326      }
006327    }
006328    return 0;
006329  }
006330  
006331  /*
006332  ** Compare two ExprList objects.  Return 0 if they are identical, 1
006333  ** if they are certainly different, or 2 if it is not possible to
006334  ** determine if they are identical or not.
006335  **
006336  ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
006337  ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
006338  **
006339  ** This routine might return non-zero for equivalent ExprLists.  The
006340  ** only consequence will be disabled optimizations.  But this routine
006341  ** must never return 0 if the two ExprList objects are different, or
006342  ** a malfunction will result.
006343  **
006344  ** Two NULL pointers are considered to be the same.  But a NULL pointer
006345  ** always differs from a non-NULL pointer.
006346  */
006347  int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
006348    int i;
006349    if( pA==0 && pB==0 ) return 0;
006350    if( pA==0 || pB==0 ) return 1;
006351    if( pA->nExpr!=pB->nExpr ) return 1;
006352    for(i=0; i<pA->nExpr; i++){
006353      int res;
006354      Expr *pExprA = pA->a[i].pExpr;
006355      Expr *pExprB = pB->a[i].pExpr;
006356      if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
006357      if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
006358    }
006359    return 0;
006360  }
006361  
006362  /*
006363  ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
006364  ** are ignored.
006365  */
006366  int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
006367    return sqlite3ExprCompare(0,
006368               sqlite3ExprSkipCollate(pA),
006369               sqlite3ExprSkipCollate(pB),
006370               iTab);
006371  }
006372  
006373  /*
006374  ** Return non-zero if Expr p can only be true if pNN is not NULL.
006375  **
006376  ** Or if seenNot is true, return non-zero if Expr p can only be
006377  ** non-NULL if pNN is not NULL
006378  */
006379  static int exprImpliesNotNull(
006380    const Parse *pParse,/* Parsing context */
006381    const Expr *p,      /* The expression to be checked */
006382    const Expr *pNN,    /* The expression that is NOT NULL */
006383    int iTab,           /* Table being evaluated */
006384    int seenNot         /* Return true only if p can be any non-NULL value */
006385  ){
006386    assert( p );
006387    assert( pNN );
006388    if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
006389      return pNN->op!=TK_NULL;
006390    }
006391    switch( p->op ){
006392      case TK_IN: {
006393        if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
006394        assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
006395        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006396      }
006397      case TK_BETWEEN: {
006398        ExprList *pList;
006399        assert( ExprUseXList(p) );
006400        pList = p->x.pList;
006401        assert( pList!=0 );
006402        assert( pList->nExpr==2 );
006403        if( seenNot ) return 0;
006404        if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
006405         || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
006406        ){
006407          return 1;
006408        }
006409        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006410      }
006411      case TK_EQ:
006412      case TK_NE:
006413      case TK_LT:
006414      case TK_LE:
006415      case TK_GT:
006416      case TK_GE:
006417      case TK_PLUS:
006418      case TK_MINUS:
006419      case TK_BITOR:
006420      case TK_LSHIFT:
006421      case TK_RSHIFT:
006422      case TK_CONCAT:
006423        seenNot = 1;
006424        /* no break */ deliberate_fall_through
006425      case TK_STAR:
006426      case TK_REM:
006427      case TK_BITAND:
006428      case TK_SLASH: {
006429        if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
006430        /* no break */ deliberate_fall_through
006431      }
006432      case TK_SPAN:
006433      case TK_COLLATE:
006434      case TK_UPLUS:
006435      case TK_UMINUS: {
006436        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
006437      }
006438      case TK_TRUTH: {
006439        if( seenNot ) return 0;
006440        if( p->op2!=TK_IS ) return 0;
006441        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006442      }
006443      case TK_BITNOT:
006444      case TK_NOT: {
006445        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006446      }
006447    }
006448    return 0;
006449  }
006450  
006451  /*
006452  ** Return true if the boolean value of the expression is always either
006453  ** FALSE or NULL.
