000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains routines used for analyzing expressions and 000013 ** for generating VDBE code that evaluates expressions in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* Forward declarations */ 000018 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 000019 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 000020 000021 /* 000022 ** Return the affinity character for a single column of a table. 000023 */ 000024 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 000025 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 000026 return pTab->aCol[iCol].affinity; 000027 } 000028 000029 /* 000030 ** Return the 'affinity' of the expression pExpr if any. 000031 ** 000032 ** If pExpr is a column, a reference to a column via an 'AS' alias, 000033 ** or a sub-select with a column as the return value, then the 000034 ** affinity of that column is returned. Otherwise, 0x00 is returned, 000035 ** indicating no affinity for the expression. 000036 ** 000037 ** i.e. the WHERE clause expressions in the following statements all 000038 ** have an affinity: 000039 ** 000040 ** CREATE TABLE t1(a); 000041 ** SELECT * FROM t1 WHERE a; 000042 ** SELECT a AS b FROM t1 WHERE b; 000043 ** SELECT * FROM t1 WHERE (select a from t1); 000044 */ 000045 char sqlite3ExprAffinity(const Expr *pExpr){ 000046 int op; 000047 op = pExpr->op; 000048 while( 1 /* exit-by-break */ ){ 000049 if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){ 000050 assert( ExprUseYTab(pExpr) ); 000051 assert( pExpr->y.pTab!=0 ); 000052 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 000053 } 000054 if( op==TK_SELECT ){ 000055 assert( ExprUseXSelect(pExpr) ); 000056 assert( pExpr->x.pSelect!=0 ); 000057 assert( pExpr->x.pSelect->pEList!=0 ); 000058 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 000059 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 000060 } 000061 #ifndef SQLITE_OMIT_CAST 000062 if( op==TK_CAST ){ 000063 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 000064 return sqlite3AffinityType(pExpr->u.zToken, 0); 000065 } 000066 #endif 000067 if( op==TK_SELECT_COLUMN ){ 000068 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 000069 assert( pExpr->iColumn < pExpr->iTable ); 000070 assert( pExpr->iColumn >= 0 ); 000071 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 000072 return sqlite3ExprAffinity( 000073 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 000074 ); 000075 } 000076 if( op==TK_VECTOR ){ 000077 assert( ExprUseXList(pExpr) ); 000078 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 000079 } 000080 if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 000081 assert( pExpr->op==TK_COLLATE 000082 || pExpr->op==TK_IF_NULL_ROW 000083 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 000084 pExpr = pExpr->pLeft; 000085 op = pExpr->op; 000086 continue; 000087 } 000088 if( op!=TK_REGISTER ) break; 000089 op = pExpr->op2; 000090 if( NEVER( op==TK_REGISTER ) ) break; 000091 } 000092 return pExpr->affExpr; 000093 } 000094 000095 /* 000096 ** Make a guess at all the possible datatypes of the result that could 000097 ** be returned by an expression. Return a bitmask indicating the answer: 000098 ** 000099 ** 0x01 Numeric 000100 ** 0x02 Text 000101 ** 0x04 Blob 000102 ** 000103 ** If the expression must return NULL, then 0x00 is returned. 000104 */ 000105 int sqlite3ExprDataType(const Expr *pExpr){ 000106 while( pExpr ){ 000107 switch( pExpr->op ){ 000108 case TK_COLLATE: 000109 case TK_IF_NULL_ROW: 000110 case TK_UPLUS: { 000111 pExpr = pExpr->pLeft; 000112 break; 000113 } 000114 case TK_NULL: { 000115 pExpr = 0; 000116 break; 000117 } 000118 case TK_STRING: { 000119 return 0x02; 000120 } 000121 case TK_BLOB: { 000122 return 0x04; 000123 } 000124 case TK_CONCAT: { 000125 return 0x06; 000126 } 000127 case TK_VARIABLE: 000128 case TK_AGG_FUNCTION: 000129 case TK_FUNCTION: { 000130 return 0x07; 000131 } 000132 case TK_COLUMN: 000133 case TK_AGG_COLUMN: 000134 case TK_SELECT: 000135 case TK_CAST: 000136 case TK_SELECT_COLUMN: 000137 case TK_VECTOR: { 000138 int aff = sqlite3ExprAffinity(pExpr); 000139 if( aff>=SQLITE_AFF_NUMERIC ) return 0x05; 000140 if( aff==SQLITE_AFF_TEXT ) return 0x06; 000141 return 0x07; 000142 } 000143 case TK_CASE: { 000144 int res = 0; 000145 int ii; 000146 ExprList *pList = pExpr->x.pList; 000147 assert( ExprUseXList(pExpr) && pList!=0 ); 000148 assert( pList->nExpr > 0); 000149 for(ii=1; ii<pList->nExpr; ii+=2){ 000150 res |= sqlite3ExprDataType(pList->a[ii].pExpr); 000151 } 000152 if( pList->nExpr % 2 ){ 000153 res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr); 000154 } 000155 return res; 000156 } 000157 default: { 000158 return 0x01; 000159 } 000160 } /* End of switch(op) */ 000161 } /* End of while(pExpr) */ 000162 return 0x00; 000163 } 000164 000165 /* 000166 ** Set the collating sequence for expression pExpr to be the collating 000167 ** sequence named by pToken. Return a pointer to a new Expr node that 000168 ** implements the COLLATE operator. 000169 ** 000170 ** If a memory allocation error occurs, that fact is recorded in pParse->db 000171 ** and the pExpr parameter is returned unchanged. 000172 */ 000173 Expr *sqlite3ExprAddCollateToken( 000174 const Parse *pParse, /* Parsing context */ 000175 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 000176 const Token *pCollName, /* Name of collating sequence */ 000177 int dequote /* True to dequote pCollName */ 000178 ){ 000179 if( pCollName->n>0 ){ 000180 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 000181 if( pNew ){ 000182 pNew->pLeft = pExpr; 000183 pNew->flags |= EP_Collate|EP_Skip; 000184 pExpr = pNew; 000185 } 000186 } 000187 return pExpr; 000188 } 000189 Expr *sqlite3ExprAddCollateString( 000190 const Parse *pParse, /* Parsing context */ 000191 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 000192 const char *zC /* The collating sequence name */ 000193 ){ 000194 Token s; 000195 assert( zC!=0 ); 000196 sqlite3TokenInit(&s, (char*)zC); 000197 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 000198 } 000199 000200 /* 000201 ** Skip over any TK_COLLATE operators. 000202 */ 000203 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 000204 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 000205 assert( pExpr->op==TK_COLLATE ); 000206 pExpr = pExpr->pLeft; 000207 } 000208 return pExpr; 000209 } 000210 000211 /* 000212 ** Skip over any TK_COLLATE operators and/or any unlikely() 000213 ** or likelihood() or likely() functions at the root of an 000214 ** expression. 000215 */ 000216 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 000217 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 000218 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 000219 assert( ExprUseXList(pExpr) ); 000220 assert( pExpr->x.pList->nExpr>0 ); 000221 assert( pExpr->op==TK_FUNCTION ); 000222 pExpr = pExpr->x.pList->a[0].pExpr; 000223 }else if( pExpr->op==TK_COLLATE ){ 000224 pExpr = pExpr->pLeft; 000225 }else{ 000226 break; 000227 } 000228 } 000229 return pExpr; 000230 } 000231 000232 /* 000233 ** Return the collation sequence for the expression pExpr. If 000234 ** there is no defined collating sequence, return NULL. 000235 ** 000236 ** See also: sqlite3ExprNNCollSeq() 000237 ** 000238 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 000239 ** default collation if pExpr has no defined collation. 000240 ** 000241 ** The collating sequence might be determined by a COLLATE operator 000242 ** or by the presence of a column with a defined collating sequence. 000243 ** COLLATE operators take first precedence. Left operands take 000244 ** precedence over right operands. 000245 */ 000246 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 000247 sqlite3 *db = pParse->db; 000248 CollSeq *pColl = 0; 000249 const Expr *p = pExpr; 000250 while( p ){ 000251 int op = p->op; 000252 if( op==TK_REGISTER ) op = p->op2; 000253 if( (op==TK_AGG_COLUMN && p->y.pTab!=0) 000254 || op==TK_COLUMN || op==TK_TRIGGER 000255 ){ 000256 int j; 000257 assert( ExprUseYTab(p) ); 000258 assert( p->y.pTab!=0 ); 000259 if( (j = p->iColumn)>=0 ){ 000260 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 000261 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 000262 } 000263 break; 000264 } 000265 if( op==TK_CAST || op==TK_UPLUS ){ 000266 p = p->pLeft; 000267 continue; 000268 } 000269 if( op==TK_VECTOR ){ 000270 assert( ExprUseXList(p) ); 000271 p = p->x.pList->a[0].pExpr; 000272 continue; 000273 } 000274 if( op==TK_COLLATE ){ 000275 assert( !ExprHasProperty(p, EP_IntValue) ); 000276 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 000277 break; 000278 } 000279 if( p->flags & EP_Collate ){ 000280 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 000281 p = p->pLeft; 000282 }else{ 000283 Expr *pNext = p->pRight; 000284 /* The Expr.x union is never used at the same time as Expr.pRight */ 000285 assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 ); 000286 if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){ 000287 int i; 000288 for(i=0; i<p->x.pList->nExpr; i++){ 000289 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 000290 pNext = p->x.pList->a[i].pExpr; 000291 break; 000292 } 000293 } 000294 } 000295 p = pNext; 000296 } 000297 }else{ 000298 break; 000299 } 000300 } 000301 if( sqlite3CheckCollSeq(pParse, pColl) ){ 000302 pColl = 0; 000303 } 000304 return pColl; 000305 } 000306 000307 /* 000308 ** Return the collation sequence for the expression pExpr. If 000309 ** there is no defined collating sequence, return a pointer to the 000310 ** default collation sequence. 000311 ** 000312 ** See also: sqlite3ExprCollSeq() 000313 ** 000314 ** The sqlite3ExprCollSeq() routine works the same except that it 000315 ** returns NULL if there is no defined collation. 000316 */ 000317 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 000318 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 000319 if( p==0 ) p = pParse->db->pDfltColl; 000320 assert( p!=0 ); 000321 return p; 000322 } 000323 000324 /* 000325 ** Return TRUE if the two expressions have equivalent collating sequences. 000326 */ 000327 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 000328 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 000329 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 000330 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 000331 } 000332 000333 /* 000334 ** pExpr is an operand of a comparison operator. aff2 is the 000335 ** type affinity of the other operand. This routine returns the 000336 ** type affinity that should be used for the comparison operator. 000337 */ 000338 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 000339 char aff1 = sqlite3ExprAffinity(pExpr); 000340 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 000341 /* Both sides of the comparison are columns. If one has numeric 000342 ** affinity, use that. Otherwise use no affinity. 000343 */ 000344 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 000345 return SQLITE_AFF_NUMERIC; 000346 }else{ 000347 return SQLITE_AFF_BLOB; 000348 } 000349 }else{ 000350 /* One side is a column, the other is not. Use the columns affinity. */ 000351 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 000352 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 000353 } 000354 } 000355 000356 /* 000357 ** pExpr is a comparison operator. Return the type affinity that should 000358 ** be applied to both operands prior to doing the comparison. 000359 */ 000360 static char comparisonAffinity(const Expr *pExpr){ 000361 char aff; 000362 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 000363 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 000364 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 000365 assert( pExpr->pLeft ); 000366 aff = sqlite3ExprAffinity(pExpr->pLeft); 000367 if( pExpr->pRight ){ 000368 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 000369 }else if( ExprUseXSelect(pExpr) ){ 000370 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 000371 }else if( aff==0 ){ 000372 aff = SQLITE_AFF_BLOB; 000373 } 000374 return aff; 000375 } 000376 000377 /* 000378 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 000379 ** idx_affinity is the affinity of an indexed column. Return true 000380 ** if the index with affinity idx_affinity may be used to implement 000381 ** the comparison in pExpr. 000382 */ 000383 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 000384 char aff = comparisonAffinity(pExpr); 000385 if( aff<SQLITE_AFF_TEXT ){ 000386 return 1; 000387 } 000388 if( aff==SQLITE_AFF_TEXT ){ 000389 return idx_affinity==SQLITE_AFF_TEXT; 000390 } 000391 return sqlite3IsNumericAffinity(idx_affinity); 000392 } 000393 000394 /* 000395 ** Return the P5 value that should be used for a binary comparison 000396 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 000397 */ 000398 static u8 binaryCompareP5( 000399 const Expr *pExpr1, /* Left operand */ 000400 const Expr *pExpr2, /* Right operand */ 000401 int jumpIfNull /* Extra flags added to P5 */ 000402 ){ 000403 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 000404 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 000405 return aff; 000406 } 000407 000408 /* 000409 ** Return a pointer to the collation sequence that should be used by 000410 ** a binary comparison operator comparing pLeft and pRight. 000411 ** 000412 ** If the left hand expression has a collating sequence type, then it is 000413 ** used. Otherwise the collation sequence for the right hand expression 000414 ** is used, or the default (BINARY) if neither expression has a collating 000415 ** type. 000416 ** 000417 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 000418 ** it is not considered. 000419 */ 000420 CollSeq *sqlite3BinaryCompareCollSeq( 000421 Parse *pParse, 000422 const Expr *pLeft, 000423 const Expr *pRight 000424 ){ 000425 CollSeq *pColl; 000426 assert( pLeft ); 000427 if( pLeft->flags & EP_Collate ){ 000428 pColl = sqlite3ExprCollSeq(pParse, pLeft); 000429 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 000430 pColl = sqlite3ExprCollSeq(pParse, pRight); 000431 }else{ 000432 pColl = sqlite3ExprCollSeq(pParse, pLeft); 000433 if( !pColl ){ 000434 pColl = sqlite3ExprCollSeq(pParse, pRight); 000435 } 000436 } 000437 return pColl; 000438 } 000439 000440 /* Expression p is a comparison operator. Return a collation sequence 000441 ** appropriate for the comparison operator. 000442 ** 000443 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 000444 ** However, if the OP_Commuted flag is set, then the order of the operands 000445 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 000446 ** correct collating sequence is found. 000447 */ 000448 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 000449 if( ExprHasProperty(p, EP_Commuted) ){ 000450 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 000451 }else{ 000452 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 000453 } 000454 } 000455 000456 /* 000457 ** Generate code for a comparison operator. 000458 */ 000459 static int codeCompare( 000460 Parse *pParse, /* The parsing (and code generating) context */ 000461 Expr *pLeft, /* The left operand */ 000462 Expr *pRight, /* The right operand */ 000463 int opcode, /* The comparison opcode */ 000464 int in1, int in2, /* Register holding operands */ 000465 int dest, /* Jump here if true. */ 000466 int jumpIfNull, /* If true, jump if either operand is NULL */ 000467 int isCommuted /* The comparison has been commuted */ 000468 ){ 000469 int p5; 000470 int addr; 000471 CollSeq *p4; 000472 000473 if( pParse->nErr ) return 0; 000474 if( isCommuted ){ 000475 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 000476 }else{ 000477 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 000478 } 000479 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 000480 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 000481 (void*)p4, P4_COLLSEQ); 000482 sqlite3VdbeChangeP5(pParse->pVdbe, (u16)p5); 000483 return addr; 000484 } 000485 000486 /* 000487 ** Return true if expression pExpr is a vector, or false otherwise. 000488 ** 000489 ** A vector is defined as any expression that results in two or more 000490 ** columns of result. Every TK_VECTOR node is an vector because the 000491 ** parser will not generate a TK_VECTOR with fewer than two entries. 000492 ** But a TK_SELECT might be either a vector or a scalar. It is only 000493 ** considered a vector if it has two or more result columns. 000494 */ 000495 int sqlite3ExprIsVector(const Expr *pExpr){ 000496 return sqlite3ExprVectorSize(pExpr)>1; 000497 } 000498 000499 /* 000500 ** If the expression passed as the only argument is of type TK_VECTOR 000501 ** return the number of expressions in the vector. Or, if the expression 000502 ** is a sub-select, return the number of columns in the sub-select. For 000503 ** any other type of expression, return 1. 000504 */ 000505 int sqlite3ExprVectorSize(const Expr *pExpr){ 000506 u8 op = pExpr->op; 000507 if( op==TK_REGISTER ) op = pExpr->op2; 000508 if( op==TK_VECTOR ){ 000509 assert( ExprUseXList(pExpr) ); 000510 return pExpr->x.pList->nExpr; 000511 }else if( op==TK_SELECT ){ 000512 assert( ExprUseXSelect(pExpr) ); 000513 return pExpr->x.pSelect->pEList->nExpr; 000514 }else{ 000515 return 1; 000516 } 000517 } 000518 000519 /* 000520 ** Return a pointer to a subexpression of pVector that is the i-th 000521 ** column of the vector (numbered starting with 0). The caller must 000522 ** ensure that i is within range. 000523 ** 000524 ** If pVector is really a scalar (and "scalar" here includes subqueries 000525 ** that return a single column!) then return pVector unmodified. 000526 ** 000527 ** pVector retains ownership of the returned subexpression. 000528 ** 000529 ** If the vector is a (SELECT ...) then the expression returned is 000530 ** just the expression for the i-th term of the result set, and may 000531 ** not be ready for evaluation because the table cursor has not yet 000532 ** been positioned. 000533 */ 000534 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 000535 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 000536 if( sqlite3ExprIsVector(pVector) ){ 000537 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 000538 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 000539 assert( ExprUseXSelect(pVector) ); 000540 return pVector->x.pSelect->pEList->a[i].pExpr; 000541 }else{ 000542 assert( ExprUseXList(pVector) ); 000543 return pVector->x.pList->a[i].pExpr; 000544 } 000545 } 000546 return pVector; 000547 } 000548 000549 /* 000550 ** Compute and return a new Expr object which when passed to 000551 ** sqlite3ExprCode() will generate all necessary code to compute 000552 ** the iField-th column of the vector expression pVector. 000553 ** 000554 ** It is ok for pVector to be a scalar (as long as iField==0). 000555 ** In that case, this routine works like sqlite3ExprDup(). 000556 ** 000557 ** The caller owns the returned Expr object and is responsible for 000558 ** ensuring that the returned value eventually gets freed. 000559 ** 000560 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 000561 ** then the returned object will reference pVector and so pVector must remain 000562 ** valid for the life of the returned object. If pVector is a TK_VECTOR 000563 ** or a scalar expression, then it can be deleted as soon as this routine 000564 ** returns. 000565 ** 000566 ** A trick to cause a TK_SELECT pVector to be deleted together with 000567 ** the returned Expr object is to attach the pVector to the pRight field 000568 ** of the returned TK_SELECT_COLUMN Expr object. 000569 */ 000570 Expr *sqlite3ExprForVectorField( 000571 Parse *pParse, /* Parsing context */ 000572 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 000573 int iField, /* Which column of the vector to return */ 000574 int nField /* Total number of columns in the vector */ 000575 ){ 000576 Expr *pRet; 000577 if( pVector->op==TK_SELECT ){ 000578 assert( ExprUseXSelect(pVector) ); 000579 /* The TK_SELECT_COLUMN Expr node: 000580 ** 000581 ** pLeft: pVector containing TK_SELECT. Not deleted. 000582 ** pRight: not used. But recursively deleted. 000583 ** iColumn: Index of a column in pVector 000584 ** iTable: 0 or the number of columns on the LHS of an assignment 000585 ** pLeft->iTable: First in an array of register holding result, or 0 000586 ** if the result is not yet computed. 000587 ** 000588 ** sqlite3ExprDelete() specifically skips the recursive delete of 000589 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 000590 ** can be attached to pRight to cause this node to take ownership of 000591 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 000592 ** with the same pLeft pointer to the pVector, but only one of them 000593 ** will own the pVector. 000594 */ 000595 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 000596 if( pRet ){ 000597 ExprSetProperty(pRet, EP_FullSize); 000598 pRet->iTable = nField; 000599 pRet->iColumn = iField; 000600 pRet->pLeft = pVector; 000601 } 000602 }else{ 000603 if( pVector->op==TK_VECTOR ){ 000604 Expr **ppVector; 000605 assert( ExprUseXList(pVector) ); 000606 ppVector = &pVector->x.pList->a[iField].pExpr; 000607 pVector = *ppVector; 000608 if( IN_RENAME_OBJECT ){ 000609 /* This must be a vector UPDATE inside a trigger */ 000610 *ppVector = 0; 000611 return pVector; 000612 } 000613 } 000614 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 000615 } 000616 return pRet; 000617 } 000618 000619 /* 000620 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 000621 ** it. Return the register in which the result is stored (or, if the 000622 ** sub-select returns more than one column, the first in an array 000623 ** of registers in which the result is stored). 000624 ** 000625 ** If pExpr is not a TK_SELECT expression, return 0. 000626 */ 000627 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 000628 int reg = 0; 000629 #ifndef SQLITE_OMIT_SUBQUERY 000630 if( pExpr->op==TK_SELECT ){ 000631 reg = sqlite3CodeSubselect(pParse, pExpr); 000632 } 000633 #endif 000634 return reg; 000635 } 000636 000637 /* 000638 ** Argument pVector points to a vector expression - either a TK_VECTOR 000639 ** or TK_SELECT that returns more than one column. This function returns 000640 ** the register number of a register that contains the value of 000641 ** element iField of the vector. 000642 ** 000643 ** If pVector is a TK_SELECT expression, then code for it must have 000644 ** already been generated using the exprCodeSubselect() routine. In this 000645 ** case parameter regSelect should be the first in an array of registers 000646 ** containing the results of the sub-select. 000647 ** 000648 ** If pVector is of type TK_VECTOR, then code for the requested field 000649 ** is generated. In this case (*pRegFree) may be set to the number of 000650 ** a temporary register to be freed by the caller before returning. 000651 ** 000652 ** Before returning, output parameter (*ppExpr) is set to point to the 000653 ** Expr object corresponding to element iElem of the vector. 000654 */ 000655 static int exprVectorRegister( 000656 Parse *pParse, /* Parse context */ 000657 Expr *pVector, /* Vector to extract element from */ 000658 int iField, /* Field to extract from pVector */ 000659 int regSelect, /* First in array of registers */ 000660 Expr **ppExpr, /* OUT: Expression element */ 000661 int *pRegFree /* OUT: Temp register to free */ 000662 ){ 000663 u8 op = pVector->op; 000664 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 000665 if( op==TK_REGISTER ){ 000666 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 000667 return pVector->iTable+iField; 000668 } 000669 if( op==TK_SELECT ){ 000670 assert( ExprUseXSelect(pVector) ); 000671 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 000672 return regSelect+iField; 000673 } 000674 if( op==TK_VECTOR ){ 000675 assert( ExprUseXList(pVector) ); 000676 *ppExpr = pVector->x.pList->a[iField].pExpr; 000677 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 000678 } 000679 return 0; 000680 } 000681 000682 /* 000683 ** Expression pExpr is a comparison between two vector values. Compute 000684 ** the result of the comparison (1, 0, or NULL) and write that 000685 ** result into register dest. 000686 ** 000687 ** The caller must satisfy the following preconditions: 000688 ** 000689 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 000690 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 000691 ** otherwise: op==pExpr->op and p5==0 000692 */ 000693 static void codeVectorCompare( 000694 Parse *pParse, /* Code generator context */ 000695 Expr *pExpr, /* The comparison operation */ 000696 int dest, /* Write results into this register */ 000697 u8 op, /* Comparison operator */ 000698 u8 p5 /* SQLITE_NULLEQ or zero */ 000699 ){ 000700 Vdbe *v = pParse->pVdbe; 000701 Expr *pLeft = pExpr->pLeft; 000702 Expr *pRight = pExpr->pRight; 000703 int nLeft = sqlite3ExprVectorSize(pLeft); 000704 int i; 000705 int regLeft = 0; 000706 int regRight = 0; 000707 u8 opx = op; 000708 int addrCmp = 0; 000709 int addrDone = sqlite3VdbeMakeLabel(pParse); 000710 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 000711 000712 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 000713 if( pParse->nErr ) return; 000714 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 000715 sqlite3ErrorMsg(pParse, "row value misused"); 000716 return; 000717 } 000718 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 000719 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 000720 || pExpr->op==TK_LT || pExpr->op==TK_GT 000721 || pExpr->op==TK_LE || pExpr->op==TK_GE 000722 ); 000723 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 000724 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 000725 assert( p5==0 || pExpr->op!=op ); 000726 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 000727 000728 if( op==TK_LE ) opx = TK_LT; 000729 if( op==TK_GE ) opx = TK_GT; 000730 if( op==TK_NE ) opx = TK_EQ; 000731 000732 regLeft = exprCodeSubselect(pParse, pLeft); 000733 regRight = exprCodeSubselect(pParse, pRight); 000734 000735 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 000736 for(i=0; 1 /*Loop exits by "break"*/; i++){ 000737 int regFree1 = 0, regFree2 = 0; 000738 Expr *pL = 0, *pR = 0; 000739 int r1, r2; 000740 assert( i>=0 && i<nLeft ); 000741 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 000742 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 000743 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 000744 addrCmp = sqlite3VdbeCurrentAddr(v); 000745 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 000746 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 000747 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 000748 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 000749 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 000750 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 000751 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 000752 sqlite3ReleaseTempReg(pParse, regFree1); 000753 sqlite3ReleaseTempReg(pParse, regFree2); 000754 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 000755 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 000756 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 000757 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 000758 } 000759 if( p5==SQLITE_NULLEQ ){ 000760 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 000761 }else{ 000762 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 000763 } 000764 if( i==nLeft-1 ){ 000765 break; 000766 } 000767 if( opx==TK_EQ ){ 000768 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 000769 }else{ 000770 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 000771 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 000772 if( i==nLeft-2 ) opx = op; 000773 } 000774 } 000775 sqlite3VdbeJumpHere(v, addrCmp); 000776 sqlite3VdbeResolveLabel(v, addrDone); 000777 if( op==TK_NE ){ 000778 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 000779 } 000780 } 000781 000782 #if SQLITE_MAX_EXPR_DEPTH>0 000783 /* 000784 ** Check that argument nHeight is less than or equal to the maximum 000785 ** expression depth allowed. If it is not, leave an error message in 000786 ** pParse. 000787 */ 000788 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 000789 int rc = SQLITE_OK; 000790 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 000791 if( nHeight>mxHeight ){ 000792 sqlite3ErrorMsg(pParse, 000793 "Expression tree is too large (maximum depth %d)", mxHeight 000794 ); 000795 rc = SQLITE_ERROR; 000796 } 000797 return rc; 000798 } 000799 000800 /* The following three functions, heightOfExpr(), heightOfExprList() 000801 ** and heightOfSelect(), are used to determine the maximum height 000802 ** of any expression tree referenced by the structure passed as the 000803 ** first argument. 000804 ** 000805 ** If this maximum height is greater than the current value pointed 000806 ** to by pnHeight, the second parameter, then set *pnHeight to that 000807 ** value. 000808 */ 000809 static void heightOfExpr(const Expr *p, int *pnHeight){ 000810 if( p ){ 000811 if( p->nHeight>*pnHeight ){ 000812 *pnHeight = p->nHeight; 000813 } 000814 } 000815 } 000816 static void heightOfExprList(const ExprList *p, int *pnHeight){ 000817 if( p ){ 000818 int i; 000819 for(i=0; i<p->nExpr; i++){ 000820 heightOfExpr(p->a[i].pExpr, pnHeight); 000821 } 000822 } 000823 } 000824 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 000825 const Select *p; 000826 for(p=pSelect; p; p=p->pPrior){ 000827 heightOfExpr(p->pWhere, pnHeight); 000828 heightOfExpr(p->pHaving, pnHeight); 000829 heightOfExpr(p->pLimit, pnHeight); 000830 heightOfExprList(p->pEList, pnHeight); 000831 heightOfExprList(p->pGroupBy, pnHeight); 000832 heightOfExprList(p->pOrderBy, pnHeight); 000833 } 000834 } 000835 000836 /* 000837 ** Set the Expr.nHeight variable in the structure passed as an 000838 ** argument. An expression with no children, Expr.pList or 000839 ** Expr.pSelect member has a height of 1. Any other expression 000840 ** has a height equal to the maximum height of any other 000841 ** referenced Expr plus one. 000842 ** 000843 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 000844 ** if appropriate. 000845 */ 000846 static void exprSetHeight(Expr *p){ 000847 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 000848 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ 000849 nHeight = p->pRight->nHeight; 000850 } 000851 if( ExprUseXSelect(p) ){ 000852 heightOfSelect(p->x.pSelect, &nHeight); 000853 }else if( p->x.pList ){ 000854 heightOfExprList(p->x.pList, &nHeight); 000855 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 000856 } 000857 p->nHeight = nHeight + 1; 000858 } 000859 000860 /* 000861 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 000862 ** the height is greater than the maximum allowed expression depth, 000863 ** leave an error in pParse. 000864 ** 000865 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 000866 ** Expr.flags. 000867 */ 000868 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 000869 if( pParse->nErr ) return; 000870 exprSetHeight(p); 000871 sqlite3ExprCheckHeight(pParse, p->nHeight); 000872 } 000873 000874 /* 000875 ** Return the maximum height of any expression tree referenced 000876 ** by the select statement passed as an argument. 000877 */ 000878 int sqlite3SelectExprHeight(const Select *p){ 000879 int nHeight = 0; 000880 heightOfSelect(p, &nHeight); 000881 return nHeight; 000882 } 000883 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 000884 /* 000885 ** Propagate all EP_Propagate flags from the Expr.x.pList into 000886 ** Expr.flags. 000887 */ 000888 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 000889 if( pParse->nErr ) return; 000890 if( p && ExprUseXList(p) && p->x.pList ){ 000891 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 000892 } 000893 } 000894 #define exprSetHeight(y) 000895 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 000896 000897 /* 000898 ** Set the error offset for an Expr node, if possible. 000899 */ 000900 void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){ 000901 if( pExpr==0 ) return; 000902 if( NEVER(ExprUseWJoin(pExpr)) ) return; 000903 pExpr->w.iOfst = iOfst; 000904 } 000905 000906 /* 000907 ** This routine is the core allocator for Expr nodes. 000908 ** 000909 ** Construct a new expression node and return a pointer to it. Memory 000910 ** for this node and for the pToken argument is a single allocation 000911 ** obtained from sqlite3DbMalloc(). The calling function 000912 ** is responsible for making sure the node eventually gets freed. 000913 ** 000914 ** If dequote is true, then the token (if it exists) is dequoted. 000915 ** If dequote is false, no dequoting is performed. The deQuote 000916 ** parameter is ignored if pToken is NULL or if the token does not 000917 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 000918 ** then the EP_DblQuoted flag is set on the expression node. 000919 ** 000920 ** Special case (tag-20240227-a): If op==TK_INTEGER and pToken points to 000921 ** a string that can be translated into a 32-bit integer, then the token is 000922 ** not stored in u.zToken. Instead, the integer values is written 000923 ** into u.iValue and the EP_IntValue flag is set. No extra storage 000924 ** is allocated to hold the integer text and the dequote flag is ignored. 000925 ** See also tag-20240227-b. 000926 */ 000927 Expr *sqlite3ExprAlloc( 000928 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 000929 int op, /* Expression opcode */ 000930 const Token *pToken, /* Token argument. Might be NULL */ 000931 int dequote /* True to dequote */ 000932 ){ 000933 Expr *pNew; 000934 int nExtra = 0; 000935 int iValue = 0; 000936 000937 assert( db!=0 ); 000938 if( pToken ){ 000939 if( op!=TK_INTEGER || pToken->z==0 000940 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 000941 nExtra = pToken->n+1; /* tag-20240227-a */ 000942 assert( iValue>=0 ); 000943 } 000944 } 000945 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 000946 if( pNew ){ 000947 memset(pNew, 0, sizeof(Expr)); 000948 pNew->op = (u8)op; 000949 pNew->iAgg = -1; 000950 if( pToken ){ 000951 if( nExtra==0 ){ 000952 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 000953 pNew->u.iValue = iValue; 000954 }else{ 000955 pNew->u.zToken = (char*)&pNew[1]; 000956 assert( pToken->z!