000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains C code routines that are called by the parser 000013 ** to handle INSERT statements in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* 000018 ** Generate code that will 000019 ** 000020 ** (1) acquire a lock for table pTab then 000021 ** (2) open pTab as cursor iCur. 000022 ** 000023 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 000024 ** for that table that is actually opened. 000025 */ 000026 void sqlite3OpenTable( 000027 Parse *pParse, /* Generate code into this VDBE */ 000028 int iCur, /* The cursor number of the table */ 000029 int iDb, /* The database index in sqlite3.aDb[] */ 000030 Table *pTab, /* The table to be opened */ 000031 int opcode /* OP_OpenRead or OP_OpenWrite */ 000032 ){ 000033 Vdbe *v; 000034 assert( !IsVirtual(pTab) ); 000035 assert( pParse->pVdbe!=0 ); 000036 v = pParse->pVdbe; 000037 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 000038 if( !pParse->db->noSharedCache ){ 000039 sqlite3TableLock(pParse, iDb, pTab->tnum, 000040 (opcode==OP_OpenWrite)?1:0, pTab->zName); 000041 } 000042 if( HasRowid(pTab) ){ 000043 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 000044 VdbeComment((v, "%s", pTab->zName)); 000045 }else{ 000046 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 000047 assert( pPk!=0 ); 000048 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 000049 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 000050 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 000051 VdbeComment((v, "%s", pTab->zName)); 000052 } 000053 } 000054 000055 /* 000056 ** Return a pointer to the column affinity string associated with index 000057 ** pIdx. A column affinity string has one character for each column in 000058 ** the table, according to the affinity of the column: 000059 ** 000060 ** Character Column affinity 000061 ** ------------------------------ 000062 ** 'A' BLOB 000063 ** 'B' TEXT 000064 ** 'C' NUMERIC 000065 ** 'D' INTEGER 000066 ** 'F' REAL 000067 ** 000068 ** An extra 'D' is appended to the end of the string to cover the 000069 ** rowid that appears as the last column in every index. 000070 ** 000071 ** Memory for the buffer containing the column index affinity string 000072 ** is managed along with the rest of the Index structure. It will be 000073 ** released when sqlite3DeleteIndex() is called. 000074 */ 000075 static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ 000076 /* The first time a column affinity string for a particular index is 000077 ** required, it is allocated and populated here. It is then stored as 000078 ** a member of the Index structure for subsequent use. 000079 ** 000080 ** The column affinity string will eventually be deleted by 000081 ** sqliteDeleteIndex() when the Index structure itself is cleaned 000082 ** up. 000083 */ 000084 int n; 000085 Table *pTab = pIdx->pTable; 000086 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 000087 if( !pIdx->zColAff ){ 000088 sqlite3OomFault(db); 000089 return 0; 000090 } 000091 for(n=0; n<pIdx->nColumn; n++){ 000092 i16 x = pIdx->aiColumn[n]; 000093 char aff; 000094 if( x>=0 ){ 000095 aff = pTab->aCol[x].affinity; 000096 }else if( x==XN_ROWID ){ 000097 aff = SQLITE_AFF_INTEGER; 000098 }else{ 000099 assert( x==XN_EXPR ); 000100 assert( pIdx->bHasExpr ); 000101 assert( pIdx->aColExpr!=0 ); 000102 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 000103 } 000104 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 000105 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 000106 pIdx->zColAff[n] = aff; 000107 } 000108 pIdx->zColAff[n] = 0; 000109 return pIdx->zColAff; 000110 } 000111 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 000112 if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); 000113 return pIdx->zColAff; 000114 } 000115 000116 000117 /* 000118 ** Compute an affinity string for a table. Space is obtained 000119 ** from sqlite3DbMalloc(). The caller is responsible for freeing 000120 ** the space when done. 000121 */ 000122 char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ 000123 char *zColAff; 000124 zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); 000125 if( zColAff ){ 000126 int i, j; 000127 for(i=j=0; i<pTab->nCol; i++){ 000128 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 