006454  */
006455  static int sqlite3ExprIsNotTrue(Expr *pExpr){
006456    int v;
006457    if( pExpr->op==TK_NULL ) return 1;
006458    if( pExpr->op==TK_TRUEFALSE && sqlite3ExprTruthValue(pExpr)==0 ) return 1;
006459    v = 1;
006460    if( sqlite3ExprIsInteger(pExpr, &v, 0) && v==0 ) return 1;
006461    return 0;
006462  }
006463  
006464  /*
006465  ** Return true if the expression is one of the following:
006466  **
006467  **    CASE WHEN x THEN y END
006468  **    CASE WHEN x THEN y ELSE NULL END
006469  **    CASE WHEN x THEN y ELSE false END
006470  **    iif(x,y)
006471  **    iif(x,y,NULL)
006472  **    iif(x,y,false)
006473  */
006474  static int sqlite3ExprIsIIF(sqlite3 *db, const Expr *pExpr){
006475    ExprList *pList;
006476    if( pExpr->op==TK_FUNCTION ){
006477      const char *z = pExpr->u.zToken;
006478      FuncDef *pDef;
006479      if( (z[0]!='i' && z[0]!='I') ) return 0;
006480      if( pExpr->x.pList==0 ) return 0;
006481      pDef = sqlite3FindFunction(db, z, pExpr->x.pList->nExpr, ENC(db), 0);
006482  #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
006483      if( pDef==0 ) return 0;
006484  #else
006485      if( NEVER(pDef==0) ) return 0;
006486  #endif
006487      if( (pDef->funcFlags & SQLITE_FUNC_INLINE)==0 ) return 0;
006488      if( SQLITE_PTR_TO_INT(pDef->pUserData)!=INLINEFUNC_iif ) return 0;
006489    }else if( pExpr->op==TK_CASE ){
006490      if( pExpr->pLeft!=0 ) return 0;
006491    }else{
006492      return 0;
006493    }
006494    pList = pExpr->x.pList;
006495    assert( pList!=0 );
006496    if( pList->nExpr==2 ) return 1;
006497    if( pList->nExpr==3 && sqlite3ExprIsNotTrue(pList->a[2].pExpr) ) return 1;
006498    return 0;
006499  }
006500  
006501  /*
006502  ** Return true if we can prove the pE2 will always be true if pE1 is
006503  ** true.  Return false if we cannot complete the proof or if pE2 might
006504  ** be false.  Examples:
006505  **
006506  **     pE1: x==5        pE2: x==5             Result: true
006507  **     pE1: x>0         pE2: x==5             Result: false
006508  **     pE1: x=21        pE2: x=21 OR y=43     Result: true
006509  **     pE1: x!=123      pE2: x IS NOT NULL    Result: true
006510  **     pE1: x!=?1       pE2: x IS NOT NULL    Result: true
006511  **     pE1: x IS NULL   pE2: x IS NOT NULL    Result: false
006512  **     pE1: x IS ?2     pE2: x IS NOT NULL    Result: false
006513  **     pE1: iif(x,y)    pE2: x                Result: true
006514  **     PE1: iif(x,y,0)  pE2: x                Result: true
006515  **
006516  ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
006517  ** Expr.iTable<0 then assume a table number given by iTab.
006518  **
006519  ** If pParse is not NULL, then the values of bound variables in pE1 are
006520  ** compared against literal values in pE2 and pParse->pVdbe->expmask is
006521  ** modified to record which bound variables are referenced.  If pParse
006522  ** is NULL, then false will be returned if pE1 contains any bound variables.
006523  **
006524  ** When in doubt, return false.  Returning true might give a performance
006525  ** improvement.  Returning false might cause a performance reduction, but
006526  ** it will always give the correct answer and is hence always safe.
006527  */
006528  int sqlite3ExprImpliesExpr(
006529    const Parse *pParse,
006530    const Expr *pE1,
006531    const Expr *pE2,
006532    int iTab
006533  ){
006534    if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
006535      return 1;
006536    }
006537    if( pE2->op==TK_OR
006538     && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
006539               || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
006540    ){
006541      return 1;
006542    }
006543    if( pE2->op==TK_NOTNULL
006544     && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
006545    ){
006546      return 1;
006547    }
006548    if( sqlite3ExprIsIIF(pParse->db, pE1) ){
006549      return sqlite3ExprImpliesExpr(pParse,pE1->x.pList->a[0].pExpr,pE2,iTab);
006550    }
006551    return 0;
006552  }
006553  
006554  /* This is a helper function to impliesNotNullRow().  In this routine,
006555  ** set pWalker->eCode to one only if *both* of the input expressions
006556  ** separately have the implies-not-null-row property.
006557  */
006558  static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){
006559    if( pWalker->eCode==0 ){
006560      sqlite3WalkExpr(pWalker, pE1);
006561      if( pWalker->eCode ){
006562        pWalker->eCode = 0;
006563        sqlite3WalkExpr(pWalker, pE2);
006564      }
006565    }
006566  }
006567  
006568  /*
006569  ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
006570  ** If the expression node requires that the table at pWalker->iCur
006571  ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
006572  **
006573  ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on
006574  ** behalf of a RIGHT JOIN (or FULL JOIN).  That makes a difference when
006575  ** evaluating terms in the ON clause of an inner join.
006576  **
006577  ** This routine controls an optimization.  False positives (setting
006578  ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
006579  ** (never setting pWalker->eCode) is a harmless missed optimization.
006580  */
006581  static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
006582    testcase( pExpr->op==TK_AGG_COLUMN );
006583    testcase( pExpr->op==TK_AGG_FUNCTION );
006584    if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
006585    if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){
006586      /* If iCur is used in an inner-join ON clause to the left of a
006587      ** RIGHT JOIN, that does *not* mean that the table must be non-null.
006588      ** But it is difficult to check for that condition precisely.