=0 || pToken->n==0 ); 000957 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 000958 pNew->u.zToken[pToken->n] = 0; 000959 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 000960 sqlite3DequoteExpr(pNew); 000961 } 000962 } 000963 } 000964 #if SQLITE_MAX_EXPR_DEPTH>0 000965 pNew->nHeight = 1; 000966 #endif 000967 } 000968 return pNew; 000969 } 000970 000971 /* 000972 ** Allocate a new expression node from a zero-terminated token that has 000973 ** already been dequoted. 000974 */ 000975 Expr *sqlite3Expr( 000976 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 000977 int op, /* Expression opcode */ 000978 const char *zToken /* Token argument. Might be NULL */ 000979 ){ 000980 Token x; 000981 x.z = zToken; 000982 x.n = sqlite3Strlen30(zToken); 000983 return sqlite3ExprAlloc(db, op, &x, 0); 000984 } 000985 000986 /* 000987 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 000988 ** 000989 ** If pRoot==NULL that means that a memory allocation error has occurred. 000990 ** In that case, delete the subtrees pLeft and pRight. 000991 */ 000992 void sqlite3ExprAttachSubtrees( 000993 sqlite3 *db, 000994 Expr *pRoot, 000995 Expr *pLeft, 000996 Expr *pRight 000997 ){ 000998 if( pRoot==0 ){ 000999 assert( db->mallocFailed ); 001000 sqlite3ExprDelete(db, pLeft); 001001 sqlite3ExprDelete(db, pRight); 001002 }else{ 001003 assert( ExprUseXList(pRoot) ); 001004 assert( pRoot->x.pSelect==0 ); 001005 if( pRight ){ 001006 pRoot->pRight = pRight; 001007 pRoot->flags |= EP_Propagate & pRight->flags; 001008 #if SQLITE_MAX_EXPR_DEPTH>0 001009 pRoot->nHeight = pRight->nHeight+1; 001010 }else{ 001011 pRoot->nHeight = 1; 001012 #endif 001013 } 001014 if( pLeft ){ 001015 pRoot->pLeft = pLeft; 001016 pRoot->flags |= EP_Propagate & pLeft->flags; 001017 #if SQLITE_MAX_EXPR_DEPTH>0 001018 if( pLeft->nHeight>=pRoot->nHeight ){ 001019 pRoot->nHeight = pLeft->nHeight+1; 001020 } 001021 #endif 001022 } 001023 } 001024 } 001025 001026 /* 001027 ** Allocate an Expr node which joins as many as two subtrees. 001028 ** 001029 ** One or both of the subtrees can be NULL. Return a pointer to the new 001030 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 001031 ** free the subtrees and return NULL. 001032 */ 001033 Expr *sqlite3PExpr( 001034 Parse *pParse, /* Parsing context */ 001035 int op, /* Expression opcode */ 001036 Expr *pLeft, /* Left operand */ 001037 Expr *pRight /* Right operand */ 001038 ){ 001039 Expr *p; 001040 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 001041 if( p ){ 001042 memset(p, 0, sizeof(Expr)); 001043 p->op = op & 0xff; 001044 p->iAgg = -1; 001045 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 001046 sqlite3ExprCheckHeight(pParse, p->nHeight); 001047 }else{ 001048 sqlite3ExprDelete(pParse->db, pLeft); 001049 sqlite3ExprDelete(pParse->db, pRight); 001050 } 001051 return p; 001052 } 001053 001054 /* 001055 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 001056 ** do a memory allocation failure) then delete the pSelect object. 001057 */ 001058 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 001059 if( pExpr ){ 001060 pExpr->x.pSelect = pSelect; 001061 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 001062 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 001063 }else{ 001064 assert( pParse->db->mallocFailed ); 001065 sqlite3SelectDelete(pParse->db, pSelect); 001066 } 001067 } 001068 001069 /* 001070 ** Expression list pEList is a list of vector values. This function 001071 ** converts the contents of pEList to a VALUES(...) Select statement 001072 ** returning 1 row for each element of the list. For example, the 001073 ** expression list: 001074 ** 001075 ** ( (1,2), (3,4) (5,6) ) 001076 ** 001077 ** is translated to the equivalent of: 001078 ** 001079 ** VALUES(1,2), (3,4), (5,6) 001080 ** 001081 ** Each of the vector values in pEList must contain exactly nElem terms. 001082 ** If a list element that is not a vector or does not contain nElem terms, 001083 ** an error message is left in pParse. 001084 ** 001085 ** This is used as part of processing IN(...) expressions with a list 001086 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 001087 */ 001088 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 001089 int ii; 001090 Select *pRet = 0; 001091 assert( nElem>1 ); 001092 for(ii=0; ii<pEList->nExpr; ii++){ 001093 Select *pSel; 001094 Expr *pExpr = pEList->a[ii].pExpr; 001095 int nExprElem; 001096 if( pExpr->op==TK_VECTOR ){ 001097 assert( ExprUseXList(pExpr) ); 001098 nExprElem = pExpr->x.pList->nExpr; 001099 }else{ 001100 nExprElem = 1; 001101 } 001102 if( nExprElem!=nElem ){ 001103 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 001104 nExprElem, nExprElem>1?"s":"", nElem 001105 ); 001106 break; 001107 } 001108 assert( ExprUseXList(pExpr) ); 001109 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 001110 pExpr->x.pList = 0; 001111 if( pSel ){ 001112 if( pRet ){ 001113 pSel->op = TK_ALL; 001114 pSel->pPrior = pRet; 001115 } 001116 pRet = pSel; 001117 } 001118 } 001119 001120 if( pRet && pRet->pPrior ){ 001121 pRet->selFlags |= SF_MultiValue; 001122 } 001123 sqlite3ExprListDelete(pParse->db, pEList); 001124 return pRet; 001125 } 001126 001127 /* 001128 ** Join two expressions using an AND operator. If either expression is 001129 ** NULL, then just return the other expression. 001130 ** 001131 ** If one side or the other of the AND is known to be false, and neither side 001132 ** is part of an ON clause, then instead of returning an AND expression, 001133 ** just return a constant expression with a value of false. 001134 */ 001135 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 001136 sqlite3 *db = pParse->db; 001137 if( pLeft==0 ){ 001138 return pRight; 001139 }else if( pRight==0 ){ 001140 return pLeft; 001141 }else{ 001142 u32 f = pLeft->flags | pRight->flags; 001143 if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse 001144 && !IN_RENAME_OBJECT 001145 ){ 001146 sqlite3ExprDeferredDelete(pParse, pLeft); 001147 sqlite3ExprDeferredDelete(pParse, pRight); 001148 return sqlite3Expr(db, TK_INTEGER, "0"); 001149 }else{ 001150 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 001151 } 001152 } 001153 } 001154 001155 /* 001156 ** Construct a new expression node for a function with multiple 001157 ** arguments. 001158 */ 001159 Expr *sqlite3ExprFunction( 001160 Parse *pParse, /* Parsing context */ 001161 ExprList *pList, /* Argument list */ 001162 const Token *pToken, /* Name of the function */ 001163 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 001164 ){ 001165 Expr *pNew; 001166 sqlite3 *db = pParse->db; 001167 assert( pToken ); 001168 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 001169 if( pNew==0 ){ 001170 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 001171 return 0; 001172 } 001173 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 001174 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 001175 if( pList 001176 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 001177 && !pParse->nested 001178 ){ 001179 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 001180 } 001181 pNew->x.pList = pList; 001182 ExprSetProperty(pNew, EP_HasFunc); 001183 assert( ExprUseXList(pNew) ); 001184 sqlite3ExprSetHeightAndFlags(pParse, pNew); 001185 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 001186 return pNew; 001187 } 001188 001189 /* 001190 ** Report an error when attempting to use an ORDER BY clause within 001191 ** the arguments of a non-aggregate function. 001192 */ 001193 void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){ 001194 sqlite3ErrorMsg(pParse, 001195 "ORDER BY may not be used with non-aggregate %#T()", p 001196 ); 001197 } 001198 001199 /* 001200 ** Attach an ORDER BY clause to a function call. 001201 ** 001202 ** functionname( arguments ORDER BY sortlist ) 001203 ** \_____________________/ \______/ 001204 ** pExpr pOrderBy 001205 ** 001206 ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER 001207 ** and added to the Expr.pLeft field of the parent TK_FUNCTION node. 001208 */ 001209 void sqlite3ExprAddFunctionOrderBy( 001210 Parse *pParse, /* Parsing context */ 001211 Expr *pExpr, /* The function call to which ORDER BY is to be added */ 001212 ExprList *pOrderBy /* The ORDER BY clause to add */ 001213 ){ 001214 Expr *pOB; 001215 sqlite3 *db = pParse->db; 001216 if( NEVER(pOrderBy==0) ){ 001217 assert( db->mallocFailed ); 001218 return; 001219 } 001220 if( pExpr==0 ){ 001221 assert( db->mallocFailed ); 001222 sqlite3ExprListDelete(db, pOrderBy); 001223 return; 001224 } 001225 assert( pExpr->op==TK_FUNCTION ); 001226 assert( pExpr->pLeft==0 ); 001227 assert( ExprUseXList(pExpr) ); 001228 if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){ 001229 /* Ignore ORDER BY on zero-argument aggregates */ 001230 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pOrderBy); 001231 return; 001232 } 001233 if( IsWindowFunc(pExpr) ){ 001234 sqlite3ExprOrderByAggregateError(pParse, pExpr); 001235 sqlite3ExprListDelete(db, pOrderBy); 001236 return; 001237 } 001238 001239 pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0); 001240 if( pOB==0 ){ 001241 sqlite3ExprListDelete(db, pOrderBy); 001242 return; 001243 } 001244 pOB->x.pList = pOrderBy; 001245 assert( ExprUseXList(pOB) ); 001246 pExpr->pLeft = pOB; 001247 ExprSetProperty(pOB, EP_FullSize); 001248 } 001249 001250 /* 001251 ** Check to see if a function is usable according to current access 001252 ** rules: 001253 ** 001254 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 001255 ** 001256 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 001257 ** top-level SQL 001258 ** 001259 ** If the function is not usable, create an error. 001260 */ 001261 void sqlite3ExprFunctionUsable( 001262 Parse *pParse, /* Parsing and code generating context */ 001263 const Expr *pExpr, /* The function invocation */ 001264 const FuncDef *pDef /* The function being invoked */ 001265 ){ 001266 assert( !IN_RENAME_OBJECT ); 001267 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 001268 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 001269 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 001270 || (pParse->db->flags & SQLITE_TrustedSchema)==0 001271 ){ 001272 /* Functions prohibited in triggers and views if: 001273 ** (1) tagged with SQLITE_DIRECTONLY 001274 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 001275 ** is tagged with SQLITE_FUNC_UNSAFE) and 001276 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 001277 ** that the schema is possibly tainted). 001278 */ 001279 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 001280 } 001281 } 001282 } 001283 001284 /* 001285 ** Assign a variable number to an expression that encodes a wildcard 001286 ** in the original SQL statement. 001287 ** 001288 ** Wildcards consisting of a single "?" are assigned the next sequential 001289 ** variable number. 001290 ** 001291 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 001292 ** sure "nnn" is not too big to avoid a denial of service attack when 001293 ** the SQL statement comes from an external source. 001294 ** 001295 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 001296 ** as the previous instance of the same wildcard. Or if this is the first 001297 ** instance of the wildcard, the next sequential variable number is 001298 ** assigned. 001299 */ 001300 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 001301 sqlite3 *db = pParse->db; 001302 const char *z; 001303 ynVar x; 001304 001305 if( pExpr==0 ) return; 001306 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 001307 z = pExpr->u.zToken; 001308 assert( z!=0 ); 001309 assert( z[0]!=0 ); 001310 assert( n==(u32)sqlite3Strlen30(z) ); 001311 if( z[1]==0 ){ 001312 /* Wildcard of the form "?". Assign the next variable number */ 001313 assert( z[0]=='?' ); 001314 x = (ynVar)(++pParse->nVar); 001315 }else{ 001316 int doAdd = 0; 001317 if( z[0]=='?' ){ 001318 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 001319 ** use it as the variable number */ 001320 i64 i; 001321 int bOk; 001322 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 001323 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 001324 bOk = 1; 001325 }else{ 001326 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 001327 } 001328 testcase( i==0 ); 001329 testcase( i==1 ); 001330 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 001331 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 001332 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 001333 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 001334 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 001335 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 001336 return; 001337 } 001338 x = (ynVar)i; 001339 if( x>pParse->nVar ){ 001340 pParse->nVar = (int)x; 001341 doAdd = 1; 001342 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 001343 doAdd = 1; 001344 } 001345 }else{ 001346 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 001347 ** number as the prior appearance of the same name, or if the name 001348 ** has never appeared before, reuse the same variable number 001349 */ 001350 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 001351 if( x==0 ){ 001352 x = (ynVar)(++pParse->nVar); 001353 doAdd = 1; 001354 } 001355 } 001356 if( doAdd ){ 001357 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 001358 } 001359 } 001360 pExpr->iColumn = x; 001361 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 001362 sqlite3ErrorMsg(pParse, "too many SQL variables"); 001363 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 001364 } 001365 } 001366 001367 /* 001368 ** Recursively delete an expression tree. 001369 */ 001370 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 001371 assert( p!=0 ); 001372 assert( db!=0 ); 001373 exprDeleteRestart: 001374 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 001375 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 001376 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 001377 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 001378 #ifdef SQLITE_DEBUG 001379 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 001380 assert( p->pLeft==0 ); 001381 assert( p->pRight==0 ); 001382 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 001383 assert( !ExprUseXList(p) || p->x.pList==0 ); 001384 } 001385 #endif 001386 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 001387 /* The Expr.x union is never used at the same time as Expr.pRight */ 001388 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 001389 if( p->pRight ){ 001390 assert( !ExprHasProperty(p, EP_WinFunc) ); 001391 sqlite3ExprDeleteNN(db, p->pRight); 001392 }else if( ExprUseXSelect(p) ){ 001393 assert( !ExprHasProperty(p, EP_WinFunc) ); 001394 sqlite3SelectDelete(db, p->x.pSelect); 001395 }else{ 001396 sqlite3ExprListDelete(db, p->x.pList); 001397 #ifndef SQLITE_OMIT_WINDOWFUNC 001398 if( ExprHasProperty(p, EP_WinFunc) ){ 001399 sqlite3WindowDelete(db, p->y.pWin); 001400 } 001401 #endif 001402 } 001403 if( p->pLeft && p->op!=TK_SELECT_COLUMN ){ 001404 Expr *pLeft = p->pLeft; 001405 if( !ExprHasProperty(p, EP_Static) 001406 && !ExprHasProperty(pLeft, EP_Static) 001407 ){ 001408 /* Avoid unnecessary recursion on unary operators */ 001409 sqlite3DbNNFreeNN(db, p); 001410 p = pLeft; 001411 goto exprDeleteRestart; 001412 }else{ 001413 sqlite3ExprDeleteNN(db, pLeft); 001414 } 001415 } 001416 } 001417 if( !ExprHasProperty(p, EP_Static) ){ 001418 sqlite3DbNNFreeNN(db, p); 001419 } 001420 } 001421 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 001422 if( p ) sqlite3ExprDeleteNN(db, p); 001423 } 001424 void sqlite3ExprDeleteGeneric(sqlite3 *db, void *p){ 001425 if( ALWAYS(p) ) sqlite3ExprDeleteNN(db, (Expr*)p); 001426 } 001427 001428 /* 001429 ** Clear both elements of an OnOrUsing object 001430 */ 001431 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 001432 if( p==0 ){ 001433 /* Nothing to clear */ 001434 }else if( p->pOn ){ 001435 sqlite3ExprDeleteNN(db, p->pOn); 001436 }else if( p->pUsing ){ 001437 sqlite3IdListDelete(db, p->pUsing); 001438 } 001439 } 001440 001441 /* 001442 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 001443 ** This is similar to sqlite3ExprDelete() except that the delete is 001444 ** deferred until the pParse is deleted. 001445 ** 001446 ** The pExpr might be deleted immediately on an OOM error. 001447 ** 001448 ** Return 0 if the delete was successfully deferred. Return non-zero 001449 ** if the delete happened immediately because of an OOM. 001450 */ 001451 int sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 001452 return 0==sqlite3ParserAddCleanup(pParse, sqlite3ExprDeleteGeneric, pExpr); 001453 } 001454 001455 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 001456 ** expression. 001457 */ 001458 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 001459 if( p ){ 001460 if( IN_RENAME_OBJECT ){ 001461 sqlite3RenameExprUnmap(pParse, p); 001462 } 001463 sqlite3ExprDeleteNN(pParse->db, p); 001464 } 001465 } 001466 001467 /* 001468 ** Return the number of bytes allocated for the expression structure 001469 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 001470 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 001471 */ 001472 static int exprStructSize(const Expr *p){ 001473 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 001474 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 001475 return EXPR_FULLSIZE; 001476 } 001477 001478 /* 001479 ** The dupedExpr*Size() routines each return the number of bytes required 001480 ** to store a copy of an expression or expression tree. They differ in 001481 ** how much of the tree is measured. 001482 ** 001483 ** dupedExprStructSize() Size of only the Expr structure 001484 ** dupedExprNodeSize() Size of Expr + space for token 001485 ** dupedExprSize() Expr + token + subtree components 001486 ** 001487 *************************************************************************** 001488 ** 001489 ** The dupedExprStructSize() function returns two values OR-ed together: 001490 ** (1) the space required for a copy of the Expr structure only and 001491 ** (2) the EP_xxx flags that indicate what the structure size should be. 001492 ** The return values is always one of: 001493 ** 001494 ** EXPR_FULLSIZE 001495 ** EXPR_REDUCEDSIZE | EP_Reduced 001496 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 001497 ** 001498 ** The size of the structure can be found by masking the return value 001499 ** of this routine with 0xfff. The flags can be found by masking the 001500 ** return value with EP_Reduced|EP_TokenOnly. 001501 ** 001502 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 001503 ** (unreduced) Expr objects as they or originally constructed by the parser. 001504 ** During expression analysis, extra information is computed and moved into 001505 ** later parts of the Expr object and that extra information might get chopped 001506 ** off if the expression is reduced. Note also that it does not work to 001507 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 001508 ** to reduce a pristine expression tree from the parser. The implementation 001509 ** of dupedExprStructSize() contain multiple assert() statements that attempt 001510 ** to enforce this constraint. 001511 */ 001512 static int dupedExprStructSize(const Expr *p, int flags){ 001513 int nSize; 001514 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 001515 assert( EXPR_FULLSIZE<=0xfff ); 001516 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 001517 if( 0==flags || ExprHasProperty(p, EP_FullSize) ){ 001518 nSize = EXPR_FULLSIZE; 001519 }else{ 001520 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 001521 assert( !ExprHasProperty(p, EP_OuterON) ); 001522 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 001523 if( p->pLeft || p->x.pList ){ 001524 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 001525 }else{ 001526 assert( p->pRight==0 ); 001527 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 001528 } 001529 } 001530 return nSize; 001531 } 001532 001533 /* 001534 ** This function returns the space in bytes required to store the copy 001535 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 001536 ** string is defined.) 001537 */ 001538 static int dupedExprNodeSize(const Expr *p, int flags){ 001539 int nByte = dupedExprStructSize(p, flags) & 0xfff; 001540 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 001541 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 001542 } 001543 return ROUND8(nByte); 001544 } 001545 001546 /* 001547 ** Return the number of bytes required to create a duplicate of the 001548 ** expression passed as the first argument. 001549 ** 001550 ** The value returned includes space to create a copy of the Expr struct 001551 ** itself and the buffer referred to by Expr.u.zToken, if any. 001552 ** 001553 ** The return value includes space to duplicate all Expr nodes in the 001554 ** tree formed by Expr.pLeft and Expr.pRight, but not any other 001555 ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin. 001556 */ 001557 static int dupedExprSize(const Expr *p){ 001558 int nByte; 001559 assert( p!=0 ); 001560 nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE); 001561 if( p->pLeft ) nByte += dupedExprSize(p->pLeft); 001562 if( p->pRight ) nByte += dupedExprSize(p->pRight); 001563 assert( nByte==ROUND8(nByte) ); 001564 return nByte; 001565 } 001566 001567 /* 001568 ** An EdupBuf is a memory allocation used to stored multiple Expr objects 001569 ** together with their Expr.zToken content. This is used to help implement 001570 ** compression while doing sqlite3ExprDup(). The top-level Expr does the 001571 ** allocation for itself and many of its decendents, then passes an instance 001572 ** of the structure down into exprDup() so that they decendents can have 001573 ** access to that memory. 001574 */ 001575 typedef struct EdupBuf EdupBuf; 001576 struct EdupBuf { 001577 u8 *zAlloc; /* Memory space available for storage */ 001578 #ifdef SQLITE_DEBUG 001579 u8 *zEnd; /* First byte past the end of memory */ 001580 #endif 001581 }; 001582 001583 /* 001584 ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf 001585 ** is not NULL then it points to memory that can be used to store a copy 001586 ** of the input Expr p together with its p->u.zToken (if any). pEdupBuf 001587 ** is updated with the new buffer tail prior to returning. 001588 */ 001589 static Expr *exprDup( 001590 sqlite3 *db, /* Database connection (for memory allocation) */ 001591 const Expr *p, /* Expr tree to be duplicated */ 001592 int dupFlags, /* EXPRDUP_REDUCE for compression. 0 if not */ 001593 EdupBuf *pEdupBuf /* Preallocated storage space, or NULL */ 001594 ){ 001595 Expr *pNew; /* Value to return */ 001596 EdupBuf sEdupBuf; /* Memory space from which to build Expr object */ 001597 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 001598 int nToken = -1; /* Space needed for p->u.zToken. -1 means unknown */ 001599 001600 assert( db!=0 ); 001601 assert( p ); 001602 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 001603 assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE ); 001604 001605 /* Figure out where to write the new Expr structure. */ 001606 if( pEdupBuf ){ 001607 sEdupBuf.zAlloc = pEdupBuf->zAlloc; 001608 #ifdef SQLITE_DEBUG 001609 sEdupBuf.zEnd = pEdupBuf->zEnd; 001610 #endif 001611 staticFlag = EP_Static; 001612 assert( sEdupBuf.zAlloc!=0 ); 001613 assert( dupFlags==EXPRDUP_REDUCE ); 001614 }else{ 001615 int nAlloc; 001616 if( dupFlags ){ 001617 nAlloc = dupedExprSize(p); 001618 }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 001619 nToken = sqlite3Strlen30NN(p->u.zToken)+1; 001620 nAlloc = ROUND8(EXPR_FULLSIZE + nToken); 001621 }else{ 001622 nToken = 0; 001623 nAlloc = ROUND8(EXPR_FULLSIZE); 001624 } 001625 assert( nAlloc==ROUND8(nAlloc) ); 001626 sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc); 001627 #ifdef SQLITE_DEBUG 001628 sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0; 001629 #endif 001630 001631 staticFlag = 0; 001632 } 001633 pNew = (Expr *)sEdupBuf.zAlloc; 001634 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); 001635 001636 if( pNew ){ 001637 /* Set nNewSize to the size allocated for the structure pointed to 001638 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 001639 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 001640 ** by the copy of the p->u.zToken string (if any). 001641 */ 001642 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 001643 int nNewSize = nStructSize & 0xfff; 001644 if( nToken<0 ){ 001645 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 001646 nToken = sqlite3Strlen30(p->u.zToken) + 1; 001647 }else{ 001648 nToken = 0; 001649 } 001650 } 001651 if( dupFlags ){ 001652 assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken ); 001653 assert( ExprHasProperty(p, EP_Reduced)==0 ); 001654 memcpy(sEdupBuf.zAlloc, p, nNewSize); 001655 }else{ 001656 u32 nSize = (u32)exprStructSize(p); 001657 assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= 001658 (int)EXPR_FULLSIZE+nToken ); 001659 memcpy(sEdupBuf.zAlloc, p, nSize); 001660 if( nSize<EXPR_FULLSIZE ){ 001661 memset(&sEdupBuf.zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 001662 } 001663 nNewSize = EXPR_FULLSIZE; 001664 } 001665 001666 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 001667 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 001668 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 001669 pNew->flags |= staticFlag; 001670 ExprClearVVAProperties(pNew); 001671 if( dupFlags ){ 001672 ExprSetVVAProperty(pNew, EP_Immutable); 001673 } 001674 001675 /* Copy the p->u.zToken string, if any. */ 001676 assert( nToken>=0 ); 001677 if( nToken>0 ){ 001678 char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize]; 001679 memcpy(zToken, p->u.zToken, nToken); 001680 nNewSize += nToken; 001681 } 001682 sEdupBuf.zAlloc += ROUND8(nNewSize); 001683 001684 if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){ 001685 001686 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 001687 if( ExprUseXSelect(p) ){ 001688 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 001689 }else{ 001690 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, 001691 p->op!=TK_ORDER ? dupFlags : 0); 001692 } 001693 001694 #ifndef SQLITE_OMIT_WINDOWFUNC 001695 if( ExprHasProperty(p, EP_WinFunc) ){ 001696 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 001697 assert( ExprHasProperty(pNew, EP_WinFunc) ); 001698 } 001699 #endif /* SQLITE_OMIT_WINDOWFUNC */ 001700 001701 /* Fill in pNew->pLeft and pNew->pRight. */ 001702 if( dupFlags ){ 001703 if( p->op==TK_SELECT_COLUMN ){ 001704 pNew->pLeft = p->pLeft; 001705 assert( p->pRight==0 001706 || p->pRight==p->pLeft 001707 || ExprHasProperty(p->pLeft, EP_Subquery) ); 001708 }else{ 001709 pNew->pLeft = p->pLeft ? 001710 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0; 001711 } 001712 pNew->pRight = p->pRight ? 001713 exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0; 001714 }else{ 001715 if( p->op==TK_SELECT_COLUMN ){ 001716 pNew->pLeft = p->pLeft; 001717 assert( p->pRight==0 001718 || p->pRight==p->pLeft 001719 || ExprHasProperty(p->pLeft, EP_Subquery) ); 001720 }else{ 001721 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 001722 } 001723 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 001724 } 001725 } 001726 } 001727 if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf)); 001728 assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd ); 001729 return pNew; 001730 } 001731 001732 /* 001733 ** Create and return a deep copy of the object passed as the second 001734 ** argument. If an OOM condition is encountered, NULL is returned 001735 ** and the db->mallocFailed flag set. 001736 */ 001737 #ifndef SQLITE_OMIT_CTE 001738 With *sqlite3WithDup(sqlite3 *db, With *p){ 001739 With *pRet = 0; 001740 if( p ){ 001741 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 001742 pRet = sqlite3DbMallocZero(db, nByte); 001743 if( pRet ){ 001744 int i; 001745 pRet->nCte = p->nCte; 001746 for(i=0; i<p->nCte; i++){ 001747 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 001748 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 001749 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 001750 pRet->a[i].eM10d = p->a[i].eM10d; 001751 } 001752 } 001753 } 001754 return pRet; 001755 } 001756 #else 001757 # define sqlite3WithDup(x,y) 0 001758 #endif 001759 001760 #ifndef SQLITE_OMIT_WINDOWFUNC 001761 /* 001762 ** The gatherSelectWindows() procedure and its helper routine 001763 ** gatherSelectWindowsCallback() are used to scan all the expressions 001764 ** an a newly duplicated SELECT statement and gather all of the Window 001765 ** objects found there, assembling them onto the linked list at Select->pWin. 001766 */ 001767 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 001768 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 001769 Select *pSelect = pWalker->u.pSelect; 001770 Window *pWin = pExpr->y.pWin; 001771 assert( pWin ); 001772 assert( IsWindowFunc(pExpr) ); 001773 assert( pWin->ppThis==0 ); 001774 sqlite3WindowLink(pSelect, pWin); 001775 } 001776 return WRC_Continue; 001777 } 001778 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 001779 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 001780 } 001781 static void gatherSelectWindows(Select *p){ 001782 Walker w; 001783 w.xExprCallback = gatherSelectWindowsCallback; 001784 w.xSelectCallback = gatherSelectWindowsSelectCallback; 001785 w.xSelectCallback2 = 0; 001786 w.pParse = 0; 001787 w.u.pSelect = p; 001788 sqlite3WalkSelect(&w, p); 001789 } 001790 #endif 001791 001792 001793 /* 001794 ** The following group of routines make deep copies of expressions, 001795 ** expression lists, ID lists, and select statements. The copies can 001796 ** be deleted (by being passed to their respective ...Delete() routines) 001797 ** without effecting the originals. 001798 ** 001799 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 001800 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 001801 ** by subsequent calls to sqlite*ListAppend() routines. 001802 ** 001803 ** Any tables that the SrcList might point to are not duplicated. 001804 ** 001805 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 001806 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 001807 ** truncated version of the usual Expr structure that will be stored as 001808 ** part of the in-memory representation of the database schema. 001809 */ 001810 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 001811 assert( flags==0 || flags==EXPRDUP_REDUCE ); 001812 return p ? exprDup(db, p, flags, 0) : 0; 001813 } 001814 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 001815 ExprList *pNew; 001816 struct ExprList_item *pItem; 001817 const struct ExprList_item *pOldItem; 001818 int i; 001819 Expr *pPriorSelectColOld = 0; 001820 Expr *pPriorSelectColNew = 0; 001821 assert( db!=0 ); 001822 if( p==0 ) return 0; 001823 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 001824 if( pNew==0 ) return 0; 001825 pNew->nExpr = p->nExpr; 001826 pNew->nAlloc = p->nAlloc; 001827 pItem = pNew->a; 001828 pOldItem = p->a; 001829 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 001830 Expr *pOldExpr = pOldItem->pExpr; 001831 Expr *pNewExpr; 001832 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 001833 if( pOldExpr 001834 && pOldExpr->op==TK_SELECT_COLUMN 001835 && (pNewExpr = pItem->pExpr)!=0 001836 ){ 001837 if( pNewExpr->pRight ){ 001838 pPriorSelectColOld = pOldExpr->pRight; 001839 pPriorSelectColNew = pNewExpr->pRight; 001840 pNewExpr->pLeft = pNewExpr->pRight; 001841 }else{ 001842 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 001843 pPriorSelectColOld = pOldExpr->pLeft; 001844 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 001845 pNewExpr->pRight = pPriorSelectColNew; 001846 } 001847 pNewExpr->pLeft = pPriorSelectColNew; 001848 } 001849 } 001850 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 001851 pItem->fg = pOldItem->fg; 001852 pItem->fg.done = 0; 001853 pItem->u = pOldItem->u; 001854 } 001855 return pNew; 001856 } 001857 001858 /* 001859 ** If cursors, triggers, views and subqueries are all omitted from 001860 ** the build, then none of the following routines, except for 001861 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 001862 ** called with a NULL argument. 001863 */ 001864 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 001865 || !defined(SQLITE_OMIT_SUBQUERY) 001866 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 001867 SrcList *pNew; 001868 int i; 001869 int nByte; 001870 assert( db!=0 ); 001871 if( p==0 ) return 0; 001872 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 001873 pNew = sqlite3DbMallocRawNN(db, nByte ); 001874 if( pNew==0 ) return 0; 001875 pNew->nSrc = pNew->nAlloc = p->nSrc; 001876 for(i=0; i<p->nSrc; i++){ 001877 SrcItem *pNewItem = &pNew->a[i]; 001878 const SrcItem *pOldItem = &p->a[i]; 001879 Table *pTab; 001880 pNewItem->fg = pOldItem->fg; 001881 if( pOldItem->fg.isSubquery ){ 001882 Subquery *pNewSubq = sqlite3DbMallocRaw(db, sizeof(Subquery)); 001883 if( pNewSubq==0 ){ 001884 assert( db->mallocFailed ); 001885 pNewItem->fg.isSubquery = 0; 001886 }else{ 001887 memcpy(pNewSubq, pOldItem->u4.pSubq, sizeof(*pNewSubq)); 001888 pNewSubq->pSelect = sqlite3SelectDup(db, pNewSubq->pSelect, flags); 001889 if( pNewSubq->pSelect==0 ){ 001890 sqlite3DbFree(db, pNewSubq); 001891 pNewSubq = 0; 001892 pNewItem->fg.isSubquery = 0; 001893 } 001894 } 001895 pNewItem->u4.pSubq = pNewSubq; 001896 }else if( pOldItem->fg.fixedSchema ){ 001897 pNewItem->u4.pSchema = pOldItem->u4.pSchema; 001898 }else{ 001899 pNewItem->u4.zDatabase = sqlite3DbStrDup(db, pOldItem->u4.zDatabase); 001900 } 001901 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 001902 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 001903 pNewItem->iCursor = pOldItem->iCursor; 001904 if( pNewItem->fg.isIndexedBy ){ 001905 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 001906 }else if( pNewItem->fg.isTabFunc ){ 001907 pNewItem->u1.pFuncArg = 001908 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 001909 }else{ 001910 pNewItem->u1.nRow = pOldItem->u1.nRow; 001911 } 001912 pNewItem->u2 = pOldItem->u2; 001913 if( pNewItem->fg.isCte ){ 001914 pNewItem->u2.pCteUse->nUse++; 001915 } 001916 pTab = pNewItem->pSTab = pOldItem->pSTab; 001917 if( pTab ){ 001918 pTab->nTabRef++; 001919 } 001920 if( pOldItem->fg.isUsing ){ 001921 assert( pNewItem->fg.isUsing ); 001922 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 001923 }else{ 001924 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 001925 } 001926 pNewItem->colUsed = pOldItem->colUsed; 001927 } 001928 return pNew; 001929 } 001930 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 001931 IdList *pNew; 001932 int i; 001933 assert( db!