000129 zColAff[j++] = pTab->aCol[i].affinity; 000130 } 000131 } 000132 do{ 000133 zColAff[j--] = 0; 000134 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 000135 } 000136 return zColAff; 000137 } 000138 000139 /* 000140 ** Make changes to the evolving bytecode to do affinity transformations 000141 ** of values that are about to be gathered into a row for table pTab. 000142 ** 000143 ** For ordinary (legacy, non-strict) tables: 000144 ** ----------------------------------------- 000145 ** 000146 ** Compute the affinity string for table pTab, if it has not already been 000147 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 000148 ** 000149 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 000150 ** which were then optimized out) then this routine becomes a no-op. 000151 ** 000152 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 000153 ** affinities for register iReg and following. Or if iReg==0, 000154 ** then just set the P4 operand of the previous opcode (which should be 000155 ** an OP_MakeRecord) to the affinity string. 000156 ** 000157 ** A column affinity string has one character per column: 000158 ** 000159 ** Character Column affinity 000160 ** --------- --------------- 000161 ** 'A' BLOB 000162 ** 'B' TEXT 000163 ** 'C' NUMERIC 000164 ** 'D' INTEGER 000165 ** 'E' REAL 000166 ** 000167 ** For STRICT tables: 000168 ** ------------------ 000169 ** 000170 ** Generate an appropriate OP_TypeCheck opcode that will verify the 000171 ** datatypes against the column definitions in pTab. If iReg==0, that 000172 ** means an OP_MakeRecord opcode has already been generated and should be 000173 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 000174 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 000175 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 000176 ** the first of a series of registers that will form the new record. 000177 ** Apply the type checking to that array of registers. 000178 */ 000179 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 000180 int i; 000181 char *zColAff; 000182 if( pTab->tabFlags & TF_Strict ){ 000183 if( iReg==0 ){ 000184 /* Move the previous opcode (which should be OP_MakeRecord) forward 000185 ** by one slot and insert a new OP_TypeCheck where the current 000186 ** OP_MakeRecord is found */ 000187 VdbeOp *pPrev; 000188 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000189 pPrev = sqlite3VdbeGetLastOp(v); 000190 assert( pPrev!=0 ); 000191 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 000192 pPrev->opcode = OP_TypeCheck; 000193 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 000194 }else{ 000195 /* Insert an isolated OP_Typecheck */ 000196 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 000197 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000198 } 000199 return; 000200 } 000201 zColAff = pTab->zColAff; 000202 if( zColAff==0 ){ 000203 zColAff = sqlite3TableAffinityStr(0, pTab); 000204 if( !zColAff ){ 000205 sqlite3OomFault(sqlite3VdbeDb(v)); 000206 return; 000207 } 000208 pTab->zColAff = zColAff; 000209 } 000210 assert( zColAff!=0 ); 000211 i = sqlite3Strlen30NN(zColAff); 000212 if( i ){ 000213 if( iReg ){ 000214 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 000215 }else{ 000216 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 000217 || sqlite3VdbeDb(v)->mallocFailed ); 000218 sqlite3VdbeChangeP4(v, -1, zColAff, i); 000219 } 000220 } 000221 } 000222 000223 /* 000224 ** Return non-zero if the table pTab in database iDb or any of its indices 000225 ** have been opened at any point in the VDBE program. This is used to see if 000226 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 000227 ** run without using a temporary table for the results of the SELECT. 000228 */ 000229 static int readsTable(Parse *p, int iDb, Table *pTab){ 000230 Vdbe *v = sqlite3GetVdbe(p); 000231 int i; 000232 int iEnd = sqlite3VdbeCurrentAddr(v); 000233 #ifndef SQLITE_OMIT_VIRTUALTABLE 000234 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 000235 #endif 000236 000237 for(i=1; i<iEnd; i++){ 000238 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 000239 assert( pOp!