006589      ** To keep things simple, any use of iCur from any inner-join is
006590      ** ignored while attempting to simplify a RIGHT JOIN. */
006591      return WRC_Prune;
006592    }
006593    switch( pExpr->op ){
006594      case TK_ISNOT:
006595      case TK_ISNULL:
006596      case TK_NOTNULL:
006597      case TK_IS:
006598      case TK_VECTOR:
006599      case TK_FUNCTION:
006600      case TK_TRUTH:
006601      case TK_CASE:
006602        testcase( pExpr->op==TK_ISNOT );
006603        testcase( pExpr->op==TK_ISNULL );
006604        testcase( pExpr->op==TK_NOTNULL );
006605        testcase( pExpr->op==TK_IS );
006606        testcase( pExpr->op==TK_VECTOR );
006607        testcase( pExpr->op==TK_FUNCTION );
006608        testcase( pExpr->op==TK_TRUTH );
006609        testcase( pExpr->op==TK_CASE );
006610        return WRC_Prune;
006611  
006612      case TK_COLUMN:
006613        if( pWalker->u.iCur==pExpr->iTable ){
006614          pWalker->eCode = 1;
006615          return WRC_Abort;
006616        }
006617        return WRC_Prune;
006618  
006619      case TK_OR:
006620      case TK_AND:
006621        /* Both sides of an AND or OR must separately imply non-null-row.
006622        ** Consider these cases:
006623        **    1.  NOT (x AND y)
006624        **    2.  x OR y
006625        ** If only one of x or y is non-null-row, then the overall expression
006626        ** can be true if the other arm is false (case 1) or true (case 2).
006627        */
006628        testcase( pExpr->op==TK_OR );
006629        testcase( pExpr->op==TK_AND );
006630        bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight);
006631        return WRC_Prune;
006632         
006633      case TK_IN:
006634        /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)",
006635        ** both of which can be true.  But apart from these cases, if
006636        ** the left-hand side of the IN is NULL then the IN itself will be
006637        ** NULL. */
006638        if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){
006639          sqlite3WalkExpr(pWalker, pExpr->pLeft);
006640        }
006641        return WRC_Prune;
006642  
006643      case TK_BETWEEN:
006644        /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else
006645        ** both y and z must be non-null row */
006646        assert( ExprUseXList(pExpr) );
006647        assert( pExpr->x.pList->nExpr==2 );
006648        sqlite3WalkExpr(pWalker, pExpr->pLeft);
006649        bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr,
006650                                     pExpr->x.pList->a[1].pExpr);
006651        return WRC_Prune;
006652  
006653      /* Virtual tables are allowed to use constraints like x=NULL.  So
006654      ** a term of the form x=y does not prove that y is not null if x
006655      ** is the column of a virtual table */
006656      case TK_EQ:
006657      case TK_NE:
006658      case TK_LT:
006659      case TK_LE:
006660      case TK_GT:
006661      case TK_GE: {
006662        Expr *pLeft = pExpr->pLeft;
006663        Expr *pRight = pExpr->pRight;
006664        testcase( pExpr->op==TK_EQ );
006665        testcase( pExpr->op==TK_NE );
006666        testcase( pExpr->op==TK_LT );
006667        testcase( pExpr->op==TK_LE );
006668        testcase( pExpr->op==TK_GT );
006669        testcase( pExpr->op==TK_GE );
006670        /* The y.pTab=0 assignment in wherecode.c always happens after the
006671        ** impliesNotNullRow() test */
006672        assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
006673        assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
006674        if( (pLeft->op==TK_COLUMN
006675             && ALWAYS(pLeft->y.pTab!=0)
006676             && IsVirtual(pLeft->y.pTab))
006677         || (pRight->op==TK_COLUMN
006678             && ALWAYS(pRight->y.pTab!=0)
006679             && IsVirtual(pRight->y.pTab))
006680        ){
006681          return WRC_Prune;
006682        }
006683        /* no break */ deliberate_fall_through
006684      }
006685      default:
006686        return WRC_Continue;
006687    }
006688  }
006689  
006690  /*
006691  ** Return true (non-zero) if expression p can only be true if at least
006692  ** one column of table iTab is non-null.  In other words, return true
006693  ** if expression p will always be NULL or false if every column of iTab
006694  ** is NULL.
006695  **
006696  ** False negatives are acceptable.  In other words, it is ok to return
006697  ** zero even if expression p will never be true of every column of iTab
006698  ** is NULL.  A false negative is merely a missed optimization opportunity.
006699  **
006700  ** False positives are not allowed, however.  A false positive may result
006701  ** in an incorrect answer.
006702  **
006703  ** Terms of p that are marked with EP_OuterON (and hence that come from
006704  ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
006705  **
006706  ** This routine is used to check if a LEFT JOIN can be converted into
006707  ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
006708  ** clause requires that some column of the right table of the LEFT JOIN
006709  ** be non-NULL, then the LEFT JOIN can be safely converted into an
006710  ** ordinary join.