=0 ); 001934 if( p==0 ) return 0; 001935 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 001936 if( pNew==0 ) return 0; 001937 pNew->nId = p->nId; 001938 for(i=0; i<p->nId; i++){ 001939 struct IdList_item *pNewItem = &pNew->a[i]; 001940 const struct IdList_item *pOldItem = &p->a[i]; 001941 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 001942 } 001943 return pNew; 001944 } 001945 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 001946 Select *pRet = 0; 001947 Select *pNext = 0; 001948 Select **pp = &pRet; 001949 const Select *p; 001950 001951 assert( db!=0 ); 001952 for(p=pDup; p; p=p->pPrior){ 001953 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 001954 if( pNew==0 ) break; 001955 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 001956 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 001957 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 001958 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 001959 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 001960 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 001961 pNew->op = p->op; 001962 pNew->pNext = pNext; 001963 pNew->pPrior = 0; 001964 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 001965 pNew->iLimit = 0; 001966 pNew->iOffset = 0; 001967 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 001968 pNew->addrOpenEphm[0] = -1; 001969 pNew->addrOpenEphm[1] = -1; 001970 pNew->nSelectRow = p->nSelectRow; 001971 pNew->pWith = sqlite3WithDup(db, p->pWith); 001972 #ifndef SQLITE_OMIT_WINDOWFUNC 001973 pNew->pWin = 0; 001974 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 001975 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 001976 #endif 001977 pNew->selId = p->selId; 001978 if( db->mallocFailed ){ 001979 /* Any prior OOM might have left the Select object incomplete. 001980 ** Delete the whole thing rather than allow an incomplete Select 001981 ** to be used by the code generator. */ 001982 pNew->pNext = 0; 001983 sqlite3SelectDelete(db, pNew); 001984 break; 001985 } 001986 *pp = pNew; 001987 pp = &pNew->pPrior; 001988 pNext = pNew; 001989 } 001990 return pRet; 001991 } 001992 #else 001993 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 001994 assert( p==0 ); 001995 return 0; 001996 } 001997 #endif 001998 001999 002000 /* 002001 ** Add a new element to the end of an expression list. If pList is 002002 ** initially NULL, then create a new expression list. 002003 ** 002004 ** The pList argument must be either NULL or a pointer to an ExprList 002005 ** obtained from a prior call to sqlite3ExprListAppend(). 002006 ** 002007 ** If a memory allocation error occurs, the entire list is freed and 002008 ** NULL is returned. If non-NULL is returned, then it is guaranteed 002009 ** that the new entry was successfully appended. 002010 */ 002011 static const struct ExprList_item zeroItem = {0}; 002012 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 002013 sqlite3 *db, /* Database handle. Used for memory allocation */ 002014 Expr *pExpr /* Expression to be appended. Might be NULL */ 002015 ){ 002016 struct ExprList_item *pItem; 002017 ExprList *pList; 002018 002019 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 002020 if( pList==0 ){ 002021 sqlite3ExprDelete(db, pExpr); 002022 return 0; 002023 } 002024 pList->nAlloc = 4; 002025 pList->nExpr = 1; 002026 pItem = &pList->a[0]; 002027 *pItem = zeroItem; 002028 pItem->pExpr = pExpr; 002029 return pList; 002030 } 002031 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 002032 sqlite3 *db, /* Database handle. Used for memory allocation */ 002033 ExprList *pList, /* List to which to append. Might be NULL */ 002034 Expr *pExpr /* Expression to be appended. Might be NULL */ 002035 ){ 002036 struct ExprList_item *pItem; 002037 ExprList *pNew; 002038 pList->nAlloc *= 2; 002039 pNew = sqlite3DbRealloc(db, pList, 002040 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 002041 if( pNew==0 ){ 002042 sqlite3ExprListDelete(db, pList); 002043 sqlite3ExprDelete(db, pExpr); 002044 return 0; 002045 }else{ 002046 pList = pNew; 002047 } 002048 pItem = &pList->a[pList->nExpr++]; 002049 *pItem = zeroItem; 002050 pItem->pExpr = pExpr; 002051 return pList; 002052 } 002053 ExprList *sqlite3ExprListAppend( 002054 Parse *pParse, /* Parsing context */ 002055 ExprList *pList, /* List to which to append. Might be NULL */ 002056 Expr *pExpr /* Expression to be appended. Might be NULL */ 002057 ){ 002058 struct ExprList_item *pItem; 002059 if( pList==0 ){ 002060 return sqlite3ExprListAppendNew(pParse->db,pExpr); 002061 } 002062 if( pList->nAlloc<pList->nExpr+1 ){ 002063 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 002064 } 002065 pItem = &pList->a[pList->nExpr++]; 002066 *pItem = zeroItem; 002067 pItem->pExpr = pExpr; 002068 return pList; 002069 } 002070 002071 /* 002072 ** pColumns and pExpr form a vector assignment which is part of the SET 002073 ** clause of an UPDATE statement. Like this: 002074 ** 002075 ** (a,b,c) = (expr1,expr2,expr3) 002076 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 002077 ** 002078 ** For each term of the vector assignment, append new entries to the 002079 ** expression list pList. In the case of a subquery on the RHS, append 002080 ** TK_SELECT_COLUMN expressions. 002081 */ 002082 ExprList *sqlite3ExprListAppendVector( 002083 Parse *pParse, /* Parsing context */ 002084 ExprList *pList, /* List to which to append. Might be NULL */ 002085 IdList *pColumns, /* List of names of LHS of the assignment */ 002086 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 002087 ){ 002088 sqlite3 *db = pParse->db; 002089 int n; 002090 int i; 002091 int iFirst = pList ? pList->nExpr : 0; 002092 /* pColumns can only be NULL due to an OOM but an OOM will cause an 002093 ** exit prior to this routine being invoked */ 002094 if( NEVER(pColumns==0) ) goto vector_append_error; 002095 if( pExpr==0 ) goto vector_append_error; 002096 002097 /* If the RHS is a vector, then we can immediately check to see that 002098 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 002099 ** wildcards ("*") in the result set of the SELECT must be expanded before 002100 ** we can do the size check, so defer the size check until code generation. 002101 */ 002102 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 002103 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 002104 pColumns->nId, n); 002105 goto vector_append_error; 002106 } 002107 002108 for(i=0; i<pColumns->nId; i++){ 002109 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 002110 assert( pSubExpr!=0 || db->mallocFailed ); 002111 if( pSubExpr==0 ) continue; 002112 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 002113 if( pList ){ 002114 assert( pList->nExpr==iFirst+i+1 ); 002115 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 002116 pColumns->a[i].zName = 0; 002117 } 002118 } 002119 002120 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 002121 Expr *pFirst = pList->a[iFirst].pExpr; 002122 assert( pFirst!=0 ); 002123 assert( pFirst->op==TK_SELECT_COLUMN ); 002124 002125 /* Store the SELECT statement in pRight so it will be deleted when 002126 ** sqlite3ExprListDelete() is called */ 002127 pFirst->pRight = pExpr; 002128 pExpr = 0; 002129 002130 /* Remember the size of the LHS in iTable so that we can check that 002131 ** the RHS and LHS sizes match during code generation. */ 002132 pFirst->iTable = pColumns->nId; 002133 } 002134 002135 vector_append_error: 002136 sqlite3ExprUnmapAndDelete(pParse, pExpr); 002137 sqlite3IdListDelete(db, pColumns); 002138 return pList; 002139 } 002140 002141 /* 002142 ** Set the sort order for the last element on the given ExprList. 002143 */ 002144 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 002145 struct ExprList_item *pItem; 002146 if( p==0 ) return; 002147 assert( p->nExpr>0 ); 002148 002149 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 002150 assert( iSortOrder==SQLITE_SO_UNDEFINED 002151 || iSortOrder==SQLITE_SO_ASC 002152 || iSortOrder==SQLITE_SO_DESC 002153 ); 002154 assert( eNulls==SQLITE_SO_UNDEFINED 002155 || eNulls==SQLITE_SO_ASC 002156 || eNulls==SQLITE_SO_DESC 002157 ); 002158 002159 pItem = &p->a[p->nExpr-1]; 002160 assert( pItem->fg.bNulls==0 ); 002161 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 002162 iSortOrder = SQLITE_SO_ASC; 002163 } 002164 pItem->fg.sortFlags = (u8)iSortOrder; 002165 002166 if( eNulls!=SQLITE_SO_UNDEFINED ){ 002167 pItem->fg.bNulls = 1; 002168 if( iSortOrder!=eNulls ){ 002169 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 002170 } 002171 } 002172 } 002173 002174 /* 002175 ** Set the ExprList.a[].zEName element of the most recently added item 002176 ** on the expression list. 002177 ** 002178 ** pList might be NULL following an OOM error. But pName should never be 002179 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 002180 ** is set. 002181 */ 002182 void sqlite3ExprListSetName( 002183 Parse *pParse, /* Parsing context */ 002184 ExprList *pList, /* List to which to add the span. */ 002185 const Token *pName, /* Name to be added */ 002186 int dequote /* True to cause the name to be dequoted */ 002187 ){ 002188 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 002189 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 002190 if( pList ){ 002191 struct ExprList_item *pItem; 002192 assert( pList->nExpr>0 ); 002193 pItem = &pList->a[pList->nExpr-1]; 002194 assert( pItem->zEName==0 ); 002195 assert( pItem->fg.eEName==ENAME_NAME ); 002196 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 002197 if( dequote ){ 002198 /* If dequote==0, then pName->z does not point to part of a DDL 002199 ** statement handled by the parser. And so no token need be added 002200 ** to the token-map. */ 002201 sqlite3Dequote(pItem->zEName); 002202 if( IN_RENAME_OBJECT ){ 002203 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 002204 } 002205 } 002206 } 002207 } 002208 002209 /* 002210 ** Set the ExprList.a[].zSpan element of the most recently added item 002211 ** on the expression list. 002212 ** 002213 ** pList might be NULL following an OOM error. But pSpan should never be 002214 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 002215 ** is set. 002216 */ 002217 void sqlite3ExprListSetSpan( 002218 Parse *pParse, /* Parsing context */ 002219 ExprList *pList, /* List to which to add the span. */ 002220 const char *zStart, /* Start of the span */ 002221 const char *zEnd /* End of the span */ 002222 ){ 002223 sqlite3 *db = pParse->db; 002224 assert( pList!=0 || db->mallocFailed!=0 ); 002225 if( pList ){ 002226 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 002227 assert( pList->nExpr>0 ); 002228 if( pItem->zEName==0 ){ 002229 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 002230 pItem->fg.eEName = ENAME_SPAN; 002231 } 002232 } 002233 } 002234 002235 /* 002236 ** If the expression list pEList contains more than iLimit elements, 002237 ** leave an error message in pParse. 002238 */ 002239 void sqlite3ExprListCheckLength( 002240 Parse *pParse, 002241 ExprList *pEList, 002242 const char *zObject 002243 ){ 002244 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 002245 testcase( pEList && pEList->nExpr==mx ); 002246 testcase( pEList && pEList->nExpr==mx+1 ); 002247 if( pEList && pEList->nExpr>mx ){ 002248 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 002249 } 002250 } 002251 002252 /* 002253 ** Delete an entire expression list. 002254 */ 002255 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 002256 int i = pList->nExpr; 002257 struct ExprList_item *pItem = pList->a; 002258 assert( pList->nExpr>0 ); 002259 assert( db!=0 ); 002260 do{ 002261 sqlite3ExprDelete(db, pItem->pExpr); 002262 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); 002263 pItem++; 002264 }while( --i>0 ); 002265 sqlite3DbNNFreeNN(db, pList); 002266 } 002267 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 002268 if( pList ) exprListDeleteNN(db, pList); 002269 } 002270 void sqlite3ExprListDeleteGeneric(sqlite3 *db, void *pList){ 002271 if( ALWAYS(pList) ) exprListDeleteNN(db, (ExprList*)pList); 002272 } 002273 002274 /* 002275 ** Return the bitwise-OR of all Expr.flags fields in the given 002276 ** ExprList. 002277 */ 002278 u32 sqlite3ExprListFlags(const ExprList *pList){ 002279 int i; 002280 u32 m = 0; 002281 assert( pList!=0 ); 002282 for(i=0; i<pList->nExpr; i++){ 002283 Expr *pExpr = pList->a[i].pExpr; 002284 assert( pExpr!=0 ); 002285 m |= pExpr->flags; 002286 } 002287 return m; 002288 } 002289 002290 /* 002291 ** This is a SELECT-node callback for the expression walker that 002292 ** always "fails". By "fail" in this case, we mean set 002293 ** pWalker->eCode to zero and abort. 002294 ** 002295 ** This callback is used by multiple expression walkers. 002296 */ 002297 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 002298 UNUSED_PARAMETER(NotUsed); 002299 pWalker->eCode = 0; 002300 return WRC_Abort; 002301 } 002302 002303 /* 002304 ** Check the input string to see if it is "true" or "false" (in any case). 002305 ** 002306 ** If the string is.... Return 002307 ** "true" EP_IsTrue 002308 ** "false" EP_IsFalse 002309 ** anything else 0 002310 */ 002311 u32 sqlite3IsTrueOrFalse(const char *zIn){ 002312 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 002313 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 002314 return 0; 002315 } 002316 002317 002318 /* 002319 ** If the input expression is an ID with the name "true" or "false" 002320 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 002321 ** the conversion happened, and zero if the expression is unaltered. 002322 */ 002323 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 002324 u32 v; 002325 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 002326 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 002327 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 002328 ){ 002329 pExpr->op = TK_TRUEFALSE; 002330 ExprSetProperty(pExpr, v); 002331 return 1; 002332 } 002333 return 0; 002334 } 002335 002336 /* 002337 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 002338 ** and 0 if it is FALSE. 002339 */ 002340 int sqlite3ExprTruthValue(const Expr *pExpr){ 002341 pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr); 002342 assert( pExpr->op==TK_TRUEFALSE ); 002343 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 002344 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 002345 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 002346 return pExpr->u.zToken[4]==0; 002347 } 002348 002349 /* 002350 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 002351 ** terms that are always true or false. Return the simplified expression. 002352 ** Or return the original expression if no simplification is possible. 002353 ** 002354 ** Examples: 002355 ** 002356 ** (x<10) AND true => (x<10) 002357 ** (x<10) AND false => false 002358 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 002359 ** (x<10) AND (y=22 OR true) => (x<10) 002360 ** (y=22) OR true => true 002361 */ 002362 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 002363 assert( pExpr!=0 ); 002364 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 002365 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 002366 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 002367 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 002368 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 002369 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 002370 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 002371 } 002372 } 002373 return pExpr; 002374 } 002375 002376 /* 002377 ** pExpr is a TK_FUNCTION node. Try to determine whether or not the 002378 ** function is a constant function. A function is constant if all of 002379 ** the following are true: 002380 ** 002381 ** (1) It is a scalar function (not an aggregate or window function) 002382 ** (2) It has either the SQLITE_FUNC_CONSTANT or SQLITE_FUNC_SLOCHNG 002383 ** property. 002384 ** (3) All of its arguments are constants 002385 ** 002386 ** This routine sets pWalker->eCode to 0 if pExpr is not a constant. 002387 ** It makes no changes to pWalker->eCode if pExpr is constant. In 002388 ** every case, it returns WRC_Abort. 002389 ** 002390 ** Called as a service subroutine from exprNodeIsConstant(). 002391 */ 002392 static SQLITE_NOINLINE int exprNodeIsConstantFunction( 002393 Walker *pWalker, 002394 Expr *pExpr 002395 ){ 002396 int n; /* Number of arguments */ 002397 ExprList *pList; /* List of arguments */ 002398 FuncDef *pDef; /* The function */ 002399 sqlite3 *db; /* The database */ 002400 002401 assert( pExpr->op==TK_FUNCTION ); 002402 if( ExprHasProperty(pExpr, EP_TokenOnly) 002403 || (pList = pExpr->x.pList)==0 002404 ){; 002405 n = 0; 002406 }else{ 002407 n = pList->nExpr; 002408 sqlite3WalkExprList(pWalker, pList); 002409 if( pWalker->eCode==0 ) return WRC_Abort; 002410 } 002411 db = pWalker->pParse->db; 002412 pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0); 002413 if( pDef==0 002414 || pDef->xFinalize!=0 002415 || (pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 002416 || ExprHasProperty(pExpr, EP_WinFunc) 002417 ){ 002418 pWalker->eCode = 0; 002419 return WRC_Abort; 002420 } 002421 return WRC_Prune; 002422 } 002423 002424 002425 /* 002426 ** These routines are Walker callbacks used to check expressions to 002427 ** see if they are "constant" for some definition of constant. The 002428 ** Walker.eCode value determines the type of "constant" we are looking 002429 ** for. 002430 ** 002431 ** These callback routines are used to implement the following: 002432 ** 002433 ** sqlite3ExprIsConstant() pWalker->eCode==1 002434 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 002435 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 002436 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 002437 ** 002438 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 002439 ** is found to not be a constant. 002440 ** 002441 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 002442 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 002443 ** when parsing an existing schema out of the sqlite_schema table and 4 002444 ** when processing a new CREATE TABLE statement. A bound parameter raises 002445 ** an error for new statements, but is silently converted 002446 ** to NULL for existing schemas. This allows sqlite_schema tables that 002447 ** contain a bound parameter because they were generated by older versions 002448 ** of SQLite to be parsed by newer versions of SQLite without raising a 002449 ** malformed schema error. 002450 */ 002451 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 002452 assert( pWalker->eCode>0 ); 002453 002454 /* If pWalker->eCode is 2 then any term of the expression that comes from 002455 ** the ON or USING clauses of an outer join disqualifies the expression 002456 ** from being considered constant. */ 002457 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 002458 pWalker->eCode = 0; 002459 return WRC_Abort; 002460 } 002461 002462 switch( pExpr->op ){ 002463 /* Consider functions to be constant if all their arguments are constant 002464 ** and either pWalker->eCode==4 or 5 or the function has the 002465 ** SQLITE_FUNC_CONST flag. */ 002466 case TK_FUNCTION: 002467 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 002468 && !ExprHasProperty(pExpr, EP_WinFunc) 002469 ){ 002470 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 002471 return WRC_Continue; 002472 }else if( pWalker->pParse ){ 002473 return exprNodeIsConstantFunction(pWalker, pExpr); 002474 }else{ 002475 pWalker->eCode = 0; 002476 return WRC_Abort; 002477 } 002478 case TK_ID: 002479 /* Convert "true" or "false" in a DEFAULT clause into the 002480 ** appropriate TK_TRUEFALSE operator */ 002481 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 002482 return WRC_Prune; 002483 } 002484 /* no break */ deliberate_fall_through 002485 case TK_COLUMN: 002486 case TK_AGG_FUNCTION: 002487 case TK_AGG_COLUMN: 002488 testcase( pExpr->op==TK_ID ); 002489 testcase( pExpr->op==TK_COLUMN ); 002490 testcase( pExpr->op==TK_AGG_FUNCTION ); 002491 testcase( pExpr->op==TK_AGG_COLUMN ); 002492 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 002493 return WRC_Continue; 002494 } 002495 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 002496 return WRC_Continue; 002497 } 002498 /* no break */ deliberate_fall_through 002499 case TK_IF_NULL_ROW: 002500 case TK_REGISTER: 002501 case TK_DOT: 002502 case TK_RAISE: 002503 testcase( pExpr->op==TK_REGISTER ); 002504 testcase( pExpr->op==TK_IF_NULL_ROW ); 002505 testcase( pExpr->op==TK_DOT ); 002506 testcase( pExpr->op==TK_RAISE ); 002507 pWalker->eCode = 0; 002508 return WRC_Abort; 002509 case TK_VARIABLE: 002510 if( pWalker->eCode==5 ){ 002511 /* Silently convert bound parameters that appear inside of CREATE 002512 ** statements into a NULL when parsing the CREATE statement text out 002513 ** of the sqlite_schema table */ 002514 pExpr->op = TK_NULL; 002515 }else if( pWalker->eCode==4 ){ 002516 /* A bound parameter in a CREATE statement that originates from 002517 ** sqlite3_prepare() causes an error */ 002518 pWalker->eCode = 0; 002519 return WRC_Abort; 002520 } 002521 /* no break */ deliberate_fall_through 002522 default: 002523 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 002524 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 002525 return WRC_Continue; 002526 } 002527 } 002528 static int exprIsConst(Parse *pParse, Expr *p, int initFlag){ 002529 Walker w; 002530 w.eCode = initFlag; 002531 w.pParse = pParse; 002532 w.xExprCallback = exprNodeIsConstant; 002533 w.xSelectCallback = sqlite3SelectWalkFail; 002534 #ifdef SQLITE_DEBUG 002535 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 002536 #endif 002537 sqlite3WalkExpr(&w, p); 002538 return w.eCode; 002539 } 002540 002541 /* 002542 ** Walk an expression tree. Return non-zero if the expression is constant 002543 ** and 0 if it involves variables or function calls. 002544 ** 002545 ** For the purposes of this function, a double-quoted string (ex: "abc") 002546 ** is considered a variable but a single-quoted string (ex: 'abc') is 002547 ** a constant. 002548 ** 002549 ** The pParse parameter may be NULL. But if it is NULL, there is no way 002550 ** to determine if function calls are constant or not, and hence all 002551 ** function calls will be considered to be non-constant. If pParse is 002552 ** not NULL, then a function call might be constant, depending on the 002553 ** function and on its parameters. 002554 */ 002555 int sqlite3ExprIsConstant(Parse *pParse, Expr *p){ 002556 return exprIsConst(pParse, p, 1); 002557 } 002558 002559 /* 002560 ** Walk an expression tree. Return non-zero if 002561 ** 002562 ** (1) the expression is constant, and 002563 ** (2) the expression does originate in the ON or USING clause 002564 ** of a LEFT JOIN, and 002565 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 002566 ** operands created by the constant propagation optimization. 002567 ** 002568 ** When this routine returns true, it indicates that the expression 002569 ** can be added to the pParse->pConstExpr list and evaluated once when 002570 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 002571 */ 002572 static int sqlite3ExprIsConstantNotJoin(Parse *pParse, Expr *p){ 002573 return exprIsConst(pParse, p, 2); 002574 } 002575 002576 /* 002577 ** This routine examines sub-SELECT statements as an expression is being 002578 ** walked as part of sqlite3ExprIsTableConstant(). Sub-SELECTs are considered 002579 ** constant as long as they are uncorrelated - meaning that they do not 002580 ** contain any terms from outer contexts. 002581 */ 002582 static int exprSelectWalkTableConstant(Walker *pWalker, Select *pSelect){ 002583 assert( pSelect!=0 ); 002584 assert( pWalker->eCode==3 || pWalker->eCode==0 ); 002585 if( (pSelect->selFlags & SF_Correlated)!=0 ){ 002586 pWalker->eCode = 0; 002587 return WRC_Abort; 002588 } 002589 return WRC_Prune; 002590 } 002591 002592 /* 002593 ** Walk an expression tree. Return non-zero if the expression is constant 002594 ** for any single row of the table with cursor iCur. In other words, the 002595 ** expression must not refer to any non-deterministic function nor any 002596 ** table other than iCur. 002597 ** 002598 ** Consider uncorrelated subqueries to be constants if the bAllowSubq 002599 ** parameter is true. 002600 */ 002601 static int sqlite3ExprIsTableConstant(Expr *p, int iCur, int bAllowSubq){ 002602 Walker w; 002603 w.eCode = 3; 002604 w.pParse = 0; 002605 w.xExprCallback = exprNodeIsConstant; 002606 if( bAllowSubq ){ 002607 w.xSelectCallback = exprSelectWalkTableConstant; 002608 }else{ 002609 w.xSelectCallback = sqlite3SelectWalkFail; 002610 #ifdef SQLITE_DEBUG 002611 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 002612 #endif 002613 } 002614 w.u.iCur = iCur; 002615 sqlite3WalkExpr(&w, p); 002616 return w.eCode; 002617 } 002618 002619 /* 002620 ** Check pExpr to see if it is an constraint on the single data source 002621 ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr 002622 ** constrains pSrc but does not depend on any other tables or data 002623 ** sources anywhere else in the query. Return true (non-zero) if pExpr 002624 ** is a constraint on pSrc only. 002625 ** 002626 ** This is an optimization. False negatives will perhaps cause slower 002627 ** queries, but false positives will yield incorrect answers. So when in 002628 ** doubt, return 0. 002629 ** 002630 ** To be an single-source constraint, the following must be true: 002631 ** 002632 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 002633 ** 002634 ** (2a) pExpr cannot use subqueries unless the bAllowSubq parameter is 002635 ** true and the subquery is non-correlated 002636 ** 002637 ** (2b) pExpr cannot use non-deterministic functions. 002638 ** 002639 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 002640 ** (Is there some way to relax this constraint?) 002641 ** 002642 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 002643 ** (4a) pExpr must come from an ON clause.. 002644 ** (4b) and specifically the ON clause associated with the LEFT JOIN. 002645 ** 002646 ** (5) If pSrc is the right operand of a LEFT JOIN or the left 002647 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 002648 ** clause, not an ON clause. 002649 ** 002650 ** (6) Either: 002651 ** 002652 ** (6a) pExpr does not originate in an ON or USING clause, or 002653 ** 002654 ** (6b) The ON or USING clause from which pExpr is derived is 002655 ** not to the left of a RIGHT JOIN (or FULL JOIN). 002656 ** 002657 ** Without this restriction, accepting pExpr as a single-table 002658 ** constraint might move the the ON/USING filter expression 002659 ** from the left side of a RIGHT JOIN over to the right side, 002660 ** which leads to incorrect answers. See also restriction (9) 002661 ** on push-down. 002662 */ 002663 int sqlite3ExprIsSingleTableConstraint( 002664 Expr *pExpr, /* The constraint */ 002665 const SrcList *pSrcList, /* Complete FROM clause */ 002666 int iSrc, /* Which element of pSrcList to use */ 002667 int bAllowSubq /* Allow non-correlated subqueries */ 002668 ){ 002669 const SrcItem *pSrc = &pSrcList->a[iSrc]; 002670 if( pSrc->fg.jointype & JT_LTORJ ){ 002671 return 0; /* rule (3) */ 002672 } 002673 if( pSrc->fg.jointype & JT_LEFT ){ 002674 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 002675 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 002676 }else{ 002677 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 002678 } 002679 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */ 002680 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */ 002681 ){ 002682 int jj; 002683 for(jj=0; jj<iSrc; jj++){ 002684 if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){ 002685 if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){ 002686 return 0; /* restriction (6) */ 002687 } 002688 break; 002689 } 002690 } 002691 } 002692 /* Rules (1), (2a), and (2b) handled by the following: */ 002693 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor, bAllowSubq); 002694 } 002695 002696 002697 /* 002698 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 002699 */ 002700 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 002701 ExprList *pGroupBy = pWalker->u.pGroupBy; 002702 int i; 002703 002704 /* Check if pExpr is identical to any GROUP BY term. If so, consider 002705 ** it constant. */ 002706 for(i=0; i<pGroupBy->nExpr; i++){ 002707 Expr *p = pGroupBy->a[i].pExpr; 002708 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 002709 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 002710 if( sqlite3IsBinary(pColl) ){ 002711 return WRC_Prune; 002712 } 002713 } 002714 } 002715 002716 /* Check if pExpr is a sub-select. If so, consider it variable. */ 002717 if( ExprUseXSelect(pExpr) ){ 002718 pWalker->eCode = 0; 002719 return WRC_Abort; 002720 } 002721 002722 return exprNodeIsConstant(pWalker, pExpr); 002723 } 002724 002725 /* 002726 ** Walk the expression tree passed as the first argument. Return non-zero 002727 ** if the expression consists entirely of constants or copies of terms 002728 ** in pGroupBy that sort with the BINARY collation sequence. 002729 ** 002730 ** This routine is used to determine if a term of the HAVING clause can 002731 ** be promoted into the WHERE clause. In order for such a promotion to work, 002732 ** the value of the HAVING clause term must be the same for all members of 002733 ** a "group". The requirement that the GROUP BY term must be BINARY 002734 ** assumes that no other collating sequence will have a finer-grained 002735 ** grouping than binary. In other words (A=B COLLATE binary) implies 002736 ** A=B in every other collating sequence. The requirement that the 002737 ** GROUP BY be BINARY is stricter than necessary. It would also work 002738 ** to promote HAVING clauses that use the same alternative collating 002739 ** sequence as the GROUP BY term, but that is much harder to check, 002740 ** alternative collating sequences are uncommon, and this is only an 002741 ** optimization, so we take the easy way out and simply require the 002742 ** GROUP BY to use the BINARY collating sequence. 002743 */ 002744 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 002745 Walker w; 002746 w.eCode = 1; 002747 w.xExprCallback = exprNodeIsConstantOrGroupBy; 002748 w.xSelectCallback = 0; 002749 w.u.pGroupBy = pGroupBy; 002750 w.pParse = pParse; 002751 sqlite3WalkExpr(&w, p); 002752 return w.eCode; 002753 } 002754 002755 /* 002756 ** Walk an expression tree for the DEFAULT field of a column definition 002757 ** in a CREATE TABLE statement. Return non-zero if the expression is 002758 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 002759 ** the expression is constant or a function call with constant arguments. 002760 ** Return and 0 if there are any variables. 002761 ** 002762 ** isInit is true when parsing from sqlite_schema. isInit is false when 002763 ** processing a new CREATE TABLE statement. When isInit is true, parameters 002764 ** (such as ? or $abc) in the expression are converted into NULL. When 002765 ** isInit is false, parameters raise an error. Parameters should not be 002766 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 002767 ** allowed it, so we need to support it when reading sqlite_schema for 002768 ** backwards compatibility. 002769 ** 002770 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 002771 ** 002772 ** For the purposes of this function, a double-quoted string (ex: "abc") 002773 ** is considered a variable but a single-quoted string (ex: 'abc') is 002774 ** a constant. 002775 */ 002776 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 002777 assert( isInit==0 || isInit==1 ); 002778 return exprIsConst(0, p, 4+isInit); 002779 } 002780 002781 #ifdef SQLITE_ENABLE_CURSOR_HINTS 002782 /* 002783 ** Walk an expression tree. Return 1 if the expression contains a 002784 ** subquery of some kind. Return 0 if there are no subqueries. 002785 */ 002786 int sqlite3ExprContainsSubquery(Expr *p){ 002787 Walker w; 002788 w.eCode = 1; 002789 w.xExprCallback = sqlite3ExprWalkNoop; 002790 w.xSelectCallback = sqlite3SelectWalkFail; 002791 #ifdef SQLITE_DEBUG 002792 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 002793 #endif 002794 sqlite3WalkExpr(&w, p); 002795 return w.eCode==0; 002796 } 002797 #endif 002798 002799 /* 002800 ** If the expression p codes a constant integer that is small enough 002801 ** to fit in a 32-bit integer, return 1 and put the value of the integer 002802 ** in *pValue. If the expression is not an integer or if it is too big 002803 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 002804 ** 002805 ** If the pParse pointer is provided, then allow the expression p to be 002806 ** a parameter (TK_VARIABLE) that is bound to an integer. 002807 ** But if pParse is NULL, then p must be a pure integer literal. 