=0 ); 000240 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 000241 Index *pIndex; 000242 Pgno tnum = pOp->p2; 000243 if( tnum==pTab->tnum ){ 000244 return 1; 000245 } 000246 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 000247 if( tnum==pIndex->tnum ){ 000248 return 1; 000249 } 000250 } 000251 } 000252 #ifndef SQLITE_OMIT_VIRTUALTABLE 000253 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 000254 assert( pOp->p4.pVtab!=0 ); 000255 assert( pOp->p4type==P4_VTAB ); 000256 return 1; 000257 } 000258 #endif 000259 } 000260 return 0; 000261 } 000262 000263 /* This walker callback will compute the union of colFlags flags for all 000264 ** referenced columns in a CHECK constraint or generated column expression. 000265 */ 000266 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 000267 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 000268 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 000269 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 000270 } 000271 return WRC_Continue; 000272 } 000273 000274 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 000275 /* 000276 ** All regular columns for table pTab have been puts into registers 000277 ** starting with iRegStore. The registers that correspond to STORED 000278 ** or VIRTUAL columns have not yet been initialized. This routine goes 000279 ** back and computes the values for those columns based on the previously 000280 ** computed normal columns. 000281 */ 000282 void sqlite3ComputeGeneratedColumns( 000283 Parse *pParse, /* Parsing context */ 000284 int iRegStore, /* Register holding the first column */ 000285 Table *pTab /* The table */ 000286 ){ 000287 int i; 000288 Walker w; 000289 Column *pRedo; 000290 int eProgress; 000291 VdbeOp *pOp; 000292 000293 assert( pTab->tabFlags & TF_HasGenerated ); 000294 testcase( pTab->tabFlags & TF_HasVirtual ); 000295 testcase( pTab->tabFlags & TF_HasStored ); 000296 000297 /* Before computing generated columns, first go through and make sure 000298 ** that appropriate affinity has been applied to the regular columns 000299 */ 000300 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 000301 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 000302 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 000303 if( pOp->opcode==OP_Affinity ){ 000304 /* Change the OP_Affinity argument to '@' (NONE) for all stored 000305 ** columns. '@' is the no-op affinity and those columns have not 000306 ** yet been computed. */ 000307 int ii, jj; 000308 char *zP4 = pOp->p4.z; 000309 assert( zP4!=0 ); 000310 assert( pOp->p4type==P4_DYNAMIC ); 000311 for(ii=jj=0; zP4[jj]; ii++){ 000312 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 000313 continue; 000314 } 000315 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 000316 zP4[jj] = SQLITE_AFF_NONE; 000317 } 000318 jj++; 000319 } 000320 }else if( pOp->opcode==OP_TypeCheck ){ 000321 /* If an OP_TypeCheck was generated because the table is STRICT, 000322 ** then set the P3 operand to indicate that generated columns should 000323 ** not be checked */ 000324 pOp->p3 = 1; 000325 } 000326 } 000327 000328 /* Because there can be multiple generated columns that refer to one another, 000329 ** this is a two-pass algorithm. On the first pass, mark all generated 000330 ** columns as "not available". 000331 */ 000332 for(i=0; i<pTab->nCol; i++){ 000333 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 000334 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 000335 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 000336 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 000337 } 000338 } 000339 000340 w.u.pTab = pTab; 000341 w.xExprCallback = exprColumnFlagUnion; 000342 w.xSelectCallback = 0; 000343 w.xSelectCallback2 = 0; 000344 000345 /* On the second pass, compute the value of each NOT-AVAILABLE column. 000346 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 000347 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 000348 ** they are needed. 