006711  */
006712  int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){
006713    Walker w;
006714    p = sqlite3ExprSkipCollateAndLikely(p);
006715    if( p==0 ) return 0;
006716    if( p->op==TK_NOTNULL ){
006717      p = p->pLeft;
006718    }else{
006719      while( p->op==TK_AND ){
006720        if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1;
006721        p = p->pRight;
006722      }
006723    }
006724    w.xExprCallback = impliesNotNullRow;
006725    w.xSelectCallback = 0;
006726    w.xSelectCallback2 = 0;
006727    w.eCode = 0;
006728    w.mWFlags = isRJ!=0;
006729    w.u.iCur = iTab;
006730    sqlite3WalkExpr(&w, p);
006731    return w.eCode;
006732  }
006733  
006734  /*
006735  ** An instance of the following structure is used by the tree walker
006736  ** to determine if an expression can be evaluated by reference to the
006737  ** index only, without having to do a search for the corresponding
006738  ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
006739  ** is the cursor for the table.
006740  */
006741  struct IdxCover {
006742    Index *pIdx;     /* The index to be tested for coverage */
006743    int iCur;        /* Cursor number for the table corresponding to the index */
006744  };
006745  
006746  /*
006747  ** Check to see if there are references to columns in table
006748  ** pWalker->u.pIdxCover->iCur can be satisfied using the index
006749  ** pWalker->u.pIdxCover->pIdx.
006750  */
006751  static int exprIdxCover(Walker *pWalker, Expr *pExpr){
006752    if( pExpr->op==TK_COLUMN
006753     && pExpr->iTable==pWalker->u.pIdxCover->iCur
006754     && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
006755    ){
006756      pWalker->eCode = 1;
006757      return WRC_Abort;
006758    }
006759    return WRC_Continue;
006760  }
006761  
006762  /*
006763  ** Determine if an index pIdx on table with cursor iCur contains will
006764  ** the expression pExpr.  Return true if the index does cover the
006765  ** expression and false if the pExpr expression references table columns
006766  ** that are not found in the index pIdx.
006767  **
006768  ** An index covering an expression means that the expression can be
006769  ** evaluated using only the index and without having to lookup the
006770  ** corresponding table entry.
006771  */
006772  int sqlite3ExprCoveredByIndex(
006773    Expr *pExpr,        /* The index to be tested */
006774    int iCur,           /* The cursor number for the corresponding table */
006775    Index *pIdx         /* The index that might be used for coverage */
006776  ){
006777    Walker w;
006778    struct IdxCover xcov;
006779    memset(&w, 0, sizeof(w));
006780    xcov.iCur = iCur;
006781    xcov.pIdx = pIdx;
006782    w.xExprCallback = exprIdxCover;
006783    w.u.pIdxCover = &xcov;
006784    sqlite3WalkExpr(&w, pExpr);
006785    return !w.eCode;
006786  }
006787  
006788  
006789  /* Structure used to pass information throughout the Walker in order to
006790  ** implement sqlite3ReferencesSrcList().
006791  */
006792  struct RefSrcList {
006793    sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
006794    SrcList *pRef;       /* Looking for references to these tables */
006795    i64 nExclude;        /* Number of tables to exclude from the search */
006796    int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
006797  };
006798  
006799  /*
006800  ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
006801  **
006802  ** When entering a new subquery on the pExpr argument, add all FROM clause
006803  ** entries for that subquery to the exclude list.
006804  **
006805  ** When leaving the subquery, remove those entries from the exclude list.
006806  */
006807  static int selectRefEnter(Walker *pWalker, Select *pSelect){
006808    struct RefSrcList *p = pWalker->u.pRefSrcList;
006809    SrcList *pSrc = pSelect->pSrc;
006810    i64 i, j;
006811    int *piNew;
006812    if( pSrc->nSrc==0 ) return WRC_Continue;
006813    j = p->nExclude;
006814    p->nExclude += pSrc->nSrc;
006815    piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
006816    if( piNew==0 ){
006817      p->nExclude = 0;
006818      return WRC_Abort;
006819    }else{
006820      p->aiExclude = piNew;
006821    }
006822    for(i=0; i<pSrc->nSrc; i++, j++){
006823       p->aiExclude[j] = pSrc->a[i].iCursor;
006824    }
006825    return WRC_Continue;
006826  }
006827  static void selectRefLeave(Walker *pWalker, Select *pSelect){
006828    struct RefSrcList *p = pWalker->u.pRefSrcList;
006829    SrcList *pSrc = pSelect->pSrc;
006830    if( p->nExclude ){
006831      assert( p->nExclude>=pSrc->nSrc );
006832      p->nExclude -= pSrc->nSrc;
006833    }
006834  }
006835  
006836  /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
006837  **
006838  ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
006839  ** of the tables shown in RefSrcList.pRef.