002808 */ 002809 int sqlite3ExprIsInteger(const Expr *p, int *pValue, Parse *pParse){ 002810 int rc = 0; 002811 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 002812 002813 /* If an expression is an integer literal that fits in a signed 32-bit 002814 ** integer, then the EP_IntValue flag will have already been set */ 002815 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 002816 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 002817 002818 if( p->flags & EP_IntValue ){ 002819 *pValue = p->u.iValue; 002820 return 1; 002821 } 002822 switch( p->op ){ 002823 case TK_UPLUS: { 002824 rc = sqlite3ExprIsInteger(p->pLeft, pValue, 0); 002825 break; 002826 } 002827 case TK_UMINUS: { 002828 int v = 0; 002829 if( sqlite3ExprIsInteger(p->pLeft, &v, 0) ){ 002830 assert( ((unsigned int)v)!=0x80000000 ); 002831 *pValue = -v; 002832 rc = 1; 002833 } 002834 break; 002835 } 002836 case TK_VARIABLE: { 002837 sqlite3_value *pVal; 002838 if( pParse==0 ) break; 002839 if( NEVER(pParse->pVdbe==0) ) break; 002840 if( (pParse->db->flags & SQLITE_EnableQPSG)!=0 ) break; 002841 sqlite3VdbeSetVarmask(pParse->pVdbe, p->iColumn); 002842 pVal = sqlite3VdbeGetBoundValue(pParse->pReprepare, p->iColumn, 002843 SQLITE_AFF_BLOB); 002844 if( pVal ){ 002845 if( sqlite3_value_type(pVal)==SQLITE_INTEGER ){ 002846 sqlite3_int64 vv = sqlite3_value_int64(pVal); 002847 if( vv == (vv & 0x7fffffff) ){ /* non-negative numbers only */ 002848 *pValue = (int)vv; 002849 rc = 1; 002850 } 002851 } 002852 sqlite3ValueFree(pVal); 002853 } 002854 break; 002855 } 002856 default: break; 002857 } 002858 return rc; 002859 } 002860 002861 /* 002862 ** Return FALSE if there is no chance that the expression can be NULL. 002863 ** 002864 ** If the expression might be NULL or if the expression is too complex 002865 ** to tell return TRUE. 002866 ** 002867 ** This routine is used as an optimization, to skip OP_IsNull opcodes 002868 ** when we know that a value cannot be NULL. Hence, a false positive 002869 ** (returning TRUE when in fact the expression can never be NULL) might 002870 ** be a small performance hit but is otherwise harmless. On the other 002871 ** hand, a false negative (returning FALSE when the result could be NULL) 002872 ** will likely result in an incorrect answer. So when in doubt, return 002873 ** TRUE. 002874 */ 002875 int sqlite3ExprCanBeNull(const Expr *p){ 002876 u8 op; 002877 assert( p!=0 ); 002878 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 002879 p = p->pLeft; 002880 assert( p!=0 ); 002881 } 002882 op = p->op; 002883 if( op==TK_REGISTER ) op = p->op2; 002884 switch( op ){ 002885 case TK_INTEGER: 002886 case TK_STRING: 002887 case TK_FLOAT: 002888 case TK_BLOB: 002889 return 0; 002890 case TK_COLUMN: 002891 assert( ExprUseYTab(p) ); 002892 return ExprHasProperty(p, EP_CanBeNull) 002893 || NEVER(p->y.pTab==0) /* Reference to column of index on expr */ 002894 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 002895 || (p->iColumn==XN_ROWID && IsView(p->y.pTab)) 002896 #endif 002897 || (p->iColumn>=0 002898 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 002899 && ALWAYS(p->iColumn<p->y.pTab->nCol) 002900 && p->y.pTab->aCol[p->iColumn].notNull==0); 002901 default: 002902 return 1; 002903 } 002904 } 002905 002906 /* 002907 ** Return TRUE if the given expression is a constant which would be 002908 ** unchanged by OP_Affinity with the affinity given in the second 002909 ** argument. 002910 ** 002911 ** This routine is used to determine if the OP_Affinity operation 002912 ** can be omitted. When in doubt return FALSE. A false negative 002913 ** is harmless. A false positive, however, can result in the wrong 002914 ** answer. 002915 */ 002916 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 002917 u8 op; 002918 int unaryMinus = 0; 002919 if( aff==SQLITE_AFF_BLOB ) return 1; 002920 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 002921 if( p->op==TK_UMINUS ) unaryMinus = 1; 002922 p = p->pLeft; 002923 } 002924 op = p->op; 002925 if( op==TK_REGISTER ) op = p->op2; 002926 switch( op ){ 002927 case TK_INTEGER: { 002928 return aff>=SQLITE_AFF_NUMERIC; 002929 } 002930 case TK_FLOAT: { 002931 return aff>=SQLITE_AFF_NUMERIC; 002932 } 002933 case TK_STRING: { 002934 return !unaryMinus && aff==SQLITE_AFF_TEXT; 002935 } 002936 case TK_BLOB: { 002937 return !unaryMinus; 002938 } 002939 case TK_COLUMN: { 002940 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 002941 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 002942 } 002943 default: { 002944 return 0; 002945 } 002946 } 002947 } 002948 002949 /* 002950 ** Return TRUE if the given string is a row-id column name. 002951 */ 002952 int sqlite3IsRowid(const char *z){ 002953 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 002954 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 002955 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 002956 return 0; 002957 } 002958 002959 /* 002960 ** Return a pointer to a buffer containing a usable rowid alias for table 002961 ** pTab. An alias is usable if there is not an explicit user-defined column 002962 ** of the same name. 002963 */ 002964 const char *sqlite3RowidAlias(Table *pTab){ 002965 const char *azOpt[] = {"_ROWID_", "ROWID", "OID"}; 002966 int ii; 002967 assert( VisibleRowid(pTab) ); 002968 for(ii=0; ii<ArraySize(azOpt); ii++){ 002969 int iCol; 002970 for(iCol=0; iCol<pTab->nCol; iCol++){ 002971 if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break; 002972 } 002973 if( iCol==pTab->nCol ){ 002974 return azOpt[ii]; 002975 } 002976 } 002977 return 0; 002978 } 002979 002980 /* 002981 ** pX is the RHS of an IN operator. If pX is a SELECT statement 002982 ** that can be simplified to a direct table access, then return 002983 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 002984 ** or if the SELECT statement needs to be materialized into a transient 002985 ** table, then return NULL. 002986 */ 002987 #ifndef SQLITE_OMIT_SUBQUERY 002988 static Select *isCandidateForInOpt(const Expr *pX){ 002989 Select *p; 002990 SrcList *pSrc; 002991 ExprList *pEList; 002992 Table *pTab; 002993 int i; 002994 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 002995 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 002996 p = pX->x.pSelect; 002997 if( p->pPrior ) return 0; /* Not a compound SELECT */ 002998 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 002999 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 003000 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 003001 return 0; /* No DISTINCT keyword and no aggregate functions */ 003002 } 003003 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 003004 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 003005 if( p->pWhere ) return 0; /* Has no WHERE clause */ 003006 pSrc = p->pSrc; 003007 assert( pSrc!=0 ); 003008 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 003009 if( pSrc->a[0].fg.isSubquery) return 0;/* FROM is not a subquery or view */ 003010 pTab = pSrc->a[0].pSTab; 003011 assert( pTab!=0 ); 003012 assert( !IsView(pTab) ); /* FROM clause is not a view */ 003013 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 003014 pEList = p->pEList; 003015 assert( pEList!=0 ); 003016 /* All SELECT results must be columns. */ 003017 for(i=0; i<pEList->nExpr; i++){ 003018 Expr *pRes = pEList->a[i].pExpr; 003019 if( pRes->op!=TK_COLUMN ) return 0; 003020 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 003021 } 003022 return p; 003023 } 003024 #endif /* SQLITE_OMIT_SUBQUERY */ 003025 003026 #ifndef SQLITE_OMIT_SUBQUERY 003027 /* 003028 ** Generate code that checks the left-most column of index table iCur to see if 003029 ** it contains any NULL entries. Cause the register at regHasNull to be set 003030 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 003031 ** to be set to NULL if iCur contains one or more NULL values. 003032 */ 003033 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 003034 int addr1; 003035 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 003036 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 003037 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 003038 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 003039 VdbeComment((v, "first_entry_in(%d)", iCur)); 003040 sqlite3VdbeJumpHere(v, addr1); 003041 } 003042 #endif 003043 003044 003045 #ifndef SQLITE_OMIT_SUBQUERY 003046 /* 003047 ** The argument is an IN operator with a list (not a subquery) on the 003048 ** right-hand side. Return TRUE if that list is constant. 003049 */ 003050 static int sqlite3InRhsIsConstant(Parse *pParse, Expr *pIn){ 003051 Expr *pLHS; 003052 int res; 003053 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 003054 pLHS = pIn->pLeft; 003055 pIn->pLeft = 0; 003056 res = sqlite3ExprIsConstant(pParse, pIn); 003057 pIn->pLeft = pLHS; 003058 return res; 003059 } 003060 #endif 003061 003062 /* 003063 ** This function is used by the implementation of the IN (...) operator. 003064 ** The pX parameter is the expression on the RHS of the IN operator, which 003065 ** might be either a list of expressions or a subquery. 003066 ** 003067 ** The job of this routine is to find or create a b-tree object that can 003068 ** be used either to test for membership in the RHS set or to iterate through 003069 ** all members of the RHS set, skipping duplicates. 003070 ** 003071 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 003072 ** and the *piTab parameter is set to the index of that cursor. 003073 ** 003074 ** The returned value of this function indicates the b-tree type, as follows: 003075 ** 003076 ** IN_INDEX_ROWID - The cursor was opened on a database table. 003077 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 003078 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 003079 ** IN_INDEX_EPH - The cursor was opened on a specially created and 003080 ** populated ephemeral table. 003081 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 003082 ** implemented as a sequence of comparisons. 003083 ** 003084 ** An existing b-tree might be used if the RHS expression pX is a simple 003085 ** subquery such as: 003086 ** 003087 ** SELECT <column1>, <column2>... FROM <table> 003088 ** 003089 ** If the RHS of the IN operator is a list or a more complex subquery, then 003090 ** an ephemeral table might need to be generated from the RHS and then 003091 ** pX->iTable made to point to the ephemeral table instead of an 003092 ** existing table. In this case, the creation and initialization of the 003093 ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag 003094 ** will be set on pX and the pX->y.sub fields will be set to show where 003095 ** the subroutine is coded. 003096 ** 003097 ** The inFlags parameter must contain, at a minimum, one of the bits 003098 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 003099 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 003100 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 003101 ** be used to loop over all values of the RHS of the IN operator. 003102 ** 003103 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 003104 ** through the set members) then the b-tree must not contain duplicates. 003105 ** An ephemeral table will be created unless the selected columns are guaranteed 003106 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 003107 ** a UNIQUE constraint or index. 003108 ** 003109 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 003110 ** for fast set membership tests) then an ephemeral table must 003111 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 003112 ** index can be found with the specified <columns> as its left-most. 003113 ** 003114 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 003115 ** if the RHS of the IN operator is a list (not a subquery) then this 003116 ** routine might decide that creating an ephemeral b-tree for membership 003117 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 003118 ** calling routine should implement the IN operator using a sequence 003119 ** of Eq or Ne comparison operations. 003120 ** 003121 ** When the b-tree is being used for membership tests, the calling function 003122 ** might need to know whether or not the RHS side of the IN operator 003123 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 003124 ** if there is any chance that the (...) might contain a NULL value at 003125 ** runtime, then a register is allocated and the register number written 003126 ** to *prRhsHasNull. If there is no chance that the (...) contains a 003127 ** NULL value, then *prRhsHasNull is left unchanged. 003128 ** 003129 ** If a register is allocated and its location stored in *prRhsHasNull, then 003130 ** the value in that register will be NULL if the b-tree contains one or more 003131 ** NULL values, and it will be some non-NULL value if the b-tree contains no 003132 ** NULL values. 003133 ** 003134 ** If the aiMap parameter is not NULL, it must point to an array containing 003135 ** one element for each column returned by the SELECT statement on the RHS 003136 ** of the IN(...) operator. The i'th entry of the array is populated with the 003137 ** offset of the index column that matches the i'th column returned by the 003138 ** SELECT. For example, if the expression and selected index are: 003139 ** 003140 ** (?,?,?) IN (SELECT a, b, c FROM t1) 003141 ** CREATE INDEX i1 ON t1(b, c, a); 003142 ** 003143 ** then aiMap[] is populated with {2, 0, 1}. 003144 */ 003145 #ifndef SQLITE_OMIT_SUBQUERY 003146 int sqlite3FindInIndex( 003147 Parse *pParse, /* Parsing context */ 003148 Expr *pX, /* The IN expression */ 003149 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 003150 int *prRhsHasNull, /* Register holding NULL status. See notes */ 003151 int *aiMap, /* Mapping from Index fields to RHS fields */ 003152 int *piTab /* OUT: index to use */ 003153 ){ 003154 Select *p; /* SELECT to the right of IN operator */ 003155 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 003156 int iTab; /* Cursor of the RHS table */ 003157 int mustBeUnique; /* True if RHS must be unique */ 003158 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 003159 003160 assert( pX->op==TK_IN ); 003161 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 003162 iTab = pParse->nTab++; 003163 003164 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 003165 ** whether or not the SELECT result contains NULL values, check whether 003166 ** or not NULL is actually possible (it may not be, for example, due 003167 ** to NOT NULL constraints in the schema). If no NULL values are possible, 003168 ** set prRhsHasNull to 0 before continuing. */ 003169 if( prRhsHasNull && ExprUseXSelect(pX) ){ 003170 int i; 003171 ExprList *pEList = pX->x.pSelect->pEList; 003172 for(i=0; i<pEList->nExpr; i++){ 003173 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 003174 } 003175 if( i==pEList->nExpr ){ 003176 prRhsHasNull = 0; 003177 } 003178 } 003179 003180 /* Check to see if an existing table or index can be used to 003181 ** satisfy the query. This is preferable to generating a new 003182 ** ephemeral table. */ 003183 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 003184 sqlite3 *db = pParse->db; /* Database connection */ 003185 Table *pTab; /* Table <table>. */ 003186 int iDb; /* Database idx for pTab */ 003187 ExprList *pEList = p->pEList; 003188 int nExpr = pEList->nExpr; 003189 003190 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 003191 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 003192 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 003193 pTab = p->pSrc->a[0].pSTab; 003194 003195 /* Code an OP_Transaction and OP_TableLock for <table>. */ 003196 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 003197 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 003198 sqlite3CodeVerifySchema(pParse, iDb); 003199 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 003200 003201 assert(v); /* sqlite3GetVdbe() has always been previously called */ 003202 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 003203 /* The "x IN (SELECT rowid FROM table)" case */ 003204 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 003205 VdbeCoverage(v); 003206 003207 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 003208 eType = IN_INDEX_ROWID; 003209 ExplainQueryPlan((pParse, 0, 003210 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 003211 sqlite3VdbeJumpHere(v, iAddr); 003212 }else{ 003213 Index *pIdx; /* Iterator variable */ 003214 int affinity_ok = 1; 003215 int i; 003216 003217 /* Check that the affinity that will be used to perform each 003218 ** comparison is the same as the affinity of each column in table 003219 ** on the RHS of the IN operator. If it not, it is not possible to 003220 ** use any index of the RHS table. */ 003221 for(i=0; i<nExpr && affinity_ok; i++){ 003222 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 003223 int iCol = pEList->a[i].pExpr->iColumn; 003224 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 003225 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 003226 testcase( cmpaff==SQLITE_AFF_BLOB ); 003227 testcase( cmpaff==SQLITE_AFF_TEXT ); 003228 switch( cmpaff ){ 003229 case SQLITE_AFF_BLOB: 003230 break; 003231 case SQLITE_AFF_TEXT: 003232 /* sqlite3CompareAffinity() only returns TEXT if one side or the 003233 ** other has no affinity and the other side is TEXT. Hence, 003234 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 003235 ** and for the term on the LHS of the IN to have no affinity. */ 003236 assert( idxaff==SQLITE_AFF_TEXT ); 003237 break; 003238 default: 003239 affinity_ok = sqlite3IsNumericAffinity(idxaff); 003240 } 003241 } 003242 003243 if( affinity_ok ){ 003244 /* Search for an existing index that will work for this IN operator */ 003245 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 003246 Bitmask colUsed; /* Columns of the index used */ 003247 Bitmask mCol; /* Mask for the current column */ 003248 if( pIdx->nColumn<nExpr ) continue; 003249 if( pIdx->pPartIdxWhere!=0 ) continue; 003250 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 003251 ** BITMASK(nExpr) without overflowing */ 003252 testcase( pIdx->nColumn==BMS-2 ); 003253 testcase( pIdx->nColumn==BMS-1 ); 003254 if( pIdx->nColumn>=BMS-1 ) continue; 003255 if( mustBeUnique ){ 003256 if( pIdx->nKeyCol>nExpr 003257 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 003258 ){ 003259 continue; /* This index is not unique over the IN RHS columns */ 003260 } 003261 } 003262 003263 colUsed = 0; /* Columns of index used so far */ 003264 for(i=0; i<nExpr; i++){ 003265 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 003266 Expr *pRhs = pEList->a[i].pExpr; 003267 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 003268 int j; 003269 003270 for(j=0; j<nExpr; j++){ 003271 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 003272 assert( pIdx->azColl[j] ); 003273 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 003274 continue; 003275 } 003276 break; 003277 } 003278 if( j==nExpr ) break; 003279 mCol = MASKBIT(j); 003280 if( mCol & colUsed ) break; /* Each column used only once */ 003281 colUsed |= mCol; 003282 if( aiMap ) aiMap[i] = j; 003283 } 003284 003285 assert( nExpr>0 && nExpr<BMS ); 003286 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 003287 if( colUsed==(MASKBIT(nExpr)-1) ){ 003288 /* If we reach this point, that means the index pIdx is usable */ 003289 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003290 ExplainQueryPlan((pParse, 0, 003291 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 003292 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 003293 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 003294 VdbeComment((v, "%s", pIdx->zName)); 003295 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 003296 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 003297 003298 if( prRhsHasNull ){ 003299 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 003300 i64 mask = (1<<nExpr)-1; 003301 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 003302 iTab, 0, 0, (u8*)&mask, P4_INT64); 003303 #endif 003304 *prRhsHasNull = ++pParse->nMem; 003305 if( nExpr==1 ){ 003306 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 003307 } 003308 } 003309 sqlite3VdbeJumpHere(v, iAddr); 003310 } 003311 } /* End loop over indexes */ 003312 } /* End if( affinity_ok ) */ 003313 } /* End if not an rowid index */ 003314 } /* End attempt to optimize using an index */ 003315 003316 /* If no preexisting index is available for the IN clause 003317 ** and IN_INDEX_NOOP is an allowed reply 003318 ** and the RHS of the IN operator is a list, not a subquery 003319 ** and the RHS is not constant or has two or fewer terms, 003320 ** then it is not worth creating an ephemeral table to evaluate 003321 ** the IN operator so return IN_INDEX_NOOP. 003322 */ 003323 if( eType==0 003324 && (inFlags & IN_INDEX_NOOP_OK) 003325 && ExprUseXList(pX) 003326 && (!sqlite3InRhsIsConstant(pParse,pX) || pX->x.pList->nExpr<=2) 003327 ){ 003328 pParse->nTab--; /* Back out the allocation of the unused cursor */ 003329 iTab = -1; /* Cursor is not allocated */ 003330 eType = IN_INDEX_NOOP; 003331 } 003332 003333 if( eType==0 ){ 003334 /* Could not find an existing table or index to use as the RHS b-tree. 003335 ** We will have to generate an ephemeral table to do the job. 003336 */ 003337 u32 savedNQueryLoop = pParse->nQueryLoop; 003338 int rMayHaveNull = 0; 003339 eType = IN_INDEX_EPH; 003340 if( inFlags & IN_INDEX_LOOP ){ 003341 pParse->nQueryLoop = 0; 003342 }else if( prRhsHasNull ){ 003343 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 003344 } 003345 assert( pX->op==TK_IN ); 003346 sqlite3CodeRhsOfIN(pParse, pX, iTab); 003347 if( rMayHaveNull ){ 003348 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 003349 } 003350 pParse->nQueryLoop = savedNQueryLoop; 003351 } 003352 003353 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 003354 int i, n; 003355 n = sqlite3ExprVectorSize(pX->pLeft); 003356 for(i=0; i<n; i++) aiMap[i] = i; 003357 } 003358 *piTab = iTab; 003359 return eType; 003360 } 003361 #endif 003362 003363 #ifndef SQLITE_OMIT_SUBQUERY 003364 /* 003365 ** Argument pExpr is an (?, ?...) IN(...) expression. This 003366 ** function allocates and returns a nul-terminated string containing 003367 ** the affinities to be used for each column of the comparison. 003368 ** 003369 ** It is the responsibility of the caller to ensure that the returned 003370 ** string is eventually freed using sqlite3DbFree(). 003371 */ 003372 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 003373 Expr *pLeft = pExpr->pLeft; 003374 int nVal = sqlite3ExprVectorSize(pLeft); 003375 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 003376 char *zRet; 003377 003378 assert( pExpr->op==TK_IN ); 003379 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 003380 if( zRet ){ 003381 int i; 003382 for(i=0; i<nVal; i++){ 003383 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 003384 char a = sqlite3ExprAffinity(pA); 003385 if( pSelect ){ 003386 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 003387 }else{ 003388 zRet[i] = a; 003389 } 003390 } 003391 zRet[nVal] = '\0'; 003392 } 003393 return zRet; 003394 } 003395 #endif 003396 003397 #ifndef SQLITE_OMIT_SUBQUERY 003398 /* 003399 ** Load the Parse object passed as the first argument with an error 003400 ** message of the form: 003401 ** 003402 ** "sub-select returns N columns - expected M" 003403 */ 003404 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 003405 if( pParse->nErr==0 ){ 003406 const char *zFmt = "sub-select returns %d columns - expected %d"; 003407 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 003408 } 003409 } 003410 #endif 003411 003412 /* 003413 ** Expression pExpr is a vector that has been used in a context where 003414 ** it is not permitted. If pExpr is a sub-select vector, this routine 003415 ** loads the Parse object with a message of the form: 003416 ** 003417 ** "sub-select returns N columns - expected 1" 003418 ** 003419 ** Or, if it is a regular scalar vector: 003420 ** 003421 ** "row value misused" 003422 */ 003423 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 003424 #ifndef SQLITE_OMIT_SUBQUERY 003425 if( ExprUseXSelect(pExpr) ){ 003426 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 003427 }else 003428 #endif 003429 { 003430 sqlite3ErrorMsg(pParse, "row value misused"); 003431 } 003432 } 003433 003434 #ifndef SQLITE_OMIT_SUBQUERY 003435 /* 003436 ** Scan all previously generated bytecode looking for an OP_BeginSubrtn 003437 ** that is compatible with pExpr. If found, add the y.sub values 003438 ** to pExpr and return true. If not found, return false. 003439 */ 003440 static int findCompatibleInRhsSubrtn( 003441 Parse *pParse, /* Parsing context */ 003442 Expr *pExpr, /* IN operator with RHS that we want to reuse */ 003443 SubrtnSig *pNewSig /* Signature for the IN operator */ 003444 ){ 003445 VdbeOp *pOp, *pEnd; 003446 SubrtnSig *pSig; 003447 Vdbe *v; 003448 003449 if( pNewSig==0 ) return 0; 003450 if( (pParse->mSubrtnSig & (1<<(pNewSig->selId&7)))==0 ) return 0; 003451 assert( pExpr->op==TK_IN ); 003452 assert( !ExprUseYSub(pExpr) ); 003453 assert( ExprUseXSelect(pExpr) ); 003454 assert( pExpr->x.pSelect!=0 ); 003455 assert( (pExpr->x.pSelect->selFlags & SF_All)==0 ); 003456 v = pParse->pVdbe; 003457 assert( v!=0 ); 003458 pOp = sqlite3VdbeGetOp(v, 1); 003459 pEnd = sqlite3VdbeGetLastOp(v); 003460 for(; pOp<pEnd; pOp++){ 003461 if( pOp->p4type!=P4_SUBRTNSIG ) continue; 003462 assert( pOp->opcode==OP_BeginSubrtn ); 003463 pSig = pOp->p4.pSubrtnSig; 003464 assert( pSig!=0 ); 003465 if( !pSig->bComplete ) continue; 003466 if( pNewSig->selId!=pSig->selId ) continue; 003467 if( strcmp(pNewSig->zAff,pSig->zAff)!=0 ) continue; 003468 pExpr->y.sub.iAddr = pSig->iAddr; 003469 pExpr->y.sub.regReturn = pSig->regReturn; 003470 pExpr->iTable = pSig->iTable; 003471 ExprSetProperty(pExpr, EP_Subrtn); 003472 return 1; 003473 } 003474 return 0; 003475 } 003476 #endif /* SQLITE_OMIT_SUBQUERY */ 003477 003478 #ifndef SQLITE_OMIT_SUBQUERY 003479 /* 003480 ** Generate code that will construct an ephemeral table containing all terms 003481 ** in the RHS of an IN operator. The IN operator can be in either of two 003482 ** forms: 003483 ** 003484 ** x IN (4,5,11) -- IN operator with list on right-hand side 003485 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 003486 ** 003487 ** The pExpr parameter is the IN operator. The cursor number for the 003488 ** constructed ephemeral table is returned. The first time the ephemeral 003489 ** table is computed, the cursor number is also stored in pExpr->iTable, 003490 ** however the cursor number returned might not be the same, as it might 003491 ** have been duplicated using OP_OpenDup. 003492 ** 003493 ** If the LHS expression ("x" in the examples) is a column value, or 003494 ** the SELECT statement returns a column value, then the affinity of that 003495 ** column is used to build the index keys. If both 'x' and the 003496 ** SELECT... statement are columns, then numeric affinity is used 003497 ** if either column has NUMERIC or INTEGER affinity. If neither 003498 ** 'x' nor the SELECT... statement are columns, then numeric affinity 003499 ** is used. 003500 */ 003501 void sqlite3CodeRhsOfIN( 003502 Parse *pParse, /* Parsing context */ 003503 Expr *pExpr, /* The IN operator */ 003504 int iTab /* Use this cursor number */ 003505 ){ 003506 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 003507 int addr; /* Address of OP_OpenEphemeral instruction */ 003508 Expr *pLeft; /* the LHS of the IN operator */ 003509 KeyInfo *pKeyInfo = 0; /* Key information */ 003510 int nVal; /* Size of vector pLeft */ 003511 Vdbe *v; /* The prepared statement under construction */ 003512 SubrtnSig *pSig = 0; /* Signature for this subroutine */ 003513 003514 v = pParse->pVdbe; 003515 assert( v!=0 ); 003516 003517 /* The evaluation of the IN must be repeated every time it 003518 ** is encountered if any of the following is true: 003519 ** 003520 ** * The right-hand side is a correlated subquery 003521 ** * The right-hand side is an expression list containing variables 003522 ** * We are inside a trigger 003523 ** 003524 ** If all of the above are false, then we can compute the RHS just once 003525 ** and reuse it many names. 003526 */ 003527 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 003528 /* Reuse of the RHS is allowed 003529 ** 003530 ** Compute a signature for the RHS of the IN operator to facility 003531 ** finding and reusing prior instances of the same IN operator. 003532 */ 003533 assert( !ExprUseXSelect(pExpr) || pExpr->x.pSelect!=0 ); 003534 if( ExprUseXSelect(pExpr) && (pExpr->x.pSelect->selFlags & SF_All)==0 ){ 003535 pSig = sqlite3DbMallocRawNN(pParse->db, sizeof(pSig[0])); 003536 if( pSig ){ 003537 pSig->selId = pExpr->x.pSelect->selId; 003538 pSig->zAff = exprINAffinity(pParse, pExpr); 003539 } 003540 } 003541 003542 /* Check to see if there is a prior materialization of the RHS of 003543 ** this IN operator. If there is, then make use of that prior 003544 ** materialization rather than recomputing it. 003545 */ 003546 if( ExprHasProperty(pExpr, EP_Subrtn) 003547 || findCompatibleInRhsSubrtn(pParse, pExpr, pSig) 003548 ){ 003549 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003550 if( ExprUseXSelect(pExpr) ){ 003551 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 003552 pExpr->x.pSelect->selId)); 003553 } 003554 assert( ExprUseYSub(pExpr) ); 003555 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 003556 pExpr->y.sub.iAddr); 003557 assert( iTab!=pExpr->iTable ); 003558 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 003559 sqlite3VdbeJumpHere(v, addrOnce); 003560 if( pSig ){ 003561 sqlite3DbFree(pParse->db, pSig->zAff); 003562 sqlite3DbFree(pParse->db, pSig); 003563 } 003564 return; 003565 } 003566 003567 /* Begin coding the subroutine */ 003568 assert( !ExprUseYWin(pExpr) ); 003569 ExprSetProperty(pExpr, EP_Subrtn); 003570 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 003571 pExpr->y.sub.regReturn = ++pParse->nMem; 003572 pExpr->y.sub.iAddr = 003573 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 003574 if( pSig ){ 003575 pSig->bComplete = 0; 003576 pSig->iAddr = pExpr->y.sub.iAddr; 003577 pSig->regReturn = pExpr->y.sub.regReturn; 003578 pSig->iTable = iTab; 003579 pParse->mSubrtnSig = 1 << (pSig->selId&7); 003580 sqlite3VdbeChangeP4(v, -1, (const char*)pSig, P4_SUBRTNSIG); 003581 } 003582 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003583 } 003584 003585 /* Check to see if this is a vector IN operator */ 003586 pLeft = pExpr->pLeft; 003587 nVal = sqlite3ExprVectorSize(pLeft); 003588 003589 /* Construct the ephemeral table that will contain the content of 003590 ** RHS of the IN operator. 003591 */ 003592 pExpr->iTable = iTab; 003593 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 003594 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 003595 if( ExprUseXSelect(pExpr) ){ 003596 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 003597 }else{ 003598 VdbeComment((v, "RHS of IN operator")); 003599 } 003600 #endif 003601 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 003602 003603 if( ExprUseXSelect(pExpr) ){ 003604 /* Case 1: expr IN (SELECT ...) 003605 ** 003606 ** Generate code to write the results of the select into the temporary 003607 ** table allocated and opened above. 003608 */ 003609 Select *pSelect = pExpr->x.pSelect; 003610 ExprList *pEList = pSelect->pEList; 003611 003612 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 003613 addrOnce?"":"CORRELATED ", pSelect->selId 003614 )); 003615 /* If the LHS and RHS of the IN operator do not match, that 003616 ** error will have been caught long before we reach this point. */ 003617 if( ALWAYS(pEList->nExpr==nVal) ){ 003618 Select *pCopy; 003619 SelectDest dest; 003620 int i; 003621 int rc; 003622 int addrBloom = 0; 003623 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 003624 dest.zAffSdst = exprINAffinity(pParse, pExpr); 003625 pSelect->iLimit = 0; 003626 if( addrOnce && OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 003627 int regBloom = ++pParse->nMem; 003628 addrBloom = sqlite3VdbeAddOp2(v, OP_Blob, 10000, regBloom); 003629 VdbeComment((v, "Bloom filter")); 003630 dest.iSDParm2 = regBloom; 003631 } 003632 testcase( pSelect->selFlags & SF_Distinct ); 003633 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 003634 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 003635 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 003636 sqlite3SelectDelete(pParse->db, pCopy); 003637 sqlite3DbFree(pParse->db, dest.zAffSdst); 003638 if( addrBloom ){ 003639 sqlite3VdbeGetOp(v, addrOnce)->p3 = dest.iSDParm2; 003640 if( dest.iSDParm2==0 ){ 003641 sqlite3VdbeChangeToNoop(v, addrBloom); 003642 }else{ 003643 sqlite3VdbeGetOp(v, addrOnce)->p3 = dest.iSDParm2; 003644 } 003645 } 003646 if( rc ){ 003647 sqlite3KeyInfoUnref(pKeyInfo); 003648 return; 003649 } 003650 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 003651 assert( pEList!=0 ); 003652 assert( pEList->nExpr>0 ); 003653 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 003654 for(i=0; i<nVal; i++){ 003655 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 003656 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 003657 pParse, p, pEList->a[i].pExpr 003658 ); 003659 } 003660 } 003661 }else if( ALWAYS(pExpr->x.pList!=0) ){ 003662 /* Case 2: expr IN (exprlist) 003663 ** 003664 ** For each expression, build an index key from the evaluation and 003665 ** store it in the temporary table. If <expr> is a column, then use 003666 ** that columns affinity when building index keys. If <expr> is not 003667 ** a column, use numeric affinity. 