006840  **
006841  ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
006842  ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
006843  */
006844  static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
006845    if( pExpr->op==TK_COLUMN
006846     || pExpr->op==TK_AGG_COLUMN
006847    ){
006848      int i;
006849      struct RefSrcList *p = pWalker->u.pRefSrcList;
006850      SrcList *pSrc = p->pRef;
006851      int nSrc = pSrc ? pSrc->nSrc : 0;
006852      for(i=0; i<nSrc; i++){
006853        if( pExpr->iTable==pSrc->a[i].iCursor ){
006854          pWalker->eCode |= 1;
006855          return WRC_Continue;
006856        }
006857      }
006858      for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
006859      if( i>=p->nExclude ){
006860        pWalker->eCode |= 2;
006861      }
006862    }
006863    return WRC_Continue;
006864  }
006865  
006866  /*
006867  ** Check to see if pExpr references any tables in pSrcList.
006868  ** Possible return values:
006869  **
006870  **    1         pExpr does references a table in pSrcList.
006871  **
006872  **    0         pExpr references some table that is not defined in either
006873  **              pSrcList or in subqueries of pExpr itself.
006874  **
006875  **   -1         pExpr only references no tables at all, or it only
006876  **              references tables defined in subqueries of pExpr itself.
006877  **
006878  ** As currently used, pExpr is always an aggregate function call.  That
006879  ** fact is exploited for efficiency.
006880  */
006881  int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
006882    Walker w;
006883    struct RefSrcList x;
006884    assert( pParse->db!=0 );
006885    memset(&w, 0, sizeof(w));
006886    memset(&x, 0, sizeof(x));
006887    w.xExprCallback = exprRefToSrcList;
006888    w.xSelectCallback = selectRefEnter;
006889    w.xSelectCallback2 = selectRefLeave;
006890    w.u.pRefSrcList = &x;
006891    x.db = pParse->db;
006892    x.pRef = pSrcList;
006893    assert( pExpr->op==TK_AGG_FUNCTION );
006894    assert( ExprUseXList(pExpr) );
006895    sqlite3WalkExprList(&w, pExpr->x.pList);
006896    if( pExpr->pLeft ){
006897      assert( pExpr->pLeft->op==TK_ORDER );
006898      assert( ExprUseXList(pExpr->pLeft) );
006899      assert( pExpr->pLeft->x.pList!=0 );
006900      sqlite3WalkExprList(&w, pExpr->pLeft->x.pList);
006901    }
006902  #ifndef SQLITE_OMIT_WINDOWFUNC
006903    if( ExprHasProperty(pExpr, EP_WinFunc) ){
006904      sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
006905    }
006906  #endif
006907    if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
006908    if( w.eCode & 0x01 ){
006909      return 1;
006910    }else if( w.eCode ){
006911      return 0;
006912    }else{
006913      return -1;
006914    }
006915  }
006916  
006917  /*
006918  ** This is a Walker expression node callback.
006919  **
006920  ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
006921  ** object that is referenced does not refer directly to the Expr.  If
006922  ** it does, make a copy.  This is done because the pExpr argument is
006923  ** subject to change.
006924  **
006925  ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
006926  ** which builds on the sqlite3ParserAddCleanup() mechanism.
006927  */
006928  static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
006929    if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
006930     && pExpr->pAggInfo!=0
006931    ){
006932      AggInfo *pAggInfo = pExpr->pAggInfo;
006933      int iAgg = pExpr->iAgg;
006934      Parse *pParse = pWalker->pParse;
006935      sqlite3 *db = pParse->db;
006936      assert( iAgg>=0 );
006937      if( pExpr->op!=TK_AGG_FUNCTION ){
006938        if( iAgg<pAggInfo->nColumn
006939         && pAggInfo->aCol[iAgg].pCExpr==pExpr
006940        ){
006941          pExpr = sqlite3ExprDup(db, pExpr, 0);
006942          if( pExpr && !sqlite3ExprDeferredDelete(pParse, pExpr) ){
006943            pAggInfo->aCol[iAgg].pCExpr = pExpr;
006944          }
006945        }
006946      }else{
006947        assert( pExpr->op==TK_AGG_FUNCTION );
006948        if( ALWAYS(iAgg<pAggInfo->nFunc)
006949         && pAggInfo->aFunc[iAgg].pFExpr==pExpr
006950        ){
006951          pExpr = sqlite3ExprDup(db, pExpr, 0);
006952          if( pExpr && !sqlite3ExprDeferredDelete(pParse, pExpr) ){
006953            pAggInfo->aFunc[iAgg].pFExpr = pExpr;
006954          }
006955        }
006956      }
006957    }
006958    return WRC_Continue;
006959  }
006960  
006961  /*
006962  ** Initialize a Walker object so that will persist AggInfo entries referenced
006963  ** by the tree that is walked.
006964  */
006965  void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
006966    memset(pWalker, 0, sizeof(*pWalker));
006967    pWalker->pParse = pParse;
006968    pWalker->xExprCallback = agginfoPersistExprCb;
006969    pWalker->xSelectCallback = sqlite3SelectWalkNoop;
006970  }
006971  
006972  /*
006973  ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
006974  ** the new element.  Return a negative number if malloc fails.
006975  */
006976  static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
006977    int i;
006978    pInfo->aCol = sqlite3ArrayAllocate(
006979         db,
006980         pInfo->aCol,
006981         sizeof(pInfo->aCol[0]),
006982         &pInfo->nColumn,
006983         &i
006984    );
006985    return i;
006986  }   
006987  
006988  /*
006989  ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
006990  ** the new element.  Return a negative number if malloc fails.
006991  */
006992  static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
006993    int i;
006994    pInfo->aFunc = sqlite3ArrayAllocate(
006995         db,
006996         pInfo->aFunc,
006997         sizeof(pInfo->aFunc[0]),
006998         &pInfo->nFunc,
006999         &i
007000    );
007001    return i;
007002  }
007003  
007004  /*
007005  ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
007006  ** Return the index in aCol[] of the entry that describes that column.
007007  **
007008  ** If no prior entry is found, create a new one and return -1.  The
007009  ** new column will have an index of pAggInfo->nColumn-1.
007010  */
007011  static void findOrCreateAggInfoColumn(
007012    Parse *pParse,       /* Parsing context */
007013    AggInfo *pAggInfo,   /* The AggInfo object to search and/or modify */
007014    Expr *pExpr          /* Expr describing the column to find or insert */
007015  ){
007016    struct AggInfo_col *pCol;
007017    int k;
007018  
007019    assert( pAggInfo->iFirstReg==0 );
007020    pCol = pAggInfo->aCol;
007021    for(k=0; k<pAggInfo->nColumn; k++, pCol++){
007022      if( pCol->pCExpr==pExpr ) return;
007023      if( pCol->iTable==pExpr->iTable
007024       && pCol->iColumn==pExpr->iColumn
007025       && pExpr->op!=TK_IF_NULL_ROW
007026      ){
007027        goto fix_up_expr;
007028      }
007029    }
007030    k = addAggInfoColumn(pParse->db, pAggInfo);
007031    if( k<0 ){
007032      /* OOM on resize */
007033      assert( pParse->db->mallocFailed );
007034      return;
007035    }
007036    pCol = &pAggInfo->aCol[k];
007037    assert( ExprUseYTab(pExpr) );
007038    pCol->pTab = pExpr->y.pTab;
007039    pCol->iTable = pExpr->iTable;
007040    pCol->iColumn = pExpr->iColumn;
007041    pCol->iSorterColumn = -1;
007042    pCol->pCExpr = pExpr;
007043    if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
007044      int j, n;
007045      ExprList *pGB = pAggInfo->pGroupBy;
007046      struct ExprList_item *pTerm = pGB->a;
007047      n = pGB->nExpr;
007048      for(j=0; j<n; j++, pTerm++){
007049        Expr *pE = pTerm->pExpr;
007050        if( pE->op==TK_COLUMN
007051         && pE->iTable==pExpr->iTable
007052         && pE->iColumn==pExpr->iColumn
007053        ){
007054          pCol->iSorterColumn = j;
007055          break;
007056        }
007057      }
007058    }
007059    if( pCol->iSorterColumn<0 ){
007060      pCol->iSorterColumn = pAggInfo->nSortingColumn++;
007061    }
007062  fix_up_expr:
007063    ExprSetVVAProperty(pExpr, EP_NoReduce);
007064    assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo );
007065    pExpr->pAggInfo = pAggInfo;
007066    if( pExpr->op==TK_COLUMN ){
007067      pExpr->op = TK_AGG_COLUMN;
007068    }
007069    pExpr->iAgg = (i16)k;
007070  }
007071  
007072  /*
007073  ** This is the xExprCallback for a tree walker.  It is used to
007074  ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
007075  ** for additional information.
007076  */
007077  static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
007078    int i;
007079    NameContext *pNC = pWalker->u.pNC;
007080    Parse *pParse = pNC->pParse;
007081    SrcList *pSrcList = pNC->pSrcList;
007082    AggInfo *pAggInfo = pNC->uNC.pAggInfo;
007083  
007084    assert( pNC->ncFlags & NC_UAggInfo );
007085    assert( pAggInfo->iFirstReg==0 );
007086    switch( pExpr->op ){
007087      default: {
007088        IndexedExpr *pIEpr;
007089        Expr tmp;
007090        assert( pParse->iSelfTab==0 );
007091        if( (pNC->ncFlags & NC_InAggFunc)==0 ) break;
007092        if( pParse->pIdxEpr==0 ) break;
007093        for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
007094          int iDataCur = pIEpr->iDataCur;
007095          if( iDataCur<0 ) continue;
007096          if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break;
007097        }
007098        if( pIEpr==0 ) break;
007099        if( NEVER(!ExprUseYTab(pExpr)) ) break;
007100        for(i=0; i<pSrcList->nSrc; i++){
007101           if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break;
007102        }
007103        if( i>=pSrcList->nSrc ) break;
007104        if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */
007105        if( pParse->nErr ){ return WRC_Abort; }
007106  
007107        /* If we reach this point, it means that expression pExpr can be
007108        ** translated into a reference to an index column as described by
007109        ** pIEpr.