003668 */ 003669 char affinity; /* Affinity of the LHS of the IN */ 003670 int i; 003671 ExprList *pList = pExpr->x.pList; 003672 struct ExprList_item *pItem; 003673 int r1, r2; 003674 affinity = sqlite3ExprAffinity(pLeft); 003675 if( affinity<=SQLITE_AFF_NONE ){ 003676 affinity = SQLITE_AFF_BLOB; 003677 }else if( affinity==SQLITE_AFF_REAL ){ 003678 affinity = SQLITE_AFF_NUMERIC; 003679 } 003680 if( pKeyInfo ){ 003681 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 003682 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 003683 } 003684 003685 /* Loop through each expression in <exprlist>. */ 003686 r1 = sqlite3GetTempReg(pParse); 003687 r2 = sqlite3GetTempReg(pParse); 003688 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 003689 Expr *pE2 = pItem->pExpr; 003690 003691 /* If the expression is not constant then we will need to 003692 ** disable the test that was generated above that makes sure 003693 ** this code only executes once. Because for a non-constant 003694 ** expression we need to rerun this code each time. 003695 */ 003696 if( addrOnce && !sqlite3ExprIsConstant(pParse, pE2) ){ 003697 sqlite3VdbeChangeToNoop(v, addrOnce-1); 003698 sqlite3VdbeChangeToNoop(v, addrOnce); 003699 ExprClearProperty(pExpr, EP_Subrtn); 003700 addrOnce = 0; 003701 } 003702 003703 /* Evaluate the expression and insert it into the temp table */ 003704 sqlite3ExprCode(pParse, pE2, r1); 003705 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 003706 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 003707 } 003708 sqlite3ReleaseTempReg(pParse, r1); 003709 sqlite3ReleaseTempReg(pParse, r2); 003710 } 003711 if( pSig ) pSig->bComplete = 1; 003712 if( pKeyInfo ){ 003713 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 003714 } 003715 if( addrOnce ){ 003716 sqlite3VdbeAddOp1(v, OP_NullRow, iTab); 003717 sqlite3VdbeJumpHere(v, addrOnce); 003718 /* Subroutine return */ 003719 assert( ExprUseYSub(pExpr) ); 003720 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 003721 || pParse->nErr ); 003722 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 003723 pExpr->y.sub.iAddr, 1); 003724 VdbeCoverage(v); 003725 sqlite3ClearTempRegCache(pParse); 003726 } 003727 } 003728 #endif /* SQLITE_OMIT_SUBQUERY */ 003729 003730 /* 003731 ** Generate code for scalar subqueries used as a subquery expression 003732 ** or EXISTS operator: 003733 ** 003734 ** (SELECT a FROM b) -- subquery 003735 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 003736 ** 003737 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 003738 ** 003739 ** Return the register that holds the result. For a multi-column SELECT, 003740 ** the result is stored in a contiguous array of registers and the 003741 ** return value is the register of the left-most result column. 003742 ** Return 0 if an error occurs. 003743 */ 003744 #ifndef SQLITE_OMIT_SUBQUERY 003745 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 003746 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 003747 int rReg = 0; /* Register storing resulting */ 003748 Select *pSel; /* SELECT statement to encode */ 003749 SelectDest dest; /* How to deal with SELECT result */ 003750 int nReg; /* Registers to allocate */ 003751 Expr *pLimit; /* New limit expression */ 003752 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 003753 int addrExplain; /* Address of OP_Explain instruction */ 003754 #endif 003755 003756 Vdbe *v = pParse->pVdbe; 003757 assert( v!=0 ); 003758 if( pParse->nErr ) return 0; 003759 testcase( pExpr->op==TK_EXISTS ); 003760 testcase( pExpr->op==TK_SELECT ); 003761 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 003762 assert( ExprUseXSelect(pExpr) ); 003763 pSel = pExpr->x.pSelect; 003764 003765 /* If this routine has already been coded, then invoke it as a 003766 ** subroutine. */ 003767 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 003768 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 003769 assert( ExprUseYSub(pExpr) ); 003770 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 003771 pExpr->y.sub.iAddr); 003772 return pExpr->iTable; 003773 } 003774 003775 /* Begin coding the subroutine */ 003776 assert( !ExprUseYWin(pExpr) ); 003777 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 003778 ExprSetProperty(pExpr, EP_Subrtn); 003779 pExpr->y.sub.regReturn = ++pParse->nMem; 003780 pExpr->y.sub.iAddr = 003781 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 003782 003783 /* The evaluation of the EXISTS/SELECT must be repeated every time it 003784 ** is encountered if any of the following is true: 003785 ** 003786 ** * The right-hand side is a correlated subquery 003787 ** * The right-hand side is an expression list containing variables 003788 ** * We are inside a trigger 003789 ** 003790 ** If all of the above are false, then we can run this code just once 003791 ** save the results, and reuse the same result on subsequent invocations. 003792 */ 003793 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 003794 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003795 } 003796 003797 /* For a SELECT, generate code to put the values for all columns of 003798 ** the first row into an array of registers and return the index of 003799 ** the first register. 003800 ** 003801 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 003802 ** into a register and return that register number. 003803 ** 003804 ** In both cases, the query is augmented with "LIMIT 1". Any 003805 ** preexisting limit is discarded in place of the new LIMIT 1. 003806 */ 003807 ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d", 003808 addrOnce?"":"CORRELATED ", pSel->selId)); 003809 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1); 003810 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 003811 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 003812 pParse->nMem += nReg; 003813 if( pExpr->op==TK_SELECT ){ 003814 dest.eDest = SRT_Mem; 003815 dest.iSdst = dest.iSDParm; 003816 dest.nSdst = nReg; 003817 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 003818 VdbeComment((v, "Init subquery result")); 003819 }else{ 003820 dest.eDest = SRT_Exists; 003821 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 003822 VdbeComment((v, "Init EXISTS result")); 003823 } 003824 if( pSel->pLimit ){ 003825 /* The subquery already has a limit. If the pre-existing limit is X 003826 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 003827 sqlite3 *db = pParse->db; 003828 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 003829 if( pLimit ){ 003830 pLimit->affExpr = SQLITE_AFF_NUMERIC; 003831 pLimit = sqlite3PExpr(pParse, TK_NE, 003832 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 003833 } 003834 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); 003835 pSel->pLimit->pLeft = pLimit; 003836 }else{ 003837 /* If there is no pre-existing limit add a limit of 1 */ 003838 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 003839 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 003840 } 003841 pSel->iLimit = 0; 003842 if( sqlite3Select(pParse, pSel, &dest) ){ 003843 pExpr->op2 = pExpr->op; 003844 pExpr->op = TK_ERROR; 003845 return 0; 003846 } 003847 pExpr->iTable = rReg = dest.iSDParm; 003848 ExprSetVVAProperty(pExpr, EP_NoReduce); 003849 if( addrOnce ){ 003850 sqlite3VdbeJumpHere(v, addrOnce); 003851 } 003852 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); 003853 003854 /* Subroutine return */ 003855 assert( ExprUseYSub(pExpr) ); 003856 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 003857 || pParse->nErr ); 003858 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 003859 pExpr->y.sub.iAddr, 1); 003860 VdbeCoverage(v); 003861 sqlite3ClearTempRegCache(pParse); 003862 return rReg; 003863 } 003864 #endif /* SQLITE_OMIT_SUBQUERY */ 003865 003866 #ifndef SQLITE_OMIT_SUBQUERY 003867 /* 003868 ** Expr pIn is an IN(...) expression. This function checks that the 003869 ** sub-select on the RHS of the IN() operator has the same number of 003870 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 003871 ** a sub-query, that the LHS is a vector of size 1. 003872 */ 003873 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 003874 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 003875 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 003876 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 003877 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 003878 return 1; 003879 } 003880 }else if( nVector!=1 ){ 003881 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 003882 return 1; 003883 } 003884 return 0; 003885 } 003886 #endif 003887 003888 #ifndef SQLITE_OMIT_SUBQUERY 003889 /* 003890 ** Generate code for an IN expression. 003891 ** 003892 ** x IN (SELECT ...) 003893 ** x IN (value, value, ...) 003894 ** 003895 ** The left-hand side (LHS) is a scalar or vector expression. The 003896 ** right-hand side (RHS) is an array of zero or more scalar values, or a 003897 ** subquery. If the RHS is a subquery, the number of result columns must 003898 ** match the number of columns in the vector on the LHS. If the RHS is 003899 ** a list of values, the LHS must be a scalar. 003900 ** 003901 ** The IN operator is true if the LHS value is contained within the RHS. 003902 ** The result is false if the LHS is definitely not in the RHS. The 003903 ** result is NULL if the presence of the LHS in the RHS cannot be 003904 ** determined due to NULLs. 003905 ** 003906 ** This routine generates code that jumps to destIfFalse if the LHS is not 003907 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 003908 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 003909 ** within the RHS then fall through. 003910 ** 003911 ** See the separate in-operator.md documentation file in the canonical 003912 ** SQLite source tree for additional information. 003913 */ 003914 static void sqlite3ExprCodeIN( 003915 Parse *pParse, /* Parsing and code generating context */ 003916 Expr *pExpr, /* The IN expression */ 003917 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 003918 int destIfNull /* Jump here if the results are unknown due to NULLs */ 003919 ){ 003920 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 003921 int eType; /* Type of the RHS */ 003922 int rLhs; /* Register(s) holding the LHS values */ 003923 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 003924 Vdbe *v; /* Statement under construction */ 003925 int *aiMap = 0; /* Map from vector field to index column */ 003926 char *zAff = 0; /* Affinity string for comparisons */ 003927 int nVector; /* Size of vectors for this IN operator */ 003928 int iDummy; /* Dummy parameter to exprCodeVector() */ 003929 Expr *pLeft; /* The LHS of the IN operator */ 003930 int i; /* loop counter */ 003931 int destStep2; /* Where to jump when NULLs seen in step 2 */ 003932 int destStep6 = 0; /* Start of code for Step 6 */ 003933 int addrTruthOp; /* Address of opcode that determines the IN is true */ 003934 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 003935 int addrTop; /* Top of the step-6 loop */ 003936 int iTab = 0; /* Index to use */ 003937 u8 okConstFactor = pParse->okConstFactor; 003938 003939 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 003940 pLeft = pExpr->pLeft; 003941 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 003942 zAff = exprINAffinity(pParse, pExpr); 003943 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 003944 aiMap = (int*)sqlite3DbMallocZero(pParse->db, nVector*sizeof(int)); 003945 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 003946 003947 /* Attempt to compute the RHS. After this step, if anything other than 003948 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 003949 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 003950 ** the RHS has not yet been coded. */ 003951 v = pParse->pVdbe; 003952 assert( v!=0 ); /* OOM detected prior to this routine */ 003953 VdbeNoopComment((v, "begin IN expr")); 003954 eType = sqlite3FindInIndex(pParse, pExpr, 003955 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 003956 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 003957 aiMap, &iTab); 003958 003959 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 003960 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 003961 ); 003962 #ifdef SQLITE_DEBUG 003963 /* Confirm that aiMap[] contains nVector integer values between 0 and 003964 ** nVector-1. */ 003965 for(i=0; i<nVector; i++){ 003966 int j, cnt; 003967 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 003968 assert( cnt==1 ); 003969 } 003970 #endif 003971 003972 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 003973 ** vector, then it is stored in an array of nVector registers starting 003974 ** at r1. 003975 ** 003976 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 003977 ** so that the fields are in the same order as an existing index. The 003978 ** aiMap[] array contains a mapping from the original LHS field order to 003979 ** the field order that matches the RHS index. 003980 ** 003981 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 003982 ** even if it is constant, as OP_Affinity may be used on the register 003983 ** by code generated below. */ 003984 assert( pParse->okConstFactor==okConstFactor ); 003985 pParse->okConstFactor = 0; 003986 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 003987 pParse->okConstFactor = okConstFactor; 003988 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 003989 if( i==nVector ){ 003990 /* LHS fields are not reordered */ 003991 rLhs = rLhsOrig; 003992 }else{ 003993 /* Need to reorder the LHS fields according to aiMap */ 003994 rLhs = sqlite3GetTempRange(pParse, nVector); 003995 for(i=0; i<nVector; i++){ 003996 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 003997 } 003998 } 003999 004000 /* If sqlite3FindInIndex() did not find or create an index that is 004001 ** suitable for evaluating the IN operator, then evaluate using a 004002 ** sequence of comparisons. 004003 ** 004004 ** This is step (1) in the in-operator.md optimized algorithm. 004005 */ 004006 if( eType==IN_INDEX_NOOP ){ 004007 ExprList *pList; 004008 CollSeq *pColl; 004009 int labelOk = sqlite3VdbeMakeLabel(pParse); 004010 int r2, regToFree; 004011 int regCkNull = 0; 004012 int ii; 004013 assert( ExprUseXList(pExpr) ); 004014 pList = pExpr->x.pList; 004015 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 004016 if( destIfNull!=destIfFalse ){ 004017 regCkNull = sqlite3GetTempReg(pParse); 004018 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 004019 } 004020 for(ii=0; ii<pList->nExpr; ii++){ 004021 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 004022 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 004023 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 004024 } 004025 sqlite3ReleaseTempReg(pParse, regToFree); 004026 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 004027 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 004028 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 004029 (void*)pColl, P4_COLLSEQ); 004030 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 004031 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 004032 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 004033 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 004034 sqlite3VdbeChangeP5(v, zAff[0]); 004035 }else{ 004036 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 004037 assert( destIfNull==destIfFalse ); 004038 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 004039 (void*)pColl, P4_COLLSEQ); 004040 VdbeCoverageIf(v, op==OP_Ne); 004041 VdbeCoverageIf(v, op==OP_IsNull); 004042 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 004043 } 004044 } 004045 if( regCkNull ){ 004046 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 004047 sqlite3VdbeGoto(v, destIfFalse); 004048 } 004049 sqlite3VdbeResolveLabel(v, labelOk); 004050 sqlite3ReleaseTempReg(pParse, regCkNull); 004051 goto sqlite3ExprCodeIN_finished; 004052 } 004053 004054 /* Step 2: Check to see if the LHS contains any NULL columns. If the 004055 ** LHS does contain NULLs then the result must be either FALSE or NULL. 004056 ** We will then skip the binary search of the RHS. 004057 */ 004058 if( destIfNull==destIfFalse ){ 004059 destStep2 = destIfFalse; 004060 }else{ 004061 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 004062 } 004063 for(i=0; i<nVector; i++){ 004064 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 004065 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 004066 if( sqlite3ExprCanBeNull(p) ){ 004067 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 004068 VdbeCoverage(v); 004069 } 004070 } 004071 004072 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 004073 ** of the RHS using the LHS as a probe. If found, the result is 004074 ** true. 004075 */ 004076 if( eType==IN_INDEX_ROWID ){ 004077 /* In this case, the RHS is the ROWID of table b-tree and so we also 004078 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 004079 ** into a single opcode. */ 004080 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 004081 VdbeCoverage(v); 004082 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 004083 }else{ 004084 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 004085 if( destIfFalse==destIfNull ){ 004086 /* Combine Step 3 and Step 5 into a single opcode */ 004087 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 004088 const VdbeOp *pOp = sqlite3VdbeGetOp(v, pExpr->y.sub.iAddr); 004089 assert( pOp->opcode==OP_Once || pParse->nErr ); 004090 if( pOp->opcode==OP_Once && pOp->p3>0 ){ 004091 assert( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ); 004092 sqlite3VdbeAddOp4Int(v, OP_Filter, pOp->p3, destIfFalse, 004093 rLhs, nVector); VdbeCoverage(v); 004094 } 004095 } 004096 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 004097 rLhs, nVector); VdbeCoverage(v); 004098 goto sqlite3ExprCodeIN_finished; 004099 } 004100 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 004101 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 004102 rLhs, nVector); VdbeCoverage(v); 004103 } 004104 004105 /* Step 4. If the RHS is known to be non-NULL and we did not find 004106 ** an match on the search above, then the result must be FALSE. 004107 */ 004108 if( rRhsHasNull && nVector==1 ){ 004109 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 004110 VdbeCoverage(v); 004111 } 004112 004113 /* Step 5. If we do not care about the difference between NULL and 004114 ** FALSE, then just return false. 004115 */ 004116 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 004117 004118 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 004119 ** If any comparison is NULL, then the result is NULL. If all 004120 ** comparisons are FALSE then the final result is FALSE. 004121 ** 004122 ** For a scalar LHS, it is sufficient to check just the first row 004123 ** of the RHS. 004124 */ 004125 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 004126 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 004127 VdbeCoverage(v); 004128 if( nVector>1 ){ 004129 destNotNull = sqlite3VdbeMakeLabel(pParse); 004130 }else{ 004131 /* For nVector==1, combine steps 6 and 7 by immediately returning 004132 ** FALSE if the first comparison is not NULL */ 004133 destNotNull = destIfFalse; 004134 } 004135 for(i=0; i<nVector; i++){ 004136 Expr *p; 004137 CollSeq *pColl; 004138 int r3 = sqlite3GetTempReg(pParse); 004139 p = sqlite3VectorFieldSubexpr(pLeft, i); 004140 pColl = sqlite3ExprCollSeq(pParse, p); 004141 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 004142 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 004143 (void*)pColl, P4_COLLSEQ); 004144 VdbeCoverage(v); 004145 sqlite3ReleaseTempReg(pParse, r3); 004146 } 004147 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 004148 if( nVector>1 ){ 004149 sqlite3VdbeResolveLabel(v, destNotNull); 004150 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 004151 VdbeCoverage(v); 004152 004153 /* Step 7: If we reach this point, we know that the result must 004154 ** be false. */ 004155 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 004156 } 004157 004158 /* Jumps here in order to return true. */ 004159 sqlite3VdbeJumpHere(v, addrTruthOp); 004160 004161 sqlite3ExprCodeIN_finished: 004162 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 004163 VdbeComment((v, "end IN expr")); 004164 sqlite3ExprCodeIN_oom_error: 004165 sqlite3DbFree(pParse->db, aiMap); 004166 sqlite3DbFree(pParse->db, zAff); 004167 } 004168 #endif /* SQLITE_OMIT_SUBQUERY */ 004169 004170 #ifndef SQLITE_OMIT_FLOATING_POINT 004171 /* 004172 ** Generate an instruction that will put the floating point 004173 ** value described by z[0..n-1] into register iMem. 004174 ** 004175 ** The z[] string will probably not be zero-terminated. But the 004176 ** z[n] character is guaranteed to be something that does not look 004177 ** like the continuation of the number. 004178 */ 004179 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 004180 if( ALWAYS(z!=0) ){ 004181 double value; 004182 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 004183 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 004184 if( negateFlag ) value = -value; 004185 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 004186 } 004187 } 004188 #endif 004189 004190 004191 /* 004192 ** Generate an instruction that will put the integer describe by 004193 ** text z[0..n-1] into register iMem. 004194 ** 004195 ** Expr.u.zToken is always UTF8 and zero-terminated. 004196 */ 004197 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 004198 Vdbe *v = pParse->pVdbe; 004199 if( pExpr->flags & EP_IntValue ){ 004200 int i = pExpr->u.iValue; 004201 assert( i>=0 ); 004202 if( negFlag ) i = -i; 004203 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 004204 }else{ 004205 int c; 004206 i64 value; 004207 const char *z = pExpr->u.zToken; 004208 assert( z!=0 ); 004209 c = sqlite3DecOrHexToI64(z, &value); 004210 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 004211 #ifdef SQLITE_OMIT_FLOATING_POINT 004212 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 004213 #else 004214 #ifndef SQLITE_OMIT_HEX_INTEGER 004215 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 004216 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 004217 negFlag?"-":"",pExpr); 004218 }else 004219 #endif 004220 { 004221 codeReal(v, z, negFlag, iMem); 004222 } 004223 #endif 004224 }else{ 004225 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 004226 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 004227 } 004228 } 004229 } 004230 004231 004232 /* Generate code that will load into register regOut a value that is 004233 ** appropriate for the iIdxCol-th column of index pIdx. 004234 */ 004235 void sqlite3ExprCodeLoadIndexColumn( 004236 Parse *pParse, /* The parsing context */ 004237 Index *pIdx, /* The index whose column is to be loaded */ 004238 int iTabCur, /* Cursor pointing to a table row */ 004239 int iIdxCol, /* The column of the index to be loaded */ 004240 int regOut /* Store the index column value in this register */ 004241 ){ 004242 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 004243 if( iTabCol==XN_EXPR ){ 004244 assert( pIdx->aColExpr ); 004245 assert( pIdx->aColExpr->nExpr>iIdxCol ); 004246 pParse->iSelfTab = iTabCur + 1; 004247 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 004248 pParse->iSelfTab = 0; 004249 }else{ 004250 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 004251 iTabCol, regOut); 004252 } 004253 } 004254 004255 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 004256 /* 004257 ** Generate code that will compute the value of generated column pCol 004258 ** and store the result in register regOut 004259 */ 004260 void sqlite3ExprCodeGeneratedColumn( 004261 Parse *pParse, /* Parsing context */ 004262 Table *pTab, /* Table containing the generated column */ 004263 Column *pCol, /* The generated column */ 004264 int regOut /* Put the result in this register */ 004265 ){ 004266 int iAddr; 004267 Vdbe *v = pParse->pVdbe; 004268 int nErr = pParse->nErr; 004269 assert( v!=0 ); 004270 assert( pParse->iSelfTab!=0 ); 004271 if( pParse->iSelfTab>0 ){ 004272 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 004273 }else{ 004274 iAddr = 0; 004275 } 004276 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 004277 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 004278 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 004279 } 004280 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 004281 if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1; 004282 } 004283 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 004284 004285 /* 004286 ** Generate code to extract the value of the iCol-th column of a table. 004287 */ 004288 void sqlite3ExprCodeGetColumnOfTable( 004289 Vdbe *v, /* Parsing context */ 004290 Table *pTab, /* The table containing the value */ 004291 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 004292 int iCol, /* Index of the column to extract */ 004293 int regOut /* Extract the value into this register */ 004294 ){ 004295 Column *pCol; 004296 assert( v!=0 ); 004297 assert( pTab!=0 ); 004298 assert( iCol!=XN_EXPR ); 004299 if( iCol<0 || iCol==pTab->iPKey ){ 004300 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 004301 VdbeComment((v, "%s.rowid", pTab->zName)); 004302 }else{ 004303 int op; 004304 int x; 004305 if( IsVirtual(pTab) ){ 004306 op = OP_VColumn; 004307 x = iCol; 004308 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 004309 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 004310 Parse *pParse = sqlite3VdbeParser(v); 004311 if( pCol->colFlags & COLFLAG_BUSY ){ 004312 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 004313 pCol->zCnName); 004314 }else{ 004315 int savedSelfTab = pParse->iSelfTab; 004316 pCol->colFlags |= COLFLAG_BUSY; 004317 pParse->iSelfTab = iTabCur+1; 004318 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 004319 pParse->iSelfTab = savedSelfTab; 004320 pCol->colFlags &= ~COLFLAG_BUSY; 004321 } 004322 return; 004323 #endif 004324 }else if( !HasRowid(pTab) ){ 004325 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 004326 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 004327 op = OP_Column; 004328 }else{ 004329 x = sqlite3TableColumnToStorage(pTab,iCol); 004330 testcase( x!=iCol ); 004331 op = OP_Column; 004332 } 004333 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 004334 sqlite3ColumnDefault(v, pTab, iCol, regOut); 004335 } 004336 } 004337 004338 /* 004339 ** Generate code that will extract the iColumn-th column from 004340 ** table pTab and store the column value in register iReg. 004341 ** 004342 ** There must be an open cursor to pTab in iTable when this routine 004343 ** is called. If iColumn<0 then code is generated that extracts the rowid. 004344 */ 004345 int sqlite3ExprCodeGetColumn( 004346 Parse *pParse, /* Parsing and code generating context */ 004347 Table *pTab, /* Description of the table we are reading from */ 004348 int iColumn, /* Index of the table column */ 004349 int iTable, /* The cursor pointing to the table */ 004350 int iReg, /* Store results here */ 004351 u8 p5 /* P5 value for OP_Column + FLAGS */ 004352 ){ 004353 assert( pParse->pVdbe!=0 ); 004354 assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 ); 004355 assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 ); 004356 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 004357 if( p5 ){ 004358 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 004359 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 004360 if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG); 004361 } 004362 return iReg; 004363 } 004364 004365 /* 004366 ** Generate code to move content from registers iFrom...iFrom+nReg-1 004367 ** over to iTo..iTo+nReg-1. 004368 */ 004369 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 004370 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 004371 } 004372 004373 /* 004374 ** Convert a scalar expression node to a TK_REGISTER referencing 004375 ** register iReg. The caller must ensure that iReg already contains 004376 ** the correct value for the expression. 004377 */ 004378 void sqlite3ExprToRegister(Expr *pExpr, int iReg){ 004379 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 004380 if( NEVER(p==0) ) return; 004381 if( p->op==TK_REGISTER ){ 004382 assert( p->iTable==iReg ); 004383 }else{ 004384 p->op2 = p->op; 004385 p->op = TK_REGISTER; 004386 p->iTable = iReg; 004387 ExprClearProperty(p, EP_Skip); 004388 } 004389 } 004390 004391 /* 004392 ** Evaluate an expression (either a vector or a scalar expression) and store 004393 ** the result in contiguous temporary registers. Return the index of 004394 ** the first register used to store the result. 004395 ** 004396 ** If the returned result register is a temporary scalar, then also write 004397 ** that register number into *piFreeable. If the returned result register 004398 ** is not a temporary or if the expression is a vector set *piFreeable 004399 ** to 0. 004400 */ 004401 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 004402 int iResult; 004403 int nResult = sqlite3ExprVectorSize(p); 004404 if( nResult==1 ){ 004405 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 004406 }else{ 004407 *piFreeable = 0; 004408 if( p->op==TK_SELECT ){ 004409 #if SQLITE_OMIT_SUBQUERY 004410 iResult = 0; 004411 #else 004412 iResult = sqlite3CodeSubselect(pParse, p); 004413 #endif 004414 }else{ 004415 int i; 004416 iResult = pParse->nMem+1; 004417 pParse->nMem += nResult; 004418 assert( ExprUseXList(p) ); 004419 for(i=0; i<nResult; i++){ 004420 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 004421 } 004422 } 004423 } 004424 return iResult; 004425 } 004426 004427 /* 004428 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 004429 ** so that a subsequent copy will not be merged into this one. 004430 */ 004431 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 004432 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ 004433 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */ 004434 } 004435 } 004436 004437 /* 004438 ** Generate code to implement special SQL functions that are implemented 004439 ** in-line rather than by using the usual callbacks. 004440 */ 004441 static int exprCodeInlineFunction( 004442 Parse *pParse, /* Parsing context */ 004443 ExprList *pFarg, /* List of function arguments */ 004444 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 004445 int target /* Store function result in this register */ 004446 ){ 004447 int nFarg; 004448 Vdbe *v = pParse->pVdbe; 004449 assert( v!=0 ); 004450 assert( pFarg!=0 ); 004451 nFarg = pFarg->nExpr; 004452 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 004453 switch( iFuncId ){ 004454 case INLINEFUNC_coalesce: { 004455 /* Attempt a direct implementation of the built-in COALESCE() and 004456 ** IFNULL() functions. This avoids unnecessary evaluation of 004457 ** arguments past the first non-NULL argument. 004458 */ 004459 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 004460 int i; 004461 assert( nFarg>=2 ); 004462 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 004463 for(i=1; i<nFarg; i++){ 004464 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 004465 VdbeCoverage(v); 004466 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 004467 } 004468 setDoNotMergeFlagOnCopy(v); 004469 sqlite3VdbeResolveLabel(v, endCoalesce); 004470 break; 004471 } 004472 case INLINEFUNC_iif: { 004473 Expr caseExpr; 004474 memset(&caseExpr, 0, sizeof(caseExpr)); 004475 caseExpr.op = TK_CASE; 004476 caseExpr.x.pList = pFarg; 004477 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 004478 } 004479 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 004480 case INLINEFUNC_sqlite_offset: { 004481 Expr *pArg = pFarg->a[0].pExpr; 004482 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 004483 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 004484 }else{ 004485 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004486 } 004487 break; 004488 } 004489 #endif 004490 default: { 004491 /* The UNLIKELY() function is a no-op. The result is the value 004492 ** of the first argument. 004493 */ 004494 assert( nFarg==1 || nFarg==2 ); 004495 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 004496 break; 004497 } 004498 004499 /*********************************************************************** 004500 ** Test-only SQL functions that are only usable if enabled 004501 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 004502 */ 004503 #if !defined(SQLITE_UNTESTABLE) 004504 case INLINEFUNC_expr_compare: { 004505 /* Compare two expressions using sqlite3ExprCompare() */ 004506 assert( nFarg==2 ); 004507 sqlite3VdbeAddOp2(v, OP_Integer, 004508 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 004509 target); 004510 break; 004511 } 004512 004513 case INLINEFUNC_expr_implies_expr: { 004514 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 004515 assert( nFarg==2 ); 004516 sqlite3VdbeAddOp2(v, OP_Integer, 004517 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 004518 target); 004519 break; 004520 } 004521 004522 case INLINEFUNC_implies_nonnull_row: { 004523 /* Result of sqlite3ExprImpliesNonNullRow() */ 004524 Expr *pA1; 004525 assert( nFarg==2 ); 004526 pA1 = pFarg->a[1].pExpr; 004527 if( pA1->op==TK_COLUMN ){ 004528 sqlite3VdbeAddOp2(v, OP_Integer, 004529 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1), 004530 target); 004531 }else{ 004532 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004533 } 004534 break; 004535 } 004536 004537 case INLINEFUNC_affinity: { 004538 /* The AFFINITY() function evaluates to a string that describes 004539 ** the type affinity of the argument. This is used for testing of 004540 ** the SQLite type logic. 004541 */ 004542 const char *azAff[] = { "blob", "text", "numeric", "integer", 004543 "real", "flexnum" }; 004544 char aff; 004545 assert( nFarg==1 ); 004546 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 004547 assert( aff<=SQLITE_AFF_NONE 004548 || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) ); 004549 sqlite3VdbeLoadString(v, target, 004550 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 004551 break; 004552 } 004553 #endif /* !defined(SQLITE_UNTESTABLE) */ 004554 } 004555 return target; 004556 } 004557 004558 /* 004559 ** Expression Node callback for sqlite3ExprCanReturnSubtype(). 004560 ** 004561 ** Only a function call is able to return a subtype. So if the node 004562 ** is not a function call, return WRC_Prune immediately. 004563 ** 004564 ** A function call is able to return a subtype if it has the 004565 ** SQLITE_RESULT_SUBTYPE property. 