007110        */
007111        memset(&tmp, 0, sizeof(tmp));
007112        tmp.op = TK_AGG_COLUMN;
007113        tmp.iTable = pIEpr->iIdxCur;
007114        tmp.iColumn = pIEpr->iIdxCol;
007115        findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp);
007116        if( pParse->nErr ){ return WRC_Abort; }
007117        assert( pAggInfo->aCol!=0 );
007118        assert( tmp.iAgg<pAggInfo->nColumn );
007119        pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr;
007120        pExpr->pAggInfo = pAggInfo;
007121        pExpr->iAgg = tmp.iAgg;
007122        return WRC_Prune;
007123      }
007124      case TK_IF_NULL_ROW:
007125      case TK_AGG_COLUMN:
007126      case TK_COLUMN: {
007127        testcase( pExpr->op==TK_AGG_COLUMN );
007128        testcase( pExpr->op==TK_COLUMN );
007129        testcase( pExpr->op==TK_IF_NULL_ROW );
007130        /* Check to see if the column is in one of the tables in the FROM
007131        ** clause of the aggregate query */
007132        if( ALWAYS(pSrcList!=0) ){
007133          SrcItem *pItem = pSrcList->a;
007134          for(i=0; i<pSrcList->nSrc; i++, pItem++){
007135            assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
007136            if( pExpr->iTable==pItem->iCursor ){
007137              findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr);
007138              break;
007139            } /* endif pExpr->iTable==pItem->iCursor */
007140          } /* end loop over pSrcList */
007141        }
007142        return WRC_Continue;
007143      }
007144      case TK_AGG_FUNCTION: {
007145        if( (pNC->ncFlags & NC_InAggFunc)==0
007146         && pWalker->walkerDepth==pExpr->op2
007147         && pExpr->pAggInfo==0
007148        ){
007149          /* Check to see if pExpr is a duplicate of another aggregate
007150          ** function that is already in the pAggInfo structure
007151          */
007152          struct AggInfo_func *pItem = pAggInfo->aFunc;
007153          for(i=0; i<pAggInfo->nFunc; i++, pItem++){
007154            if( NEVER(pItem->pFExpr==pExpr) ) break;
007155            if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
007156              break;
007157            }
007158          }
007159          if( i>=pAggInfo->nFunc ){
007160            /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
007161            */
007162            u8 enc = ENC(pParse->db);
007163            i = addAggInfoFunc(pParse->db, pAggInfo);
007164            if( i>=0 ){
007165              int nArg;
007166              assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
007167              pItem = &pAggInfo->aFunc[i];
007168              pItem->pFExpr = pExpr;
007169              assert( ExprUseUToken(pExpr) );
007170              nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
007171              pItem->pFunc = sqlite3FindFunction(pParse->db,
007172                                           pExpr->u.zToken, nArg, enc, 0);
007173              assert( pItem->bOBUnique==0 );
007174              if( pExpr->pLeft
007175               && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0
007176              ){
007177                /* The NEEDCOLL test above causes any ORDER BY clause on
007178                ** aggregate min() or max() to be ignored. */
007179                ExprList *pOBList;
007180                assert( nArg>0 );
007181                assert( pExpr->pLeft->op==TK_ORDER );
007182                assert( ExprUseXList(pExpr->pLeft) );
007183                pItem->iOBTab = pParse->nTab++;
007184                pOBList = pExpr->pLeft->x.pList;
007185                assert( pOBList->nExpr>0 );
007186                assert( pItem->bOBUnique==0 );
007187                if( pOBList->nExpr==1
007188                 && nArg==1
007189                 && sqlite3ExprCompare(0,pOBList->a[0].pExpr,
007190                                 pExpr->x.pList->a[0].pExpr,0)==0
007191                ){
007192                  pItem->bOBPayload = 0;
007193                  pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct);
007194                }else{
007195                  pItem->bOBPayload = 1;
007196                }
007197                pItem->bUseSubtype =
007198                      (pItem->pFunc->funcFlags & SQLITE_SUBTYPE)!=0;
007199              }else{
007200                pItem->iOBTab = -1;
007201              }
007202              if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){
007203                pItem->iDistinct = pParse->nTab++;
007204              }else{
007205                pItem->iDistinct = -1;
007206              }
007207            }
007208          }
007209          /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
007210          */
007211          assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
007212          ExprSetVVAProperty(pExpr, EP_NoReduce);
007213          pExpr->iAgg = (i16)i;
007214          pExpr->pAggInfo = pAggInfo;
007215          return WRC_Prune;
007216        }else{
007217          return WRC_Continue;
007218        }
007219      }
007220    }
007221    return WRC_Continue;
007222  }
007223  
007224  /*
007225  ** Analyze the pExpr expression looking for aggregate functions and
007226  ** for variables that need to be added to AggInfo object that pNC->pAggInfo
007227  ** points to.  Additional entries are made on the AggInfo object as
007228  ** necessary.
007229  **
007230  ** This routine should only be called after the expression has been
007231  ** analyzed by sqlite3ResolveExprNames().
007232  */
007233  void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
007234    Walker w;
007235    w.xExprCallback = analyzeAggregate;
007236    w.xSelectCallback = sqlite3WalkerDepthIncrease;
007237    w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
007238    w.walkerDepth = 0;
007239    w.u.pNC = pNC;
007240    w.pParse = 0;
007241    assert( pNC->pSrcList!=0 );
007242    sqlite3WalkExpr(&w, pExpr);
007243  }
007244  
007245  /*
007246  ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
007247  ** expression list.  Return the number of errors.
007248  **
007249  ** If an error is found, the analysis is cut short.
007250  */
007251  void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
007252    struct ExprList_item *pItem;
007253    int i;
007254    if( pList ){
007255      for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
007256        sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
007257      }
007258    }
007259  }
007260  
007261  /*
007262  ** Allocate a single new register for use to hold some intermediate result.
007263  */
007264  int sqlite3GetTempReg(Parse *pParse){
007265    if( pParse->nTempReg==0 ){
007266      return ++pParse->nMem;
007267    }
007268    return pParse->aTempReg[--pParse->nTempReg];
007269  }
007270  
007271  /*
007272  ** Deallocate a register, making available for reuse for some other
007273  ** purpose.
007274  */
007275  void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
007276    if( iReg ){
007277      sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
007278      if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
007279        pParse->aTempReg[pParse->nTempReg++] = iReg;
007280      }
007281    }
007282  }
007283  
007284  /*
007285  ** Allocate or deallocate a block of nReg consecutive registers.
007286  */
007287  int sqlite3GetTempRange(Parse *pParse, int nReg){
007288    int i, n;
007289    if( nReg==1 ) return sqlite3GetTempReg(pParse);
007290    i = pParse->iRangeReg;
007291    n = pParse->nRangeReg;
007292    if( nReg<=n ){
007293      pParse->iRangeReg += nReg;
007294      pParse->nRangeReg -= nReg;
007295    }else{
007296      i = pParse->nMem+1;
007297      pParse->nMem += nReg;
007298    }
007299    return i;
007300  }
007301  void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
007302    if( nReg==1 ){
007303      sqlite3ReleaseTempReg(pParse, iReg);
007304      return;
007305    }
007306    sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
007307    if( nReg>pParse->nRangeReg ){
007308      pParse->nRangeReg = nReg;
007309      pParse->iRangeReg = iReg;
007310    }
007311  }
007312  
007313  /*
007314  ** Mark all temporary registers as being unavailable for reuse.
007315  **
007316  ** Always invoke this procedure after coding a subroutine or co-routine
007317  ** that might be invoked from other parts of the code, to ensure that
007318  ** the sub/co-routine does not use registers in common with the code that
007319  ** invokes the sub/co-routine.
007320  */
007321  void sqlite3ClearTempRegCache(Parse *pParse){
007322    pParse->nTempReg = 0;
007323    pParse->nRangeReg = 0;
007324  }
007325  
007326  /*
007327  ** Make sure sufficient registers have been allocated so that
007328  ** iReg is a valid register number.
007329  */
007330  void sqlite3TouchRegister(Parse *pParse, int iReg){
007331    if( pParse->nMem<iReg ) pParse->nMem = iReg;
007332  }
007333  
007334  #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
007335  /*
007336  ** Return the latest reusable register in the set of all registers.
007337  ** The value returned is no less than iMin.  If any register iMin or
007338  ** greater is in permanent use, then return one more than that last
007339  ** permanent register.
007340  */
007341  int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){
007342    const ExprList *pList = pParse->pConstExpr;
007343    if( pList ){
007344      int i;
007345      for(i=0; i<pList->nExpr; i++){
007346        if( pList->a[i].u.iConstExprReg>=iMin ){
007347          iMin = pList->a[i].u.iConstExprReg + 1;
007348        }
007349      }
007350    }
007351    pParse->nTempReg = 0;
007352    pParse->nRangeReg = 0;
007353    return iMin;
007354  }
007355  #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
007356  
007357  /*
007358  ** Validate that no temporary register falls within the range of
007359  ** iFirst..iLast, inclusive.  This routine is only call from within assert()
007360  ** statements.
007361  */
007362  #ifdef SQLITE_DEBUG
007363  int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
007364    int i;
007365    if( pParse->nRangeReg>0
007366     && pParse->iRangeReg+pParse->nRangeReg > iFirst
007367     && pParse->iRangeReg <= iLast
007368    ){
007369       return 0;
007370    }
007371    for(i=0; i<pParse->nTempReg; i++){
007372      if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
007373        return 0;
007374      }
007375    }
007376    if( pParse->pConstExpr ){
007377      ExprList *pList = pParse->pConstExpr;
007378      for(i=0; i<pList->nExpr; i++){
007379        int iReg = pList->a[i].u.iConstExprReg;
007380        if( iReg==0 ) continue;
007381        if( iReg>=iFirst && iReg<=iLast ) return 0;
007382      }
007383    }
007384    return 1;
007385  }
007386  #endif /* SQLITE_DEBUG */