004566 ** 004567 ** Assume that every function is able to pass-through a subtype from 004568 ** one of its argument (using sqlite3_result_value()). Most functions 004569 ** are not this way, but we don't have a mechanism to distinguish those 004570 ** that are from those that are not, so assume they all work this way. 004571 ** That means that if one of its arguments is another function and that 004572 ** other function is able to return a subtype, then this function is 004573 ** able to return a subtype. 004574 */ 004575 static int exprNodeCanReturnSubtype(Walker *pWalker, Expr *pExpr){ 004576 int n; 004577 FuncDef *pDef; 004578 sqlite3 *db; 004579 if( pExpr->op!=TK_FUNCTION ){ 004580 return WRC_Prune; 004581 } 004582 assert( ExprUseXList(pExpr) ); 004583 db = pWalker->pParse->db; 004584 n = ALWAYS(pExpr->x.pList) ? pExpr->x.pList->nExpr : 0; 004585 pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0); 004586 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_RESULT_SUBTYPE)!=0 ){ 004587 pWalker->eCode = 1; 004588 return WRC_Prune; 004589 } 004590 return WRC_Continue; 004591 } 004592 004593 /* 004594 ** Return TRUE if expression pExpr is able to return a subtype. 004595 ** 004596 ** A TRUE return does not guarantee that a subtype will be returned. 004597 ** It only indicates that a subtype return is possible. False positives 004598 ** are acceptable as they only disable an optimization. False negatives, 004599 ** on the other hand, can lead to incorrect answers. 004600 */ 004601 static int sqlite3ExprCanReturnSubtype(Parse *pParse, Expr *pExpr){ 004602 Walker w; 004603 memset(&w, 0, sizeof(w)); 004604 w.pParse = pParse; 004605 w.xExprCallback = exprNodeCanReturnSubtype; 004606 sqlite3WalkExpr(&w, pExpr); 004607 return w.eCode; 004608 } 004609 004610 004611 /* 004612 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr. 004613 ** If it is, then resolve the expression by reading from the index and 004614 ** return the register into which the value has been read. If pExpr is 004615 ** not an indexed expression, then return negative. 004616 */ 004617 static SQLITE_NOINLINE int sqlite3IndexedExprLookup( 004618 Parse *pParse, /* The parsing context */ 004619 Expr *pExpr, /* The expression to potentially bypass */ 004620 int target /* Where to store the result of the expression */ 004621 ){ 004622 IndexedExpr *p; 004623 Vdbe *v; 004624 for(p=pParse->pIdxEpr; p; p=p->pIENext){ 004625 u8 exprAff; 004626 int iDataCur = p->iDataCur; 004627 if( iDataCur<0 ) continue; 004628 if( pParse->iSelfTab ){ 004629 if( p->iDataCur!=pParse->iSelfTab-1 ) continue; 004630 iDataCur = -1; 004631 } 004632 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; 004633 assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC ); 004634 exprAff = sqlite3ExprAffinity(pExpr); 004635 if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB) 004636 || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT) 004637 || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC) 004638 ){ 004639 /* Affinity mismatch on a generated column */ 004640 continue; 004641 } 004642 004643 004644 /* Functions that might set a subtype should not be replaced by the 004645 ** value taken from an expression index if they are themselves an 004646 ** argument to another scalar function or aggregate. 004647 ** https://sqlite.org/forum/forumpost/68d284c86b082c3e */ 004648 if( ExprHasProperty(pExpr, EP_SubtArg) 004649 && sqlite3ExprCanReturnSubtype(pParse, pExpr) 004650 ){ 004651 continue; 004652 } 004653 004654 v = pParse->pVdbe; 004655 assert( v!=0 ); 004656 if( p->bMaybeNullRow ){ 004657 /* If the index is on a NULL row due to an outer join, then we 004658 ** cannot extract the value from the index. The value must be 004659 ** computed using the original expression. */ 004660 int addr = sqlite3VdbeCurrentAddr(v); 004661 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); 004662 VdbeCoverage(v); 004663 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 004664 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); 004665 sqlite3VdbeGoto(v, 0); 004666 p = pParse->pIdxEpr; 004667 pParse->pIdxEpr = 0; 004668 sqlite3ExprCode(pParse, pExpr, target); 004669 pParse->pIdxEpr = p; 004670 sqlite3VdbeJumpHere(v, addr+2); 004671 }else{ 004672 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 004673 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); 004674 } 004675 return target; 004676 } 004677 return -1; /* Not found */ 004678 } 004679 004680 004681 /* 004682 ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This 004683 ** function checks the Parse.pIdxPartExpr list to see if this column 004684 ** can be replaced with a constant value. If so, it generates code to 004685 ** put the constant value in a register (ideally, but not necessarily, 004686 ** register iTarget) and returns the register number. 004687 ** 004688 ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is 004689 ** returned. 004690 */ 004691 static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){ 004692 IndexedExpr *p; 004693 for(p=pParse->pIdxPartExpr; p; p=p->pIENext){ 004694 if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){ 004695 Vdbe *v = pParse->pVdbe; 004696 int addr = 0; 004697 int ret; 004698 004699 if( p->bMaybeNullRow ){ 004700 addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur); 004701 } 004702 ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget); 004703 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0, 004704 (const char*)&p->aff, 1); 004705 if( addr ){ 004706 sqlite3VdbeJumpHere(v, addr); 004707 sqlite3VdbeChangeP3(v, addr, ret); 004708 } 004709 return ret; 004710 } 004711 } 004712 return 0; 004713 } 004714 004715 004716 /* 004717 ** Generate code into the current Vdbe to evaluate the given 004718 ** expression. Attempt to store the results in register "target". 004719 ** Return the register where results are stored. 004720 ** 004721 ** With this routine, there is no guarantee that results will 004722 ** be stored in target. The result might be stored in some other 004723 ** register if it is convenient to do so. The calling function 004724 ** must check the return code and move the results to the desired 004725 ** register. 004726 */ 004727 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 004728 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 004729 int op; /* The opcode being coded */ 004730 int inReg = target; /* Results stored in register inReg */ 004731 int regFree1 = 0; /* If non-zero free this temporary register */ 004732 int regFree2 = 0; /* If non-zero free this temporary register */ 004733 int r1, r2; /* Various register numbers */ 004734 Expr tempX; /* Temporary expression node */ 004735 int p5 = 0; 004736 004737 assert( target>0 && target<=pParse->nMem ); 004738 assert( v!=0 ); 004739 004740 expr_code_doover: 004741 if( pExpr==0 ){ 004742 op = TK_NULL; 004743 }else if( pParse->pIdxEpr!=0 004744 && !ExprHasProperty(pExpr, EP_Leaf) 004745 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 004746 ){ 004747 return r1; 004748 }else{ 004749 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 004750 op = pExpr->op; 004751 } 004752 assert( op!=TK_ORDER ); 004753 switch( op ){ 004754 case TK_AGG_COLUMN: { 004755 AggInfo *pAggInfo = pExpr->pAggInfo; 004756 struct AggInfo_col *pCol; 004757 assert( pAggInfo!=0 ); 004758 assert( pExpr->iAgg>=0 ); 004759 if( pExpr->iAgg>=pAggInfo->nColumn ){ 004760 /* Happens when the left table of a RIGHT JOIN is null and 004761 ** is using an expression index */ 004762 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004763 #ifdef SQLITE_VDBE_COVERAGE 004764 /* Verify that the OP_Null above is exercised by tests 004765 ** tag-20230325-2 */ 004766 sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325); 004767 VdbeCoverageNeverTaken(v); 004768 #endif 004769 break; 004770 } 004771 pCol = &pAggInfo->aCol[pExpr->iAgg]; 004772 if( !pAggInfo->directMode ){ 004773 return AggInfoColumnReg(pAggInfo, pExpr->iAgg); 004774 }else if( pAggInfo->useSortingIdx ){ 004775 Table *pTab = pCol->pTab; 004776 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 004777 pCol->iSorterColumn, target); 004778 if( pTab==0 ){ 004779 /* No comment added */ 004780 }else if( pCol->iColumn<0 ){ 004781 VdbeComment((v,"%s.rowid",pTab->zName)); 004782 }else{ 004783 VdbeComment((v,"%s.%s", 004784 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 004785 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 004786 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 004787 } 004788 } 004789 return target; 004790 }else if( pExpr->y.pTab==0 ){ 004791 /* This case happens when the argument to an aggregate function 004792 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */ 004793 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target); 004794 return target; 004795 } 004796 /* Otherwise, fall thru into the TK_COLUMN case */ 004797 /* no break */ deliberate_fall_through 004798 } 004799 case TK_COLUMN: { 004800 int iTab = pExpr->iTable; 004801 int iReg; 004802 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 004803 /* This COLUMN expression is really a constant due to WHERE clause 004804 ** constraints, and that constant is coded by the pExpr->pLeft 004805 ** expression. However, make sure the constant has the correct 004806 ** datatype by applying the Affinity of the table column to the 004807 ** constant. 004808 */ 004809 int aff; 004810 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 004811 assert( ExprUseYTab(pExpr) ); 004812 assert( pExpr->y.pTab!=0 ); 004813 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 004814 if( aff>SQLITE_AFF_BLOB ){ 004815 static const char zAff[] = "B\000C\000D\000E\000F"; 004816 assert( SQLITE_AFF_BLOB=='A' ); 004817 assert( SQLITE_AFF_TEXT=='B' ); 004818 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 004819 &zAff[(aff-'B')*2], P4_STATIC); 004820 } 004821 return iReg; 004822 } 004823 if( iTab<0 ){ 004824 if( pParse->iSelfTab<0 ){ 004825 /* Other columns in the same row for CHECK constraints or 004826 ** generated columns or for inserting into partial index. 004827 ** The row is unpacked into registers beginning at 004828 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 004829 ** immediately prior to the first column. 004830 */ 004831 Column *pCol; 004832 Table *pTab; 004833 int iSrc; 004834 int iCol = pExpr->iColumn; 004835 assert( ExprUseYTab(pExpr) ); 004836 pTab = pExpr->y.pTab; 004837 assert( pTab!=0 ); 004838 assert( iCol>=XN_ROWID ); 004839 assert( iCol<pTab->nCol ); 004840 if( iCol<0 ){ 004841 return -1-pParse->iSelfTab; 004842 } 004843 pCol = pTab->aCol + iCol; 004844 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 004845 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 004846 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 004847 if( pCol->colFlags & COLFLAG_GENERATED ){ 004848 if( pCol->colFlags & COLFLAG_BUSY ){ 004849 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 004850 pCol->zCnName); 004851 return 0; 004852 } 004853 pCol->colFlags |= COLFLAG_BUSY; 004854 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 004855 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 004856 } 004857 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 004858 return iSrc; 004859 }else 004860 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 004861 if( pCol->affinity==SQLITE_AFF_REAL ){ 004862 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 004863 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 004864 return target; 004865 }else{ 004866 return iSrc; 004867 } 004868 }else{ 004869 /* Coding an expression that is part of an index where column names 004870 ** in the index refer to the table to which the index belongs */ 004871 iTab = pParse->iSelfTab - 1; 004872 } 004873 } 004874 else if( pParse->pIdxPartExpr 004875 && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target)) 004876 ){ 004877 return r1; 004878 } 004879 assert( ExprUseYTab(pExpr) ); 004880 assert( pExpr->y.pTab!=0 ); 004881 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 004882 pExpr->iColumn, iTab, target, 004883 pExpr->op2); 004884 return iReg; 004885 } 004886 case TK_INTEGER: { 004887 codeInteger(pParse, pExpr, 0, target); 004888 return target; 004889 } 004890 case TK_TRUEFALSE: { 004891 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 004892 return target; 004893 } 004894 #ifndef SQLITE_OMIT_FLOATING_POINT 004895 case TK_FLOAT: { 004896 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004897 codeReal(v, pExpr->u.zToken, 0, target); 004898 return target; 004899 } 004900 #endif 004901 case TK_STRING: { 004902 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004903 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 004904 return target; 004905 } 004906 default: { 004907 /* Make NULL the default case so that if a bug causes an illegal 004908 ** Expr node to be passed into this function, it will be handled 004909 ** sanely and not crash. But keep the assert() to bring the problem 004910 ** to the attention of the developers. */ 004911 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 004912 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004913 return target; 004914 } 004915 #ifndef SQLITE_OMIT_BLOB_LITERAL 004916 case TK_BLOB: { 004917 int n; 004918 const char *z; 004919 char *zBlob; 004920 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004921 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 004922 assert( pExpr->u.zToken[1]=='\'' ); 004923 z = &pExpr->u.zToken[2]; 004924 n = sqlite3Strlen30(z) - 1; 004925 assert( z[n]=='\'' ); 004926 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 004927 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 004928 return target; 004929 } 004930 #endif 004931 case TK_VARIABLE: { 004932 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004933 assert( pExpr->u.zToken!=0 ); 004934 assert( pExpr->u.zToken[0]!=0 ); 004935 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 004936 return target; 004937 } 004938 case TK_REGISTER: { 004939 return pExpr->iTable; 004940 } 004941 #ifndef SQLITE_OMIT_CAST 004942 case TK_CAST: { 004943 /* Expressions of the form: CAST(pLeft AS token) */ 004944 sqlite3ExprCode(pParse, pExpr->pLeft, target); 004945 assert( inReg==target ); 004946 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004947 sqlite3VdbeAddOp2(v, OP_Cast, target, 004948 sqlite3AffinityType(pExpr->u.zToken, 0)); 004949 return inReg; 004950 } 004951 #endif /* SQLITE_OMIT_CAST */ 004952 case TK_IS: 004953 case TK_ISNOT: 004954 op = (op==TK_IS) ? TK_EQ : TK_NE; 004955 p5 = SQLITE_NULLEQ; 004956 /* fall-through */ 004957 case TK_LT: 004958 case TK_LE: 004959 case TK_GT: 004960 case TK_GE: 004961 case TK_NE: 004962 case TK_EQ: { 004963 Expr *pLeft = pExpr->pLeft; 004964 if( sqlite3ExprIsVector(pLeft) ){ 004965 codeVectorCompare(pParse, pExpr, target, op, p5); 004966 }else{ 004967 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 004968 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 004969 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 004970 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 004971 sqlite3VdbeCurrentAddr(v)+2, p5, 004972 ExprHasProperty(pExpr,EP_Commuted)); 004973 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 004974 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 004975 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 004976 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 004977 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 004978 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 004979 if( p5==SQLITE_NULLEQ ){ 004980 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 004981 }else{ 004982 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 004983 } 004984 testcase( regFree1==0 ); 004985 testcase( regFree2==0 ); 004986 } 004987 break; 004988 } 004989 case TK_AND: 004990 case TK_OR: 004991 case TK_PLUS: 004992 case TK_STAR: 004993 case TK_MINUS: 004994 case TK_REM: 004995 case TK_BITAND: 004996 case TK_BITOR: 004997 case TK_SLASH: 004998 case TK_LSHIFT: 004999 case TK_RSHIFT: 005000 case TK_CONCAT: { 005001 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 005002 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 005003 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 005004 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 005005 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 005006 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 005007 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 005008 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 005009 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 005010 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 005011 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 005012 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005013 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 005014 sqlite3VdbeAddOp3(v, op, r2, r1, target); 005015 testcase( regFree1==0 ); 005016 testcase( regFree2==0 ); 005017 break; 005018 } 005019 case TK_UMINUS: { 005020 Expr *pLeft = pExpr->pLeft; 005021 assert( pLeft ); 005022 if( pLeft->op==TK_INTEGER ){ 005023 codeInteger(pParse, pLeft, 1, target); 005024 return target; 005025 #ifndef SQLITE_OMIT_FLOATING_POINT 005026 }else if( pLeft->op==TK_FLOAT ){ 005027 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 005028 codeReal(v, pLeft->u.zToken, 1, target); 005029 return target; 005030 #endif 005031 }else{ 005032 tempX.op = TK_INTEGER; 005033 tempX.flags = EP_IntValue|EP_TokenOnly; 005034 tempX.u.iValue = 0; 005035 ExprClearVVAProperties(&tempX); 005036 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 005037 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 005038 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 005039 testcase( regFree2==0 ); 005040 } 005041 break; 005042 } 005043 case TK_BITNOT: 005044 case TK_NOT: { 005045 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 005046 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 005047 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005048 testcase( regFree1==0 ); 005049 sqlite3VdbeAddOp2(v, op, r1, inReg); 005050 break; 005051 } 005052 case TK_TRUTH: { 005053 int isTrue; /* IS TRUE or IS NOT TRUE */ 005054 int bNormal; /* IS TRUE or IS FALSE */ 005055 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005056 testcase( regFree1==0 ); 005057 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 005058 bNormal = pExpr->op2==TK_IS; 005059 testcase( isTrue && bNormal); 005060 testcase( !isTrue && bNormal); 005061 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 005062 break; 005063 } 005064 case TK_ISNULL: 005065 case TK_NOTNULL: { 005066 int addr; 005067 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 005068 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 005069 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 005070 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005071 testcase( regFree1==0 ); 005072 addr = sqlite3VdbeAddOp1(v, op, r1); 005073 VdbeCoverageIf(v, op==TK_ISNULL); 005074 VdbeCoverageIf(v, op==TK_NOTNULL); 005075 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 005076 sqlite3VdbeJumpHere(v, addr); 005077 break; 005078 } 005079 case TK_AGG_FUNCTION: { 005080 AggInfo *pInfo = pExpr->pAggInfo; 005081 if( pInfo==0 005082 || NEVER(pExpr->iAgg<0) 005083 || NEVER(pExpr->iAgg>=pInfo->nFunc) 005084 ){ 005085 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 005086 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 005087 }else{ 005088 return AggInfoFuncReg(pInfo, pExpr->iAgg); 005089 } 005090 break; 005091 } 005092 case TK_FUNCTION: { 005093 ExprList *pFarg; /* List of function arguments */ 005094 int nFarg; /* Number of function arguments */ 005095 FuncDef *pDef; /* The function definition object */ 005096 const char *zId; /* The function name */ 005097 u32 constMask = 0; /* Mask of function arguments that are constant */ 005098 int i; /* Loop counter */ 005099 sqlite3 *db = pParse->db; /* The database connection */ 005100 u8 enc = ENC(db); /* The text encoding used by this database */ 005101 CollSeq *pColl = 0; /* A collating sequence */ 005102 005103 #ifndef SQLITE_OMIT_WINDOWFUNC 005104 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 005105 return pExpr->y.pWin->regResult; 005106 } 005107 #endif 005108 005109 if( ConstFactorOk(pParse) 005110 && sqlite3ExprIsConstantNotJoin(pParse,pExpr) 005111 ){ 005112 /* SQL functions can be expensive. So try to avoid running them 005113 ** multiple times if we know they always give the same result */ 005114 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 005115 } 005116 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 005117 assert( ExprUseXList(pExpr) ); 005118 pFarg = pExpr->x.pList; 005119 nFarg = pFarg ? pFarg->nExpr : 0; 005120 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 005121 zId = pExpr->u.zToken; 005122 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 005123 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 005124 if( pDef==0 && pParse->explain ){ 005125 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 005126 } 005127 #endif 005128 if( pDef==0 || pDef->xFinalize!=0 ){ 005129 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 005130 break; 005131 } 005132 if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){ 005133 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 005134 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 005135 return exprCodeInlineFunction(pParse, pFarg, 005136 SQLITE_PTR_TO_INT(pDef->pUserData), target); 005137 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 005138 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 005139 } 005140 005141 for(i=0; i<nFarg; i++){ 005142 if( i<32 && sqlite3ExprIsConstant(pParse, pFarg->a[i].pExpr) ){ 005143 testcase( i==31 ); 005144 constMask |= MASKBIT32(i); 005145 } 005146 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 005147 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 005148 } 005149 } 005150 if( pFarg ){ 005151 if( constMask ){ 005152 r1 = pParse->nMem+1; 005153 pParse->nMem += nFarg; 005154 }else{ 005155 r1 = sqlite3GetTempRange(pParse, nFarg); 005156 } 005157 005158 /* For length() and typeof() and octet_length() functions, 005159 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 005160 ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid 005161 ** unnecessary data loading. 005162 */ 005163 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 005164 u8 exprOp; 005165 assert( nFarg==1 ); 005166 assert( pFarg->a[0].pExpr!=0 ); 005167 exprOp = pFarg->a[0].pExpr->op; 005168 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 005169 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 005170 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 005171 assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG ); 005172 assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG ); 005173 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG ); 005174 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG ); 005175 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG); 005176 pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG; 005177 } 005178 } 005179 005180 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR); 005181 }else{ 005182 r1 = 0; 005183 } 005184 #ifndef SQLITE_OMIT_VIRTUALTABLE 005185 /* Possibly overload the function if the first argument is 005186 ** a virtual table column. 005187 ** 005188 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 005189 ** second argument, not the first, as the argument to test to 005190 ** see if it is a column in a virtual table. This is done because 005191 ** the left operand of infix functions (the operand we want to 005192 ** control overloading) ends up as the second argument to the 005193 ** function. The expression "A glob B" is equivalent to 005194 ** "glob(B,A). We want to use the A in "A glob B" to test 005195 ** for function overloading. But we use the B term in "glob(B,A)". 005196 */ 005197 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 005198 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 005199 }else if( nFarg>0 ){ 005200 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 005201 } 005202 #endif 005203 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 005204 if( !pColl ) pColl = db->pDfltColl; 005205 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 005206 } 005207 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 005208 pDef, pExpr->op2); 005209 if( nFarg ){ 005210 if( constMask==0 ){ 005211 sqlite3ReleaseTempRange(pParse, r1, nFarg); 005212 }else{ 005213 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 005214 } 005215 } 005216 return target; 005217 } 005218 #ifndef SQLITE_OMIT_SUBQUERY 005219 case TK_EXISTS: 005220 case TK_SELECT: { 005221 int nCol; 005222 testcase( op==TK_EXISTS ); 005223 testcase( op==TK_SELECT ); 005224 if( pParse->db->mallocFailed ){ 005225 return 0; 005226 }else if( op==TK_SELECT 005227 && ALWAYS( ExprUseXSelect(pExpr) ) 005228 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 005229 ){ 005230 sqlite3SubselectError(pParse, nCol, 1); 005231 }else{ 005232 return sqlite3CodeSubselect(pParse, pExpr); 005233 } 005234 break; 005235 } 005236 case TK_SELECT_COLUMN: { 005237 int n; 005238 Expr *pLeft = pExpr->pLeft; 005239 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 005240 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 005241 pLeft->op2 = pParse->withinRJSubrtn; 005242 } 005243 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 005244 n = sqlite3ExprVectorSize(pLeft); 005245 if( pExpr->iTable!=n ){ 005246 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 005247 pExpr->iTable, n); 005248 } 005249 return pLeft->iTable + pExpr->iColumn; 005250 } 005251 case TK_IN: { 005252 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 005253 int destIfNull = sqlite3VdbeMakeLabel(pParse); 005254 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 005255 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 005256 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 005257 sqlite3VdbeResolveLabel(v, destIfFalse); 005258 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 005259 sqlite3VdbeResolveLabel(v, destIfNull); 005260 return target; 005261 } 005262 #endif /* SQLITE_OMIT_SUBQUERY */ 005263 005264 005265 /* 005266 ** x BETWEEN y AND z 005267 ** 005268 ** This is equivalent to 005269 ** 005270 ** x>=y AND x<=z 005271 ** 005272 ** X is stored in pExpr->pLeft. 005273 ** Y is stored in pExpr->pList->a[0].pExpr. 005274 ** Z is stored in pExpr->pList->a[1].pExpr. 005275 */ 005276 case TK_BETWEEN: { 005277 exprCodeBetween(pParse, pExpr, target, 0, 0); 005278 return target; 005279 } 005280 case TK_COLLATE: { 005281 if( !ExprHasProperty(pExpr, EP_Collate) ){ 005282 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called 005283 ** "SOFT-COLLATE" that is added to constraints that are pushed down 005284 ** from outer queries into sub-queries by the WHERE-clause push-down 005285 ** optimization. Clear subtypes as subtypes may not cross a subquery 005286 ** boundary. 005287 */ 005288 assert( pExpr->pLeft ); 005289 sqlite3ExprCode(pParse, pExpr->pLeft, target); 005290 sqlite3VdbeAddOp1(v, OP_ClrSubtype, target); 005291 return target; 005292 }else{ 005293 pExpr = pExpr->pLeft; 005294 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 005295 } 005296 } 005297 case TK_SPAN: 005298 case TK_UPLUS: { 005299 pExpr = pExpr->pLeft; 005300 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 005301 } 005302 005303 case TK_TRIGGER: { 005304 /* If the opcode is TK_TRIGGER, then the expression is a reference 005305 ** to a column in the new.* or old.* pseudo-tables available to 005306 ** trigger programs. In this case Expr.iTable is set to 1 for the 005307 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 005308 ** is set to the column of the pseudo-table to read, or to -1 to 005309 ** read the rowid field. 005310 ** 005311 ** The expression is implemented using an OP_Param opcode. The p1 005312 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 005313 ** to reference another column of the old.* pseudo-table, where 005314 ** i is the index of the column. For a new.rowid reference, p1 is 005315 ** set to (n+1), where n is the number of columns in each pseudo-table. 005316 ** For a reference to any other column in the new.* pseudo-table, p1 005317 ** is set to (n+2+i), where n and i are as defined previously. For 005318 ** example, if the table on which triggers are being fired is 005319 ** declared as: 005320 ** 005321 ** CREATE TABLE t1(a, b); 005322 ** 005323 ** Then p1 is interpreted as follows: 005324 ** 005325 ** p1==0 -> old.rowid p1==3 -> new.rowid 005326 ** p1==1 -> old.a p1==4 -> new.a 005327 ** p1==2 -> old.b p1==5 -> new.b 005328 */ 005329 Table *pTab; 005330 int iCol; 005331 int p1; 005332 005333 assert( ExprUseYTab(pExpr) ); 005334 pTab = pExpr->y.pTab; 005335 iCol = pExpr->iColumn; 005336 p1 = pExpr->iTable * (pTab->nCol+1) + 1 005337 + sqlite3TableColumnToStorage(pTab, iCol); 005338 005339 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 005340 assert( iCol>=-1 && iCol<pTab->nCol ); 005341 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 005342 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 005343 005344 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 005345 VdbeComment((v, "r[%d]=%s.%s", target, 005346 (pExpr->iTable ? "new" : "old"), 005347 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 005348 )); 005349 005350 #ifndef SQLITE_OMIT_FLOATING_POINT 005351 /* If the column has REAL affinity, it may currently be stored as an 005352 ** integer. Use OP_RealAffinity to make sure it is really real. 005353 ** 005354 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 005355 ** floating point when extracting it from the record. */ 005356 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 005357 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 005358 } 005359 #endif 005360 break; 005361 } 005362 005363 case TK_VECTOR: { 005364 sqlite3ErrorMsg(pParse, "row value misused"); 005365 break; 005366 } 005367 005368 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 005369 ** that derive from the right-hand table of a LEFT JOIN. The 005370 ** Expr.iTable value is the table number for the right-hand table. 005371 ** The expression is only evaluated if that table is not currently 005372 ** on a LEFT JOIN NULL row. 005373 */ 005374 case TK_IF_NULL_ROW: { 005375 int addrINR; 005376 u8 okConstFactor = pParse->okConstFactor; 005377 AggInfo *pAggInfo = pExpr->pAggInfo; 005378 if( pAggInfo ){ 005379 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 005380 if( !pAggInfo->directMode ){ 005381 inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg); 005382 break; 005383 } 005384 if( pExpr->pAggInfo->useSortingIdx ){ 005385 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 005386 pAggInfo->aCol[pExpr->iAgg].iSorterColumn, 005387 target); 005388 inReg = target; 005389 break; 005390 } 005391 } 005392 addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target); 005393 /* The OP_IfNullRow opcode above can overwrite the result register with 005394 ** NULL. So we have to ensure that the result register is not a value 005395 ** that is suppose to be a constant. Two defenses are needed: 005396 ** (1) Temporarily disable factoring of constant expressions 005397 ** (2) Make sure the computed value really is stored in register 005398 ** "target" and not someplace else. 005399 */ 005400 pParse->okConstFactor = 0; /* note (1) above */ 005401 sqlite3ExprCode(pParse, pExpr->pLeft, target); 005402 assert( target==inReg ); 005403 pParse->okConstFactor = okConstFactor; 005404 sqlite3VdbeJumpHere(v, addrINR); 005405 break; 005406 } 005407 005408 /* 005409 ** Form A: 005410 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 005411 ** 005412 ** Form B: 005413 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 005414 ** 005415 ** Form A is can be transformed into the equivalent form B as follows: 005416 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 005417 ** WHEN x=eN THEN rN ELSE y END 005418 ** 005419 ** X (if it exists) is in pExpr->pLeft. 005420 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 005421 ** odd. The Y is also optional. If the number of elements in x.pList 005422 ** is even, then Y is omitted and the "otherwise" result is NULL. 005423 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 005424 ** 005425 ** The result of the expression is the Ri for the first matching Ei, 005426 ** or if there is no matching Ei, the ELSE term Y, or if there is 005427 ** no ELSE term, NULL. 005428 */ 005429 case TK_CASE: { 005430 int endLabel; /* GOTO label for end of CASE stmt */ 005431 int nextCase; /* GOTO label for next WHEN clause */ 005432 int nExpr; /* 2x number of WHEN terms */ 005433 int i; /* Loop counter */ 005434 ExprList *pEList; /* List of WHEN terms */ 005435 struct ExprList_item *aListelem; /* Array of WHEN terms */ 005436 Expr opCompare; /* The X==Ei expression */ 005437 Expr *pX; /* The X expression */ 005438 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 005439 Expr *pDel = 0; 005440 sqlite3 *db = pParse->db; 005441 005442 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 005443 assert(pExpr->x.pList->nExpr > 0); 005444 pEList = pExpr->x.pList; 005445 aListelem = pEList->a; 005446 nExpr = pEList->nExpr; 005447 endLabel = sqlite3VdbeMakeLabel(pParse); 005448 if( (pX = pExpr->pLeft)!=0 ){ 005449 pDel = sqlite3ExprDup(db, pX, 0); 005450 if( db->mallocFailed ){ 005451 sqlite3ExprDelete(db, pDel); 005452 break; 005453 } 005454 testcase( pX->op==TK_COLUMN ); 005455 sqlite3ExprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 005456 testcase( regFree1==0 ); 005457 memset(&opCompare, 0, sizeof(opCompare)); 005458 opCompare.op = TK_EQ; 005459 opCompare.pLeft = pDel; 005460 pTest = &opCompare; 005461 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 005462 ** The value in regFree1 might get SCopy-ed into the file result. 005463 ** So make sure that the regFree1 register is not reused for other 005464 ** purposes and possibly overwritten. */ 005465 regFree1 = 0; 005466 } 005467 for(i=0; i<nExpr-1; i=i+2){ 005468 if( pX ){ 005469 assert( pTest!=0 ); 005470 opCompare.pRight = aListelem[i].pExpr; 005471 }else{ 005472 pTest = aListelem[i].pExpr; 005473 } 005474 nextCase = sqlite3VdbeMakeLabel(pParse); 005475 testcase( pTest->op==TK_COLUMN ); 005476 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 005477 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 005478 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 005479 sqlite3VdbeGoto(v, endLabel); 005480 sqlite3VdbeResolveLabel(v, nextCase); 005481 } 005482 if( (nExpr&1)!=0 ){ 005483 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 005484 }else{ 005485 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 005486 } 005487 sqlite3ExprDelete(db, pDel); 005488 setDoNotMergeFlagOnCopy(v); 005489 sqlite3VdbeResolveLabel(v, endLabel); 005490 break; 005491 } 005492 #ifndef SQLITE_OMIT_TRIGGER 005493 case TK_RAISE: { 005494 assert( pExpr->affExpr==OE_Rollback 005495 || pExpr->affExpr==OE_Abort 005496 || pExpr->affExpr==OE_Fail 005497 || pExpr->affExpr==OE_Ignore 005498 ); 005499 if( !pParse->pTriggerTab && !pParse->nested ){ 005500 sqlite3ErrorMsg(pParse, 005501 "RAISE() may only be used within a trigger-program"); 005502 return 0; 005503 } 005504 if( pExpr->affExpr==OE_Abort ){ 005505 sqlite3MayAbort(pParse); 005506 } 005507 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 005508 if( pExpr->affExpr==OE_Ignore ){ 005509 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, OE_Ignore); 005510 VdbeCoverage(v); 005511 }else{ 005512 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005513 sqlite3VdbeAddOp3(v, OP_Halt, 005514 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 005515 pExpr->affExpr, r1); 005516 } 005517 break; 005518 } 005519 #endif 005520 } 005521 sqlite3ReleaseTempReg(pParse, regFree1); 005522 sqlite3ReleaseTempReg(pParse, regFree2); 005523 return inReg; 005524 } 005525 005526 /* 005527 ** Generate code that will evaluate expression pExpr just one time 005528 ** per prepared statement execution. 005529 ** 005530 ** If the expression uses functions (that might throw an exception) then 005531 ** guard them with an OP_Once opcode to ensure that the code is only executed 005532 ** once. If no functions are involved, then factor the code out and put it at 005533 ** the end of the prepared statement in the initialization section. 005534 ** 005535 ** If regDest>0 then the result is always stored in that register and the 005536 ** result is not reusable. If regDest<0 then this routine is free to 005537 ** store the value wherever it wants. The register where the expression 005538 ** is stored is returned. When regDest<0, two identical expressions might 005539 ** code to the same register, if they do not contain function calls and hence 005540 ** are factored out into the initialization section at the end of the 005541 ** prepared statement. 005542 */ 005543 int sqlite3ExprCodeRunJustOnce( 005544 Parse *pParse, /* Parsing context */ 005545 Expr *pExpr, /* The expression to code when the VDBE initializes */ 005546 int regDest /* Store the value in this register */ 005547 ){ 005548 ExprList *p; 005549 assert( ConstFactorOk(pParse) ); 005550 assert( regDest!=0 ); 005551 p = pParse->pConstExpr; 005552 if( regDest<0 && p ){ 005553 struct ExprList_item *pItem; 005554 int i; 005555 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 005556 if( pItem->fg.reusable 005557 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 005558 ){ 005559 return pItem->u.iConstExprReg; 005560 } 005561 } 005562 } 005563 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 005564 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 005565 Vdbe *v = pParse->pVdbe; 005566 int addr; 005567 assert( v ); 005568 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 005569 pParse->okConstFactor = 0; 005570 if( !pParse->db->mallocFailed ){ 005571 if( regDest<0 ) regDest = ++pParse->nMem; 005572 sqlite3ExprCode(pParse, pExpr, regDest); 005573 } 005574 pParse->okConstFactor = 1; 005575 sqlite3ExprDelete(pParse->db, pExpr); 005576 sqlite3VdbeJumpHere(v, addr); 005577 }else{ 005578 p = sqlite3ExprListAppend(pParse, p, pExpr); 005579 if( p ){ 005580 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 005581 pItem->fg.reusable = regDest<0; 005582 if( regDest<0 ) regDest = ++pParse->nMem; 005583 pItem->u.iConstExprReg = regDest; 005584 } 005585 pParse->pConstExpr = p; 005586 } 005587 return regDest; 005588 } 005589 005590 /* 005591 ** Generate code to evaluate an expression and store the results 005592 ** into a register. Return the register number where the results 005593 ** are stored. 005594 ** 005595 ** If the register is a temporary register that can be deallocated, 005596 ** then write its number into *pReg. If the result register is not 005597 ** a temporary, then set *pReg to zero. 005598 ** 005599 ** If pExpr is a constant, then this routine might generate this 005600 ** code to fill the register in the initialization section of the 005601 ** VDBE program, in order to factor it out of the evaluation loop. 005602 */ 005603 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 005604 int r2; 005605 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 005606 if( ConstFactorOk(pParse) 005607 && ALWAYS(pExpr!=0) 005608 && pExpr->op!=TK_REGISTER 005609 && sqlite3ExprIsConstantNotJoin(pParse, pExpr) 005610 ){ 005611 *pReg = 0; 005612 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 005613 }else{ 005614 int r1 = sqlite3GetTempReg(pParse); 005615 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 005616 if( r2==r1 ){ 005617 *pReg = r1; 005618 }else{ 005619 sqlite3ReleaseTempReg(pParse, r1); 005620 *pReg = 0; 005621 } 005622 } 005623 return r2; 005624 } 005625 005626 /* 005627 ** Generate code that will evaluate expression pExpr and store the 005628 ** results in register target. The results are guaranteed to appear 005629 ** in register target. 005630 */ 005631 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 005632 int inReg; 005633 005634 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 005635 assert( target>0 && target<=pParse->nMem ); 005636 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 005637 if( pParse->pVdbe==0 ) return; 005638 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 005639 if( inReg!=target ){ 005640 u8 op; 005641 Expr *pX = sqlite3ExprSkipCollateAndLikely(pExpr); 005642 testcase( pX!=pExpr ); 005643 if( ALWAYS(pX) 005644 && (ExprHasProperty(pX,EP_Subquery) || pX->op==TK_REGISTER) 005645 ){ 005646 op = OP_Copy; 005647 }else{ 005648 op = OP_SCopy; 005649 } 005650 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 005651 } 005652 } 005653 005654 /* 005655 ** Make a transient copy of expression pExpr and then code it using 005656 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 005657 ** except that the input expression is guaranteed to be unchanged. 005658 */ 005659 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 005660 sqlite3 *db = pParse->db; 005661 pExpr = sqlite3ExprDup(db, pExpr, 0); 005662 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 005663 sqlite3ExprDelete(db, pExpr); 005664 } 005665 005666 /* 005667 ** Generate code that will evaluate expression pExpr and store the 005668 ** results in register target. The results are guaranteed to appear 005669 ** in register target. If the expression is constant, then this routine 005670 ** might choose to code the expression at initialization time. 005671 */ 005672 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 005673 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pParse,pExpr) ){ 005674 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 005675 }else{ 005676 sqlite3ExprCodeCopy(pParse, pExpr, target); 005677 } 005678 } 005679 005680 /* 005681 ** Generate code that pushes the value of every element of the given 005682 ** expression list into a sequence of registers beginning at target. 005683 ** 005684 ** Return the number of elements evaluated. The number returned will 005685 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 005686 ** is defined. 005687 ** 005688 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 005689 ** filled using OP_SCopy. OP_Copy must be used instead. 005690 ** 005691 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 005692 ** factored out into initialization code. 005693 ** 005694 ** The SQLITE_ECEL_REF flag means that expressions in the list with 005695 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 005696 ** in registers at srcReg, and so the value can be copied from there. 005697 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 005698 ** are simply omitted rather than being copied from srcReg. 005699 */ 005700 int sqlite3ExprCodeExprList( 005701 Parse *pParse, /* Parsing context */ 005702 ExprList *pList, /* The expression list to be coded */ 005703 int target, /* Where to write results */ 005704 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 005705 u8 flags /* SQLITE_ECEL_* flags */ 005706 ){ 005707 struct ExprList_item *pItem; 005708 int i, j, n; 005709 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 005710 Vdbe *v = pParse->pVdbe; 005711 assert( pList!=0 ); 005712 assert( target>0 ); 005713 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 005714 n = pList->nExpr; 005715 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 005716 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 005717 Expr *pExpr = pItem->pExpr; 005718 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 005719 if( pItem->fg.bSorterRef ){ 005720 i--; 005721 n--; 005722 }else 005723 #endif 005724 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 005725 if( flags & SQLITE_ECEL_OMITREF ){ 005726 i--; 005727 n--; 005728 }else{ 005729 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 005730 } 005731 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 005732 && sqlite3ExprIsConstantNotJoin(pParse,pExpr) 005733 ){ 005734 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 005735 }else{ 005736 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 005737 if( inReg!=target+i ){ 005738 VdbeOp *pOp; 005739 if( copyOp==OP_Copy 005740 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy 005741 && pOp->p1+pOp->p3+1==inReg 005742 && pOp->p2+pOp->p3+1==target+i 005743 && pOp->p5==0 /* The do-not-merge flag must be clear */ 005744 ){ 005745 pOp->p3++; 005746 }else{ 005747 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 005748 } 005749 } 005750 } 005751 } 005752 return n; 005753 } 005754 005755 /* 005756 ** Generate code for a BETWEEN operator. 005757 ** 005758 ** x BETWEEN y AND z 005759 ** 005760 ** The above is equivalent to 005761 ** 005762 ** x>=y AND x<=z 005763 ** 005764 ** Code it as such, taking care to do the common subexpression 005765 ** elimination of x. 005766 ** 005767 ** The xJumpIf parameter determines details: 005768 ** 005769 ** NULL: Store the boolean result in reg[dest] 005770 ** sqlite3ExprIfTrue: Jump to dest if true 005771 ** sqlite3ExprIfFalse: Jump to dest if false 005772 ** 005773 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 005774 */ 005775 static void exprCodeBetween( 005776 Parse *pParse, /* Parsing and code generating context */ 005777 Expr *pExpr, /* The BETWEEN expression */ 005778 int dest, /* Jump destination or storage location */ 005779 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 005780 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 005781 ){ 005782 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 005783 Expr compLeft; /* The x>=y term */ 005784 Expr compRight; /* The x<=z term */ 005785 int regFree1 = 0; /* Temporary use register */ 005786 Expr *pDel = 0; 005787 sqlite3 *db = pParse->db; 005788 005789 memset(&compLeft, 0, sizeof(Expr)); 005790 memset(&compRight, 0, sizeof(Expr)); 005791 memset(&exprAnd, 0, sizeof(Expr)); 005792 005793 assert( ExprUseXList(pExpr) ); 005794 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 005795 if( db->mallocFailed==0 ){ 005796 exprAnd.op = TK_AND; 005797 exprAnd.pLeft = &compLeft; 005798 exprAnd.pRight = &compRight; 005799 compLeft.op = TK_GE; 005800 compLeft.pLeft = pDel; 005801 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 005802 compRight.op = TK_LE; 005803 compRight.pLeft = pDel; 005804 compRight.pRight = pExpr->x.pList->a[1].pExpr; 005805 sqlite3ExprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 005806 if( xJump ){ 005807 xJump(pParse, &exprAnd, dest, jumpIfNull); 005808 }else{ 005809 /* Mark the expression is being from the ON or USING clause of a join 005810 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 005811 ** it into the Parse.pConstExpr list. We should use a new bit for this, 005812 ** for clarity, but we are out of bits in the Expr.flags field so we 005813 ** have to reuse the EP_OuterON bit. Bummer. */ 005814 pDel->flags |= EP_OuterON; 005815 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 005816 } 005817 sqlite3ReleaseTempReg(pParse, regFree1); 005818 } 005819 sqlite3ExprDelete(db, pDel); 005820 005821 /* Ensure adequate test coverage */ 005822 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 005823 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 005824 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 005825 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 005826 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 005827 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 005828 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 005829 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 005830 testcase( xJump==0 ); 005831 } 005832 005833 /* 005834 ** Generate code for a boolean expression such that a jump is made 005835 ** to the label "dest" if the expression is true but execution 005836 ** continues straight thru if the expression is false. 005837 ** 005838 ** If the expression evaluates to NULL (neither true nor false), then 005839 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 005840 ** 005841 ** This code depends on the fact that certain token values (ex: TK_EQ) 005842 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 005843 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 005844 ** the make process cause these values to align. Assert()s in the code 005845 ** below verify that the numbers are aligned correctly. 005846 */ 005847 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 005848 Vdbe *v = pParse->pVdbe; 005849 int op = 0; 005850 int regFree1 = 0; 005851 int regFree2 = 0; 005852 int r1, r2; 005853 005854 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 005855 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 005856 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 005857 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 005858 op = pExpr->op; 005859 switch( op ){ 005860 case TK_AND: 005861 case TK_OR: { 005862 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 005863 if( pAlt!=pExpr ){ 005864 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 005865 }else if( op==TK_AND ){ 005866 int d2 = sqlite3VdbeMakeLabel(pParse); 005867 testcase( jumpIfNull==0 ); 005868 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 005869 jumpIfNull^SQLITE_JUMPIFNULL); 005870 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 005871 sqlite3VdbeResolveLabel(v, d2); 005872 }else{ 005873 testcase( jumpIfNull==0 ); 005874 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 005875 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 005876 } 005877 break; 005878 } 005879 case TK_NOT: { 005880 testcase( jumpIfNull==0 ); 005881 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 005882 break; 005883 } 005884 case TK_TRUTH: { 005885 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 005886 int isTrue; /* IS TRUE or IS NOT TRUE */ 005887 testcase( jumpIfNull==0 ); 005888 isNot = pExpr->op2==TK_ISNOT; 005889 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 005890 testcase( isTrue && isNot ); 005891 testcase( !isTrue && isNot ); 005892 if( isTrue ^ isNot ){ 005893 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 005894 isNot ? SQLITE_JUMPIFNULL : 0); 005895 }else{ 005896 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 005897 isNot ? SQLITE_JUMPIFNULL : 0); 005898 } 005899 break; 005900 } 005901 case TK_IS: 005902 case TK_ISNOT: 005903 testcase( op==TK_IS ); 005904 testcase( op==TK_ISNOT ); 005905 op = (op==TK_IS) ? TK_EQ : TK_NE; 005906 jumpIfNull = SQLITE_NULLEQ; 005907 /* no break */ deliberate_fall_through 005908 case TK_LT: 005909 case TK_LE: 005910 case TK_GT: 005911 case TK_GE: 005912 case TK_NE: 005913 case TK_EQ: { 005914 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 005915 testcase( jumpIfNull==0 ); 005916 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005917 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 005918 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 005919 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 005920 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 005921 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 005922 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 005923 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 005924 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 005925 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 005926 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 005927 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 005928 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 005929 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 005930 testcase( regFree1==0 ); 005931 testcase( regFree2==0 ); 005932 break; 005933 } 005934 case TK_ISNULL: 005935 case TK_NOTNULL: { 005936 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 005937 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 005938 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005939 sqlite3VdbeTypeofColumn(v, r1); 005940 sqlite3VdbeAddOp2(v, op, r1, dest); 005941 VdbeCoverageIf(v, op==TK_ISNULL); 005942 VdbeCoverageIf(v, op==TK_NOTNULL); 005943 testcase( regFree1==0 ); 005944 break; 005945 } 005946 case TK_BETWEEN: { 005947 testcase( jumpIfNull==0 ); 005948 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 005949 break; 005950 } 005951 #ifndef SQLITE_OMIT_SUBQUERY 005952 case TK_IN: { 005953 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 005954 int destIfNull = jumpIfNull ? dest : destIfFalse; 005955 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 005956 sqlite3VdbeGoto(v, dest); 005957 sqlite3VdbeResolveLabel(v, destIfFalse); 005958 break; 005959 } 005960 #endif 005961 default: { 005962 default_expr: 005963 if( ExprAlwaysTrue(pExpr) ){ 005964 sqlite3VdbeGoto(v, dest); 005965 }else if( ExprAlwaysFalse(pExpr) ){ 005966 /* No-op */ 005967 }else{ 005968 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 005969 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 005970 VdbeCoverage(v); 005971 testcase( regFree1==0 ); 005972 testcase( jumpIfNull==0 ); 005973 } 005974 break; 005975 } 005976 } 005977 sqlite3ReleaseTempReg(pParse, regFree1); 005978 sqlite3ReleaseTempReg(pParse, regFree2); 005979 } 005980 005981 /* 005982 ** Generate code for a boolean expression such that a jump is made 005983 ** to the label "dest" if the expression is false but execution 005984 ** continues straight thru if the expression is true. 005985 ** 005986 ** If the expression evaluates to NULL (neither true nor false) then 005987 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 005988 ** is 0. 005989 */ 005990 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 005991 Vdbe *v = pParse->pVdbe; 005992 int op = 0; 005993 int regFree1 = 0; 005994 int regFree2 = 0; 005995 int r1, r2; 005996 005997 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 005998 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 005999 if( pExpr==0 ) return; 006000 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 006001 006002 /* The value of pExpr->op and op are related as follows: 006003 ** 006004 ** pExpr->op op 006005 ** --------- ---------- 006006 ** TK_ISNULL OP_NotNull 006007 ** TK_NOTNULL OP_IsNull 006008 ** TK_NE OP_Eq 006009 ** TK_EQ OP_Ne 006010 ** TK_GT OP_Le 006011 ** TK_LE OP_Gt 006012 ** TK_GE OP_Lt 006013 ** TK_LT OP_Ge 006014 ** 006015 ** For other values of pExpr->op, op is undefined and unused. 006016 ** The value of TK_ and OP_ constants are arranged such that we 006017 ** can compute the mapping above using the following expression. 006018 ** Assert()s verify that the computation is correct. 006019 */ 006020 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 006021 006022 /* Verify correct alignment of TK_ and OP_ constants 006023 */ 006024 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 006025 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 006026 assert( pExpr->op!=TK_NE || op==OP_Eq ); 006027 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 006028 assert( pExpr->op!=TK_LT || op==OP_Ge ); 006029 assert( pExpr->op!=TK_LE || op==OP_Gt ); 006030 assert( pExpr->op!=TK_GT || op==OP_Le ); 006031 assert( pExpr->op!=TK_GE || op==OP_Lt ); 006032 006033 switch( pExpr->op ){ 006034 case TK_AND: 006035 case TK_OR: { 006036 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 006037 if( pAlt!=pExpr ){ 006038 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 006039 }else if( pExpr->op==TK_AND ){ 006040 testcase( jumpIfNull==0 ); 006041 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 006042 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 006043 }else{ 006044 int d2 = sqlite3VdbeMakeLabel(pParse); 006045 testcase( jumpIfNull==0 ); 006046 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 006047 jumpIfNull^SQLITE_JUMPIFNULL); 006048 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 006049 sqlite3VdbeResolveLabel(v, d2); 006050 } 006051 break; 006052 } 006053 case TK_NOT: { 006054 testcase( jumpIfNull==0 ); 006055 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 006056 break; 006057 } 006058 case TK_TRUTH: { 006059 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 006060 int isTrue; /* IS TRUE or IS NOT TRUE */ 006061 testcase( jumpIfNull==0 ); 006062 isNot = pExpr->op2==TK_ISNOT; 006063 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 006064 testcase( isTrue && isNot ); 006065 testcase( !isTrue && isNot ); 006066 if( isTrue ^ isNot ){ 006067 /* IS TRUE and IS NOT FALSE */ 006068 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 006069 isNot ? 0 : SQLITE_JUMPIFNULL); 006070 006071 }else{ 006072 /* IS FALSE and IS NOT TRUE */ 006073 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 006074 isNot ? 0 : SQLITE_JUMPIFNULL); 006075 } 006076 break; 006077 } 006078 case TK_IS: 006079 case TK_ISNOT: 006080 testcase( pExpr->op==TK_IS ); 006081 testcase( pExpr->op==TK_ISNOT ); 006082 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 006083 jumpIfNull = SQLITE_NULLEQ; 006084 /* no break */ deliberate_fall_through 006085 case TK_LT: 006086 case TK_LE: 006087 case TK_GT: 006088 case TK_GE: 006089 case TK_NE: 006090 case TK_EQ: { 006091 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 006092 testcase( jumpIfNull==0 ); 006093 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 006094 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 006095 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 006096 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 006097 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 006098 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 006099 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 006100 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 006101 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 006102 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 006103 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 006104 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 006105 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 006106 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 006107 testcase( regFree1==0 ); 006108 testcase( regFree2==0 ); 006109 break; 006110 } 006111 case TK_ISNULL: 006112 case TK_NOTNULL: { 006113 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 006114 sqlite3VdbeTypeofColumn(v, r1); 006115 sqlite3VdbeAddOp2(v, op, r1, dest); 006116 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 006117 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 006118 testcase( regFree1==0 ); 006119 break; 006120 } 006121 case TK_BETWEEN: { 006122 testcase( jumpIfNull==0 ); 006123 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 006124 break; 006125 } 006126 #ifndef SQLITE_OMIT_SUBQUERY 006127 case TK_IN: { 006128 if( jumpIfNull ){ 006129 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 006130 }else{ 006131 int destIfNull = sqlite3VdbeMakeLabel(pParse); 006132 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 006133 sqlite3VdbeResolveLabel(v, destIfNull); 006134 } 006135 break; 006136 } 006137 #endif 006138 default: { 006139 default_expr: 006140 if( ExprAlwaysFalse(pExpr) ){ 006141 sqlite3VdbeGoto(v, dest); 006142 }else if( ExprAlwaysTrue(pExpr) ){ 006143 /* no-op */ 006144 }else{ 006145 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 006146 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 006147 VdbeCoverage(v); 006148 testcase( regFree1==0 ); 006149 testcase( jumpIfNull==0 ); 006150 } 006151 break; 006152 } 006153 } 006154 sqlite3ReleaseTempReg(pParse, regFree1); 006155 sqlite3ReleaseTempReg(pParse, regFree2); 006156 } 006157 006158 /* 006159 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 006160 ** code generation, and that copy is deleted after code generation. This 006161 ** ensures that the original pExpr is unchanged. 006162 */ 006163 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 006164 sqlite3 *db = pParse->db; 006165 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 006166 if( db->mallocFailed==0 ){ 006167 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 006168 } 006169 sqlite3ExprDelete(db, pCopy); 006170 } 006171 006172 /* 006173 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 006174 ** type of expression. 006175 ** 006176 ** If pExpr is a simple SQL value - an integer, real, string, blob 006177 ** or NULL value - then the VDBE currently being prepared is configured 006178 ** to re-prepare each time a new value is bound to variable pVar. 006179 ** 006180 ** Additionally, if pExpr is a simple SQL value and the value is the 006181 ** same as that currently bound to variable pVar, non-zero is returned. 006182 ** Otherwise, if the values are not the same or if pExpr is not a simple 006183 ** SQL value, zero is returned. 006184 ** 006185 ** If the SQLITE_EnableQPSG flag is set on the database connection, then 006186 ** this routine always returns false. 006187 */ 006188 static SQLITE_NOINLINE int exprCompareVariable( 006189 const Parse *pParse, 006190 const Expr *pVar, 006191 const Expr *pExpr 006192 ){ 006193 int res = 2; 006194 int iVar; 006195 sqlite3_value *pL, *pR = 0; 006196 006197 if( pExpr->op==TK_VARIABLE && pVar->iColumn==pExpr->iColumn ){ 006198 return 0; 006199 } 006200 if( (pParse->db->flags & SQLITE_EnableQPSG)!=0 ) return 2; 006201 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 006202 if( pR ){ 006203 iVar = pVar->iColumn; 006204 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 006205 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 006206 if( pL ){ 006207 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 006208 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 006209 } 006210 res = sqlite3MemCompare(pL, pR, 0) ? 2 : 0; 006211 } 006212 sqlite3ValueFree(pR); 006213 sqlite3ValueFree(pL); 006214 } 006215 return res; 006216 } 006217 006218 /* 006219 ** Do a deep comparison of two expression trees. Return 0 if the two 006220 ** expressions are completely identical. Return 1 if they differ only 006221 ** by a COLLATE operator at the top level. Return 2 if there are differences 006222 ** other than the top-level COLLATE operator. 006223 ** 006224 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 006225 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 006226 ** 006227 ** The pA side might be using TK_REGISTER. If that is the case and pB is 006228 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 006229 ** 006230 ** Sometimes this routine will return 2 even if the two expressions 006231 ** really are equivalent. If we cannot prove that the expressions are 006232 ** identical, we return 2 just to be safe. So if this routine 006233 ** returns 2, then you do not really know for certain if the two 006234 ** expressions are the same. But if you get a 0 or 1 return, then you 006235 ** can be sure the expressions are the same. In the places where 006236 ** this routine is used, it does not hurt to get an extra 2 - that 006237 ** just might result in some slightly slower code. But returning 006238 ** an incorrect 0 or 1 could lead to a malfunction. 006239 ** 006240 ** If pParse is not NULL and SQLITE_EnableQPSG is off then TK_VARIABLE 006241 ** terms in pA with bindings in pParse->pReprepare can be matched against 006242 ** literals in pB. The pParse->pVdbe->expmask bitmask is updated for 006243 ** each variable referenced. 006244 */ 006245 int sqlite3ExprCompare( 006246 const Parse *pParse, 006247 const Expr *pA, 006248 const Expr *pB, 006249 int iTab 006250 ){ 006251 u32 combinedFlags; 006252 if( pA==0 || pB==0 ){ 006253 return pB==pA ? 0 : 2; 006254 } 006255 if( pParse && pA->op==TK_VARIABLE ){ 006256 return exprCompareVariable(pParse, pA, pB); 006257 } 006258 combinedFlags = pA->flags | pB->flags; 006259 if( combinedFlags & EP_IntValue ){ 006260 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 006261 return 0; 006262 } 006263 return 2; 006264 } 006265 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 006266 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 006267 return 1; 006268 } 006269 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 006270 return 1; 006271 } 006272 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN 006273 && pB->iTable<0 && pA->iTable==iTab 006274 ){ 006275 /* fall through */ 006276 }else{ 006277 return 2; 006278 } 006279 } 006280 assert( !ExprHasProperty(pA, EP_IntValue) ); 006281 assert( !ExprHasProperty(pB, EP_IntValue) ); 006282 if( pA->u.zToken ){ 006283 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 006284 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 006285 #ifndef SQLITE_OMIT_WINDOWFUNC 006286 assert( pA->op==pB->op ); 006287 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 006288 return 2; 006289 } 006290 if( ExprHasProperty(pA,EP_WinFunc) ){ 006291 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 006292 return 2; 006293 } 006294 } 006295 #endif 006296 }else if( pA->op==TK_NULL ){ 006297 return 0; 006298 }else if( pA->op==TK_COLLATE ){ 006299 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 006300 }else 006301 if( pB->u.zToken!=0 006302 && pA->op!=TK_COLUMN 006303 && pA->op!=TK_AGG_COLUMN 006304 && strcmp(pA->u.zToken,pB->u.zToken)!=0 006305 ){ 006306 return 2; 006307 } 006308 } 006309 if( (pA->flags & (EP_Distinct|EP_Commuted)) 006310 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 006311 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 006312 if( combinedFlags & EP_xIsSelect ) return 2; 006313 if( (combinedFlags & EP_FixedCol)==0 006314 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 006315 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 006316 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 006317 if( pA->op!=TK_STRING 006318 && pA->op!=TK_TRUEFALSE 006319 && ALWAYS((combinedFlags & EP_Reduced)==0) 006320 ){ 006321 if( pA->iColumn!=pB->iColumn ) return 2; 006322 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 006323 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 006324 return 2; 006325 } 006326 } 006327 } 006328 return 0; 006329 } 006330 006331 /* 006332 ** Compare two ExprList objects. Return 0 if they are identical, 1 006333 ** if they are certainly different, or 2 if it is not possible to 006334 ** determine if they are identical or not. 006335 ** 006336 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 006337 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 006338 ** 006339 ** This routine might return non-zero for equivalent ExprLists. The 006340 ** only consequence will be disabled optimizations. But this routine 006341 ** must never return 0 if the two ExprList objects are different, or 006342 ** a malfunction will result. 006343 ** 006344 ** Two NULL pointers are considered to be the same. But a NULL pointer 006345 ** always differs from a non-NULL pointer. 006346 */ 006347 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 006348 int i; 006349 if( pA==0 && pB==0 ) return 0; 006350 if( pA==0 || pB==0 ) return 1; 006351 if( pA->nExpr!=pB->nExpr ) return 1; 006352 for(i=0; i<pA->nExpr; i++){ 006353 int res; 006354 Expr *pExprA = pA->a[i].pExpr; 006355 Expr *pExprB = pB->a[i].pExpr; 006356 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 006357 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 006358 } 006359 return 0; 006360 } 006361 006362 /* 006363 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 006364 ** are ignored. 006365 */ 006366 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 006367 return sqlite3ExprCompare(0, 006368 sqlite3ExprSkipCollate(pA), 006369 sqlite3ExprSkipCollate(pB), 006370 iTab); 006371 } 006372 006373 /* 006374 ** Return non-zero if Expr p can only be true if pNN is not NULL. 006375 ** 006376 ** Or if seenNot is true, return non-zero if Expr p can only be 006377 ** non-NULL if pNN is not NULL 006378 */ 006379 static int exprImpliesNotNull( 006380 const Parse *pParse,/* Parsing context */ 006381 const Expr *p, /* The expression to be checked */ 006382 const Expr *pNN, /* The expression that is NOT NULL */ 006383 int iTab, /* Table being evaluated */ 006384 int seenNot /* Return true only if p can be any non-NULL value */ 006385 ){ 006386 assert( p ); 006387 assert( pNN ); 006388 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 006389 return pNN->op!=TK_NULL; 006390 } 006391 switch( p->op ){ 006392 case TK_IN: { 006393 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 006394 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 006395 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 006396 } 006397 case TK_BETWEEN: { 006398 ExprList *pList; 006399 assert( ExprUseXList(p) ); 006400 pList = p->x.pList; 006401 assert( pList!=0 ); 006402 assert( pList->nExpr==2 ); 006403 if( seenNot ) return 0; 006404 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 006405 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 006406 ){ 006407 return 1; 006408 } 006409 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 006410 } 006411 case TK_EQ: 006412 case TK_NE: 006413 case TK_LT: 006414 case TK_LE: 006415 case TK_GT: 006416 case TK_GE: 006417 case TK_PLUS: 006418 case TK_MINUS: 006419 case TK_BITOR: 006420 case TK_LSHIFT: 006421 case TK_RSHIFT: 006422 case TK_CONCAT: 006423 seenNot = 1; 006424 /* no break */ deliberate_fall_through 006425 case TK_STAR: 006426 case TK_REM: 006427 case TK_BITAND: 006428 case TK_SLASH: { 006429 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 006430 /* no break */ deliberate_fall_through 006431 } 006432 case TK_SPAN: 006433 case TK_COLLATE: 006434 case TK_UPLUS: 006435 case TK_UMINUS: { 006436 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 006437 } 006438 case TK_TRUTH: { 006439 if( seenNot ) return 0; 006440 if( p->op2!=TK_IS ) return 0; 006441 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 006442 } 006443 case TK_BITNOT: 006444 case TK_NOT: { 006445 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 006446 } 006447 } 006448 return 0; 006449 } 006450 006451 /* 006452 ** Return true if the boolean value of the expression is always either 006453 ** FALSE or NULL. 006454 */ 006455 static int sqlite3ExprIsNotTrue(Expr *pExpr){ 006456 int v; 006457 if( pExpr->op==TK_NULL ) return 1; 006458 if( pExpr->op==TK_TRUEFALSE && sqlite3ExprTruthValue(pExpr)==0 ) return 1; 006459 v = 1; 006460 if( sqlite3ExprIsInteger(pExpr, &v, 0) && v==0 ) return 1; 006461 return 0; 006462 } 006463 006464 /* 006465 ** Return true if the expression is one of the following: 006466 ** 006467 ** CASE WHEN x THEN y END 006468 ** CASE WHEN x THEN y ELSE NULL END 006469 ** CASE WHEN x THEN y ELSE false END 006470 ** iif(x,y) 006471 ** iif(x,y,NULL) 006472 ** iif(x,y,false) 006473 */ 006474 static int sqlite3ExprIsIIF(sqlite3 *db, const Expr *pExpr){ 006475 ExprList *pList; 006476 if( pExpr->op==TK_FUNCTION ){ 006477 const char *z = pExpr->u.zToken; 006478 FuncDef *pDef; 006479 if( (z[0]!='i' && z[0]!='I') ) return 0; 006480 if( pExpr->x.pList==0 ) return 0; 006481 pDef = sqlite3FindFunction(db, z, pExpr->x.pList->nExpr, ENC(db), 0); 006482 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 006483 if( pDef==0 ) return 0; 006484 #else 006485 if( NEVER(pDef==0) ) return 0; 006486 #endif 006487 if( (pDef->funcFlags & SQLITE_FUNC_INLINE)==0 ) return 0; 006488 if( SQLITE_PTR_TO_INT(pDef->pUserData)!=INLINEFUNC_iif ) return 0; 006489 }else if( pExpr->op==TK_CASE ){ 006490 if( pExpr->pLeft!=0 ) return 0; 006491 }else{ 006492 return 0; 006493 } 006494 pList = pExpr->x.pList; 006495 assert( pList!=0 ); 006496 if( pList->nExpr==2 ) return 1; 006497 if( pList->nExpr==3 && sqlite3ExprIsNotTrue(pList->a[2].pExpr) ) return 1; 006498 return 0; 006499 } 006500 006501 /* 006502 ** Return true if we can prove the pE2 will always be true if pE1 is 006503 ** true. Return false if we cannot complete the proof or if pE2 might 006504 ** be false. Examples: 006505 ** 006506 ** pE1: x==5 pE2: x==5 Result: true 006507 ** pE1: x>0 pE2: x==5 Result: false 006508 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 006509 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 006510 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 006511 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 006512 ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false 006513 ** pE1: iif(x,y) pE2: x Result: true 006514 ** PE1: iif(x,y,0) pE2: x Result: true 006515 ** 006516 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 006517 ** Expr.iTable<0 then assume a table number given by iTab. 006518 ** 006519 ** If pParse is not NULL, then the values of bound variables in pE1 are 006520 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 006521 ** modified to record which bound variables are referenced. If pParse 006522 ** is NULL, then false will be returned if pE1 contains any bound variables. 006523 ** 006524 ** When in doubt, return false. Returning true might give a performance 006525 ** improvement. Returning false might cause a performance reduction, but 006526 ** it will always give the correct answer and is hence always safe. 006527 */ 006528 int sqlite3ExprImpliesExpr( 006529 const Parse *pParse, 006530 const Expr *pE1, 006531 const Expr *pE2, 006532 int iTab 006533 ){ 006534 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 006535 return 1; 006536 } 006537 if( pE2->op==TK_OR 006538 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 006539 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 006540 ){ 006541 return 1; 006542 } 006543 if( pE2->op==TK_NOTNULL 006544 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 006545 ){ 006546 return 1; 006547 } 006548 if( sqlite3ExprIsIIF(pParse->db, pE1) ){ 006549 return sqlite3ExprImpliesExpr(pParse,pE1->x.pList->a[0].pExpr,pE2,iTab); 006550 } 006551 return 0; 006552 } 006553 006554 /* This is a helper function to impliesNotNullRow(). In this routine, 006555 ** set pWalker->eCode to one only if *both* of the input expressions 006556 ** separately have the implies-not-null-row property. 006557 */ 006558 static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){ 006559 if( pWalker->eCode==0 ){ 006560 sqlite3WalkExpr(pWalker, pE1); 006561 if( pWalker->eCode ){ 006562 pWalker->eCode = 0; 006563 sqlite3WalkExpr(pWalker, pE2); 006564 } 006565 } 006566 } 006567 006568 /* 006569 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 006570 ** If the expression node requires that the table at pWalker->iCur 006571 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 006572 ** 006573 ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on 006574 ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when 006575 ** evaluating terms in the ON clause of an inner join. 006576 ** 006577 ** This routine controls an optimization. False positives (setting 006578 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 006579 ** (never setting pWalker->eCode) is a harmless missed optimization. 006580 */ 006581 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 006582 testcase( pExpr->op==TK_AGG_COLUMN ); 006583 testcase( pExpr->op==TK_AGG_FUNCTION ); 006584 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 006585 if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){ 006586 /* If iCur is used in an inner-join ON clause to the left of a 006587 ** RIGHT JOIN, that does *not* mean that the table must be non-null. 006588 ** But it is difficult to check for that condition precisely. 006589 ** To keep things simple, any use of iCur from any inner-join is 006590 ** ignored while attempting to simplify a RIGHT JOIN. */ 006591 return WRC_Prune; 006592 } 006593 switch( pExpr->op ){ 006594 case TK_ISNOT: 006595 case TK_ISNULL: 006596 case TK_NOTNULL: 006597 case TK_IS: 006598 case TK_VECTOR: 006599 case TK_FUNCTION: 006600 case TK_TRUTH: 006601 case TK_CASE: 006602 testcase( pExpr->op==TK_ISNOT ); 006603 testcase( pExpr->op==TK_ISNULL ); 006604 testcase( pExpr->op==TK_NOTNULL ); 006605 testcase( pExpr->op==TK_IS ); 006606 testcase( pExpr->op==TK_VECTOR ); 006607 testcase( pExpr->op==TK_FUNCTION ); 006608 testcase( pExpr->op==TK_TRUTH ); 006609 testcase( pExpr->op==TK_CASE ); 006610 return WRC_Prune; 006611 006612 case TK_COLUMN: 006613 if( pWalker->u.iCur==pExpr->iTable ){ 006614 pWalker->eCode = 1; 006615 return WRC_Abort; 006616 } 006617 return WRC_Prune; 006618 006619 case TK_OR: 006620 case TK_AND: 006621 /* Both sides of an AND or OR must separately imply non-null-row. 006622 ** Consider these cases: 006623 ** 1. NOT (x AND y) 006624 ** 2. x OR y 006625 ** If only one of x or y is non-null-row, then the overall expression 006626 ** can be true if the other arm is false (case 1) or true (case 2). 006627 */ 006628 testcase( pExpr->op==TK_OR ); 006629 testcase( pExpr->op==TK_AND ); 006630 bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight); 006631 return WRC_Prune; 006632 006633 case TK_IN: 006634 /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)", 006635 ** both of which can be true. But apart from these cases, if 006636 ** the left-hand side of the IN is NULL then the IN itself will be 006637 ** NULL. */ 006638 if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){ 006639 sqlite3WalkExpr(pWalker, pExpr->pLeft); 006640 } 006641 return WRC_Prune; 006642 006643 case TK_BETWEEN: 006644 /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else 006645 ** both y and z must be non-null row */ 006646 assert( ExprUseXList(pExpr) ); 006647 assert( pExpr->x.pList->nExpr==2 ); 006648 sqlite3WalkExpr(pWalker, pExpr->pLeft); 006649 bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr, 006650 pExpr->x.pList->a[1].pExpr); 006651 return WRC_Prune; 006652 006653 /* Virtual tables are allowed to use constraints like x=NULL. So 006654 ** a term of the form x=y does not prove that y is not null if x 006655 ** is the column of a virtual table */ 006656 case TK_EQ: 006657 case TK_NE: 006658 case TK_LT: 006659 case TK_LE: 006660 case TK_GT: 006661 case TK_GE: { 006662 Expr *pLeft = pExpr->pLeft; 006663 Expr *pRight = pExpr->pRight; 006664 testcase( pExpr->op==TK_EQ ); 006665 testcase( pExpr->op==TK_NE ); 006666 testcase( pExpr->op==TK_LT ); 006667 testcase( pExpr->op==TK_LE ); 006668 testcase( pExpr->op==TK_GT ); 006669 testcase( pExpr->op==TK_GE ); 006670 /* The y.pTab=0 assignment in wherecode.c always happens after the 006671 ** impliesNotNullRow() test */ 006672 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 006673 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 006674 if( (pLeft->op==TK_COLUMN 006675 && ALWAYS(pLeft->y.pTab!=0) 006676 && IsVirtual(pLeft->y.pTab)) 006677 || (pRight->op==TK_COLUMN 006678 && ALWAYS(pRight->y.pTab!=0) 006679 && IsVirtual(pRight->y.pTab)) 006680 ){ 006681 return WRC_Prune; 006682 } 006683 /* no break */ deliberate_fall_through 006684 } 006685 default: 006686 return WRC_Continue; 006687 } 006688 } 006689 006690 /* 006691 ** Return true (non-zero) if expression p can only be true if at least 006692 ** one column of table iTab is non-null. In other words, return true 006693 ** if expression p will always be NULL or false if every column of iTab 006694 ** is NULL. 006695 ** 006696 ** False negatives are acceptable. In other words, it is ok to return 006697 ** zero even if expression p will never be true of every column of iTab 006698 ** is NULL. A false negative is merely a missed optimization opportunity. 006699 ** 006700 ** False positives are not allowed, however. A false positive may result 006701 ** in an incorrect answer. 006702 ** 006703 ** Terms of p that are marked with EP_OuterON (and hence that come from 006704 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 006705 ** 006706 ** This routine is used to check if a LEFT JOIN can be converted into 006707 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 006708 ** clause requires that some column of the right table of the LEFT JOIN 006709 ** be non-NULL, then the LEFT JOIN can be safely converted into an 006710 ** ordinary join. 006711 */ 006712 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){ 006713 Walker w; 006714 p = sqlite3ExprSkipCollateAndLikely(p); 006715 if( p==0 ) return 0; 006716 if( p->op==TK_NOTNULL ){ 006717 p = p->pLeft; 006718 }else{ 006719 while( p->op==TK_AND ){ 006720 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1; 006721 p = p->pRight; 006722 } 006723 } 006724 w.xExprCallback = impliesNotNullRow; 006725 w.xSelectCallback = 0; 006726 w.xSelectCallback2 = 0; 006727 w.eCode = 0; 006728 w.mWFlags = isRJ!=0; 006729 w.u.iCur = iTab; 006730 sqlite3WalkExpr(&w, p); 006731 return w.eCode; 006732 } 006733 006734 /* 006735 ** An instance of the following structure is used by the tree walker 006736 ** to determine if an expression can be evaluated by reference to the 006737 ** index only, without having to do a search for the corresponding 006738 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 006739 ** is the cursor for the table. 006740 */ 006741 struct IdxCover { 006742 Index *pIdx; /* The index to be tested for coverage */ 006743 int iCur; /* Cursor number for the table corresponding to the index */ 006744 }; 006745 006746 /* 006747 ** Check to see if there are references to columns in table 006748 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 006749 ** pWalker->u.pIdxCover->pIdx. 006750 */ 006751 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 006752 if( pExpr->op==TK_COLUMN 006753 && pExpr->iTable==pWalker->u.pIdxCover->iCur 006754 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 006755 ){ 006756 pWalker->eCode = 1; 006757 return WRC_Abort; 006758 } 006759 return WRC_Continue; 006760 } 006761 006762 /* 006763 ** Determine if an index pIdx on table with cursor iCur contains will 006764 ** the expression pExpr. Return true if the index does cover the 006765 ** expression and false if the pExpr expression references table columns 006766 ** that are not found in the index pIdx. 006767 ** 006768 ** An index covering an expression means that the expression can be 006769 ** evaluated using only the index and without having to lookup the 006770 ** corresponding table entry. 006771 */ 006772 int sqlite3ExprCoveredByIndex( 006773 Expr *pExpr, /* The index to be tested */ 006774 int iCur, /* The cursor number for the corresponding table */ 006775 Index *pIdx /* The index that might be used for coverage */ 006776 ){ 006777 Walker w; 006778 struct IdxCover xcov; 006779 memset(&w, 0, sizeof(w)); 006780 xcov.iCur = iCur; 006781 xcov.pIdx = pIdx; 006782 w.xExprCallback = exprIdxCover; 006783 w.u.pIdxCover = &xcov; 006784 sqlite3WalkExpr(&w, pExpr); 006785 return !w.eCode; 006786 } 006787 006788 006789 /* Structure used to pass information throughout the Walker in order to 006790 ** implement sqlite3ReferencesSrcList(). 006791 */ 006792 struct RefSrcList { 006793 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 006794 SrcList *pRef; /* Looking for references to these tables */ 006795 i64 nExclude; /* Number of tables to exclude from the search */ 006796 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 006797 }; 006798 006799 /* 006800 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 006801 ** 006802 ** When entering a new subquery on the pExpr argument, add all FROM clause 006803 ** entries for that subquery to the exclude list. 006804 ** 006805 ** When leaving the subquery, remove those entries from the exclude list. 006806 */ 006807 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 006808 struct RefSrcList *p = pWalker->u.pRefSrcList; 006809 SrcList *pSrc = pSelect->pSrc; 006810 i64 i, j; 006811 int *piNew; 006812 if( pSrc->nSrc==0 ) return WRC_Continue; 006813 j = p->nExclude; 006814 p->nExclude += pSrc->nSrc; 006815 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 006816 if( piNew==0 ){ 006817 p->nExclude = 0; 006818 return WRC_Abort; 006819 }else{ 006820 p->aiExclude = piNew; 006821 } 006822 for(i=0; i<pSrc->nSrc; i++, j++){ 006823 p->aiExclude[j] = pSrc->a[i].iCursor; 006824 } 006825 return WRC_Continue; 006826 } 006827 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 006828 struct RefSrcList *p = pWalker->u.pRefSrcList; 006829 SrcList *pSrc = pSelect->pSrc; 006830 if( p->nExclude ){ 006831 assert( p->nExclude>=pSrc->nSrc ); 006832 p->nExclude -= pSrc->nSrc; 006833 } 006834 } 006835 006836 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 006837 ** 006838 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 006839 ** of the tables shown in RefSrcList.pRef. 006840 ** 006841 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 006842 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 006843 */ 006844 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 006845 if( pExpr->op==TK_COLUMN 006846 || pExpr->op==TK_AGG_COLUMN 006847 ){ 006848 int i; 006849 struct RefSrcList *p = pWalker->u.pRefSrcList; 006850 SrcList *pSrc = p->pRef; 006851 int nSrc = pSrc ? pSrc->nSrc : 0; 006852 for(i=0; i<nSrc; i++){ 006853 if( pExpr->iTable==pSrc->a[i].iCursor ){ 006854 pWalker->eCode |= 1; 006855 return WRC_Continue; 006856 } 006857 } 006858 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 006859 if( i>=p->nExclude ){ 006860 pWalker->eCode |= 2; 006861 } 006862 } 006863 return WRC_Continue; 006864 } 006865 006866 /* 006867 ** Check to see if pExpr references any tables in pSrcList. 006868 ** Possible return values: 006869 ** 006870 ** 1 pExpr does references a table in pSrcList. 006871 ** 006872 ** 0 pExpr references some table that is not defined in either 006873 ** pSrcList or in subqueries of pExpr itself. 006874 ** 006875 ** -1 pExpr only references no tables at all, or it only 006876 ** references tables defined in subqueries of pExpr itself. 006877 ** 006878 ** As currently used, pExpr is always an aggregate function call. That 006879 ** fact is exploited for efficiency. 006880 */ 006881 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 006882 Walker w; 006883 struct RefSrcList x; 006884 assert( pParse->db!=0 ); 006885 memset(&w, 0, sizeof(w)); 006886 memset(&x, 0, sizeof(x)); 006887 w.xExprCallback = exprRefToSrcList; 006888 w.xSelectCallback = selectRefEnter; 006889 w.xSelectCallback2 = selectRefLeave; 006890 w.u.pRefSrcList = &x; 006891 x.db = pParse->db; 006892 x.pRef = pSrcList; 006893 assert( pExpr->op==TK_AGG_FUNCTION ); 006894 assert( ExprUseXList(pExpr) ); 006895 sqlite3WalkExprList(&w, pExpr->x.pList); 006896 if( pExpr->pLeft ){ 006897 assert( pExpr->pLeft->op==TK_ORDER ); 006898 assert( ExprUseXList(pExpr->pLeft) ); 006899 assert( pExpr->pLeft->x.pList!=0 ); 006900 sqlite3WalkExprList(&w, pExpr->pLeft->x.pList); 006901 } 006902 #ifndef SQLITE_OMIT_WINDOWFUNC 006903 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 006904 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 006905 } 006906 #endif 006907 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); 006908 if( w.eCode & 0x01 ){ 006909 return 1; 006910 }else if( w.eCode ){ 006911 return 0; 006912 }else{ 006913 return -1; 006914 } 006915 } 006916 006917 /* 006918 ** This is a Walker expression node callback. 006919 ** 006920 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 006921 ** object that is referenced does not refer directly to the Expr. If 006922 ** it does, make a copy. This is done because the pExpr argument is 006923 ** subject to change. 006924 ** 006925 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete() 006926 ** which builds on the sqlite3ParserAddCleanup() mechanism. 006927 */ 006928 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 006929 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 006930 && pExpr->pAggInfo!=0 006931 ){ 006932 AggInfo *pAggInfo = pExpr->pAggInfo; 006933 int iAgg = pExpr->iAgg; 006934 Parse *pParse = pWalker->pParse; 006935 sqlite3 *db = pParse->db; 006936 assert( iAgg>=0 ); 006937 if( pExpr->op!=TK_AGG_FUNCTION ){ 006938 if( iAgg<pAggInfo->nColumn 006939 && pAggInfo->aCol[iAgg].pCExpr==pExpr 006940 ){ 006941 pExpr = sqlite3ExprDup(db, pExpr, 0); 006942 if( pExpr && !sqlite3ExprDeferredDelete(pParse, pExpr) ){ 006943 pAggInfo->aCol[iAgg].pCExpr = pExpr; 006944 } 006945 } 006946 }else{ 006947 assert( pExpr->op==TK_AGG_FUNCTION ); 006948 if( ALWAYS(iAgg<pAggInfo->nFunc) 006949 && pAggInfo->aFunc[iAgg].pFExpr==pExpr 006950 ){ 006951 pExpr = sqlite3ExprDup(db, pExpr, 0); 006952 if( pExpr && !sqlite3ExprDeferredDelete(pParse, pExpr) ){ 006953 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 006954 } 006955 } 006956 } 006957 } 006958 return WRC_Continue; 006959 } 006960 006961 /* 006962 ** Initialize a Walker object so that will persist AggInfo entries referenced 006963 ** by the tree that is walked. 006964 */ 006965 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 006966 memset(pWalker, 0, sizeof(*pWalker)); 006967 pWalker->pParse = pParse; 006968 pWalker->xExprCallback = agginfoPersistExprCb; 006969 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 006970 } 006971 006972 /* 006973 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 006974 ** the new element. Return a negative number if malloc fails. 006975 */ 006976 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 006977 int i; 006978 pInfo->aCol = sqlite3ArrayAllocate( 006979 db, 006980 pInfo->aCol, 006981 sizeof(pInfo->aCol[0]), 006982 &pInfo->nColumn, 006983 &i 006984 ); 006985 return i; 006986 } 006987 006988 /* 006989 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 006990 ** the new element. Return a negative number if malloc fails. 006991 */ 006992 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 006993 int i; 006994 pInfo->aFunc = sqlite3ArrayAllocate( 006995 db, 006996 pInfo->aFunc, 006997 sizeof(pInfo->aFunc[0]), 006998 &pInfo->nFunc, 006999 &i 007000 ); 007001 return i; 007002 } 007003 007004 /* 007005 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn. 007006 ** Return the index in aCol[] of the entry that describes that column. 007007 ** 007008 ** If no prior entry is found, create a new one and return -1. The 007009 ** new column will have an index of pAggInfo->nColumn-1. 007010 */ 007011 static void findOrCreateAggInfoColumn( 007012 Parse *pParse, /* Parsing context */ 007013 AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */ 007014 Expr *pExpr /* Expr describing the column to find or insert */ 007015 ){ 007016 struct AggInfo_col *pCol; 007017 int k; 007018 007019 assert( pAggInfo->iFirstReg==0 ); 007020 pCol = pAggInfo->aCol; 007021 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 007022 if( pCol->pCExpr==pExpr ) return; 007023 if( pCol->iTable==pExpr->iTable 007024 && pCol->iColumn==pExpr->iColumn 007025 && pExpr->op!=TK_IF_NULL_ROW 007026 ){ 007027 goto fix_up_expr; 007028 } 007029 } 007030 k = addAggInfoColumn(pParse->db, pAggInfo); 007031 if( k<0 ){ 007032 /* OOM on resize */ 007033 assert( pParse->db->mallocFailed ); 007034 return; 007035 } 007036 pCol = &pAggInfo->aCol[k]; 007037 assert( ExprUseYTab(pExpr) ); 007038 pCol->pTab = pExpr->y.pTab; 007039 pCol->iTable = pExpr->iTable; 007040 pCol->iColumn = pExpr->iColumn; 007041 pCol->iSorterColumn = -1; 007042 pCol->pCExpr = pExpr; 007043 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ 007044 int j, n; 007045 ExprList *pGB = pAggInfo->pGroupBy; 007046 struct ExprList_item *pTerm = pGB->a; 007047 n = pGB->nExpr; 007048 for(j=0; j<n; j++, pTerm++){ 007049 Expr *pE = pTerm->pExpr; 007050 if( pE->op==TK_COLUMN 007051 && pE->iTable==pExpr->iTable 007052 && pE->iColumn==pExpr->iColumn 007053 ){ 007054 pCol->iSorterColumn = j; 007055 break; 007056 } 007057 } 007058 } 007059 if( pCol->iSorterColumn<0 ){ 007060 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 007061 } 007062 fix_up_expr: 007063 ExprSetVVAProperty(pExpr, EP_NoReduce); 007064 assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo ); 007065 pExpr->pAggInfo = pAggInfo; 007066 if( pExpr->op==TK_COLUMN ){ 007067 pExpr->op = TK_AGG_COLUMN; 007068 } 007069 pExpr->iAgg = (i16)k; 007070 } 007071 007072 /* 007073 ** This is the xExprCallback for a tree walker. It is used to 007074 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 007075 ** for additional information. 007076 */ 007077 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 007078 int i; 007079 NameContext *pNC = pWalker->u.pNC; 007080 Parse *pParse = pNC->pParse; 007081 SrcList *pSrcList = pNC->pSrcList; 007082 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 007083 007084 assert( pNC->ncFlags & NC_UAggInfo ); 007085 assert( pAggInfo->iFirstReg==0 ); 007086 switch( pExpr->op ){ 007087 default: { 007088 IndexedExpr *pIEpr; 007089 Expr tmp; 007090 assert( pParse->iSelfTab==0 ); 007091 if( (pNC->ncFlags & NC_InAggFunc)==0 ) break; 007092 if( pParse->pIdxEpr==0 ) break; 007093 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ 007094 int iDataCur = pIEpr->iDataCur; 007095 if( iDataCur<0 ) continue; 007096 if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break; 007097 } 007098 if( pIEpr==0 ) break; 007099 if( NEVER(!ExprUseYTab(pExpr)) ) break; 007100 for(i=0; i<pSrcList->nSrc; i++){ 007101 if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break; 007102 } 007103 if( i>=pSrcList->nSrc ) break; 007104 if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */ 007105 if( pParse->nErr ){ return WRC_Abort; } 007106 007107 /* If we reach this point, it means that expression pExpr can be 007108 ** translated into a reference to an index column as described by 007109 ** pIEpr. 007110 */ 007111 memset(&tmp, 0, sizeof(tmp)); 007112 tmp.op = TK_AGG_COLUMN; 007113 tmp.iTable = pIEpr->iIdxCur; 007114 tmp.iColumn = pIEpr->iIdxCol; 007115 findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp); 007116 if( pParse->nErr ){ return WRC_Abort; } 007117 assert( pAggInfo->aCol!=0 ); 007118 assert( tmp.iAgg<pAggInfo->nColumn ); 007119 pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr; 007120 pExpr->pAggInfo = pAggInfo; 007121 pExpr->iAgg = tmp.iAgg; 007122 return WRC_Prune; 007123 } 007124 case TK_IF_NULL_ROW: 007125 case TK_AGG_COLUMN: 007126 case TK_COLUMN: { 007127 testcase( pExpr->op==TK_AGG_COLUMN ); 007128 testcase( pExpr->op==TK_COLUMN ); 007129 testcase( pExpr->op==TK_IF_NULL_ROW ); 007130 /* Check to see if the column is in one of the tables in the FROM 007131 ** clause of the aggregate query */ 007132 if( ALWAYS(pSrcList!=0) ){ 007133 SrcItem *pItem = pSrcList->a; 007134 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 007135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 007136 if( pExpr->iTable==pItem->iCursor ){ 007137 findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr); 007138 break; 007139 } /* endif pExpr->iTable==pItem->iCursor */ 007140 } /* end loop over pSrcList */ 007141 } 007142 return WRC_Continue; 007143 } 007144 case TK_AGG_FUNCTION: { 007145 if( (pNC->ncFlags & NC_InAggFunc)==0 007146 && pWalker->walkerDepth==pExpr->op2 007147 && pExpr->pAggInfo==0 007148 ){ 007149 /* Check to see if pExpr is a duplicate of another aggregate 007150 ** function that is already in the pAggInfo structure 007151 */ 007152 struct AggInfo_func *pItem = pAggInfo->aFunc; 007153 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 007154 if( NEVER(pItem->pFExpr==pExpr) ) break; 007155 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 007156 break; 007157 } 007158 } 007159 if( i>=pAggInfo->nFunc ){ 007160 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 007161 */ 007162 u8 enc = ENC(pParse->db); 007163 i = addAggInfoFunc(pParse->db, pAggInfo); 007164 if( i>=0 ){ 007165 int nArg; 007166 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 007167 pItem = &pAggInfo->aFunc[i]; 007168 pItem->pFExpr = pExpr; 007169 assert( ExprUseUToken(pExpr) ); 007170 nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0; 007171 pItem->pFunc = sqlite3FindFunction(pParse->db, 007172 pExpr->u.zToken, nArg, enc, 0); 007173 assert( pItem->bOBUnique==0 ); 007174 if( pExpr->pLeft 007175 && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0 007176 ){ 007177 /* The NEEDCOLL test above causes any ORDER BY clause on 007178 ** aggregate min() or max() to be ignored. */ 007179 ExprList *pOBList; 007180 assert( nArg>0 ); 007181 assert( pExpr->pLeft->op==TK_ORDER ); 007182 assert( ExprUseXList(pExpr->pLeft) ); 007183 pItem->iOBTab = pParse->nTab++; 007184 pOBList = pExpr->pLeft->x.pList; 007185 assert( pOBList->nExpr>0 ); 007186 assert( pItem->bOBUnique==0 ); 007187 if( pOBList->nExpr==1 007188 && nArg==1 007189 && sqlite3ExprCompare(0,pOBList->a[0].pExpr, 007190 pExpr->x.pList->a[0].pExpr,0)==0 007191 ){ 007192 pItem->bOBPayload = 0; 007193 pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct); 007194 }else{ 007195 pItem->bOBPayload = 1; 007196 } 007197 pItem->bUseSubtype = 007198 (pItem->pFunc->funcFlags & SQLITE_SUBTYPE)!=0; 007199 }else{ 007200 pItem->iOBTab = -1; 007201 } 007202 if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){ 007203 pItem->iDistinct = pParse->nTab++; 007204 }else{ 007205 pItem->iDistinct = -1; 007206 } 007207 } 007208 } 007209 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 007210 */ 007211 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 007212 ExprSetVVAProperty(pExpr, EP_NoReduce); 007213 pExpr->iAgg = (i16)i; 007214 pExpr->pAggInfo = pAggInfo; 007215 return WRC_Prune; 007216 }else{ 007217 return WRC_Continue; 007218 } 007219 } 007220 } 007221 return WRC_Continue; 007222 } 007223 007224 /* 007225 ** Analyze the pExpr expression looking for aggregate functions and 007226 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 007227 ** points to. Additional entries are made on the AggInfo object as 007228 ** necessary. 007229 ** 007230 ** This routine should only be called after the expression has been 007231 ** analyzed by sqlite3ResolveExprNames(). 007232 */ 007233 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 007234 Walker w; 007235 w.xExprCallback = analyzeAggregate; 007236 w.xSelectCallback = sqlite3WalkerDepthIncrease; 007237 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 007238 w.walkerDepth = 0; 007239 w.u.pNC = pNC; 007240 w.pParse = 0; 007241 assert( pNC->pSrcList!=0 ); 007242 sqlite3WalkExpr(&w, pExpr); 007243 } 007244 007245 /* 007246 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 007247 ** expression list. Return the number of errors. 007248 ** 007249 ** If an error is found, the analysis is cut short. 007250 */ 007251 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 007252 struct ExprList_item *pItem; 007253 int i; 007254 if( pList ){ 007255 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 007256 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 007257 } 007258 } 007259 } 007260 007261 /* 007262 ** Allocate a single new register for use to hold some intermediate result. 007263 */ 007264 int sqlite3GetTempReg(Parse *pParse){ 007265 if( pParse->nTempReg==0 ){ 007266 return ++pParse->nMem; 007267 } 007268 return pParse->aTempReg[--pParse->nTempReg]; 007269 } 007270 007271 /* 007272 ** Deallocate a register, making available for reuse for some other 007273 ** purpose. 007274 */ 007275 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 007276 if( iReg ){ 007277 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 007278 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 007279 pParse->aTempReg[pParse->nTempReg++] = iReg; 007280 } 007281 } 007282 } 007283 007284 /* 007285 ** Allocate or deallocate a block of nReg consecutive registers. 007286 */ 007287 int sqlite3GetTempRange(Parse *pParse, int nReg){ 007288 int i, n; 007289 if( nReg==1 ) return sqlite3GetTempReg(pParse); 007290 i = pParse->iRangeReg; 007291 n = pParse->nRangeReg; 007292 if( nReg<=n ){ 007293 pParse->iRangeReg += nReg; 007294 pParse->nRangeReg -= nReg; 007295 }else{ 007296 i = pParse->nMem+1; 007297 pParse->nMem += nReg; 007298 } 007299 return i; 007300 } 007301 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 007302 if( nReg==1 ){ 007303 sqlite3ReleaseTempReg(pParse, iReg); 007304 return; 007305 } 007306 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 007307 if( nReg>pParse->nRangeReg ){ 007308 pParse->nRangeReg = nReg; 007309 pParse->iRangeReg = iReg; 007310 } 007311 } 007312 007313 /* 007314 ** Mark all temporary registers as being unavailable for reuse. 007315 ** 007316 ** Always invoke this procedure after coding a subroutine or co-routine 007317 ** that might be invoked from other parts of the code, to ensure that 007318 ** the sub/co-routine does not use registers in common with the code that 007319 ** invokes the sub/co-routine. 007320 */ 007321 void sqlite3ClearTempRegCache(Parse *pParse){ 007322 pParse->nTempReg = 0; 007323 pParse->nRangeReg = 0; 007324 } 007325 007326 /* 007327 ** Make sure sufficient registers have been allocated so that 007328 ** iReg is a valid register number. 007329 */ 007330 void sqlite3TouchRegister(Parse *pParse, int iReg){ 007331 if( pParse->nMem<iReg ) pParse->nMem = iReg; 007332 } 007333 007334 #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG) 007335 /* 007336 ** Return the latest reusable register in the set of all registers. 007337 ** The value returned is no less than iMin. If any register iMin or 007338 ** greater is in permanent use, then return one more than that last 007339 ** permanent register. 007340 */ 007341 int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){ 007342 const ExprList *pList = pParse->pConstExpr; 007343 if( pList ){ 007344 int i; 007345 for(i=0; i<pList->nExpr; i++){ 007346 if( pList->a[i].u.iConstExprReg>=iMin ){ 007347 iMin = pList->a[i].u.iConstExprReg + 1; 007348 } 007349 } 007350 } 007351 pParse->nTempReg = 0; 007352 pParse->nRangeReg = 0; 007353 return iMin; 007354 } 007355 #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */ 007356 007357 /* 007358 ** Validate that no temporary register falls within the range of 007359 ** iFirst..iLast, inclusive. This routine is only call from within assert() 007360 ** statements. 007361 */ 007362 #ifdef SQLITE_DEBUG 007363 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 007364 int i; 007365 if( pParse->nRangeReg>0 007366 && pParse->iRangeReg+pParse->nRangeReg > iFirst 007367 && pParse->iRangeReg <= iLast 007368 ){ 007369 return 0; 007370 } 007371 for(i=0; i<pParse->nTempReg; i++){ 007372 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 007373 return 0; 007374 } 007375 } 007376 if( pParse->pConstExpr ){ 007377 ExprList *pList = pParse->pConstExpr; 007378 for(i=0; i<pList->nExpr; i++){ 007379 int iReg = pList->a[i].u.iConstExprReg; 007380 if( iReg==0 ) continue; 007381 if( iReg>=iFirst && iReg<=iLast ) return 0; 007382 } 007383 } 007384 return 1; 007385 } 007386 #endif /* SQLITE_DEBUG */