000349 */ 000350 pParse->iSelfTab = -iRegStore; 000351 do{ 000352 eProgress = 0; 000353 pRedo = 0; 000354 for(i=0; i<pTab->nCol; i++){ 000355 Column *pCol = pTab->aCol + i; 000356 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 000357 int x; 000358 pCol->colFlags |= COLFLAG_BUSY; 000359 w.eCode = 0; 000360 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 000361 pCol->colFlags &= ~COLFLAG_BUSY; 000362 if( w.eCode & COLFLAG_NOTAVAIL ){ 000363 pRedo = pCol; 000364 continue; 000365 } 000366 eProgress = 1; 000367 assert( pCol->colFlags & COLFLAG_GENERATED ); 000368 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 000369 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 000370 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 000371 } 000372 } 000373 }while( pRedo && eProgress ); 000374 if( pRedo ){ 000375 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 000376 } 000377 pParse->iSelfTab = 0; 000378 } 000379 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 000380 000381 000382 #ifndef SQLITE_OMIT_AUTOINCREMENT 000383 /* 000384 ** Locate or create an AutoincInfo structure associated with table pTab 000385 ** which is in database iDb. Return the register number for the register 000386 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 000387 ** table. (Also return zero when doing a VACUUM since we do not want to 000388 ** update the AUTOINCREMENT counters during a VACUUM.) 000389 ** 000390 ** There is at most one AutoincInfo structure per table even if the 000391 ** same table is autoincremented multiple times due to inserts within 000392 ** triggers. A new AutoincInfo structure is created if this is the 000393 ** first use of table pTab. On 2nd and subsequent uses, the original 000394 ** AutoincInfo structure is used. 000395 ** 000396 ** Four consecutive registers are allocated: 000397 ** 000398 ** (1) The name of the pTab table. 000399 ** (2) The maximum ROWID of pTab. 000400 ** (3) The rowid in sqlite_sequence of pTab 000401 ** (4) The original value of the max ROWID in pTab, or NULL if none 000402 ** 000403 ** The 2nd register is the one that is returned. That is all the 000404 ** insert routine needs to know about. 000405 */ 000406 static int autoIncBegin( 000407 Parse *pParse, /* Parsing context */ 000408 int iDb, /* Index of the database holding pTab */ 000409 Table *pTab /* The table we are writing to */ 000410 ){ 000411 int memId = 0; /* Register holding maximum rowid */ 000412 assert( pParse->db->aDb[iDb].pSchema!=0 ); 000413 if( (pTab->tabFlags & TF_Autoincrement)!=0 000414 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 000415 ){ 000416 Parse *pToplevel = sqlite3ParseToplevel(pParse); 000417 AutoincInfo *pInfo; 000418 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 000419 000420 /* Verify that the sqlite_sequence table exists and is an ordinary 000421 ** rowid table with exactly two columns. 000422 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 000423 if( pSeqTab==0 000424 || !HasRowid(pSeqTab) 000425 || NEVER(IsVirtual(pSeqTab)) 000426 || pSeqTab->nCol!=2 000427 ){ 000428 pParse->nErr++; 000429 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 000430 return 0; 000431 } 000432 000433 pInfo = pToplevel->pAinc; 000434 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 000435 if( pInfo==0 ){ 000436 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 000437 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 000438 testcase( pParse->earlyCleanup ); 000439 if( pParse->db->mallocFailed ) return 0; 000440 pInfo->pNext = pToplevel->pAinc; 000441 pToplevel->pAinc = pInfo; 000442 pInfo->pTab = pTab; 000443 pInfo->iDb = iDb; 000444 pToplevel->nMem++; /* Register to hold name of table */ 000445 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 000446 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 000447 } 000448 memId = pInfo->regCtr; 000449 } 000450 return memId; 000451 } 000452 000453 /* 000454 ** This routine generates code that will initialize all of the 000455 ** register used by the autoincrement tracker. 000456 */ 000457 void sqlite3AutoincrementBegin(Parse *pParse){ 000458 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 000459 sqlite3 *db = pParse->db; /* The database connection */ 000460 Db *pDb; /* Database only autoinc table */ 000461 int memId; /* Register holding max rowid */ 000462 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 000463 000464 /* This routine is never called during trigger-generation. It is 000465 ** only called from the top-level */ 000466 assert( pParse->pTriggerTab==0 ); 000467 assert( sqlite3IsToplevel(pParse) ); 000468 000469 assert( v ); /* We failed long ago if this is not so */ 000470 for(p = pParse->pAinc; p; p = p->pNext){ 000471 static const int iLn = VDBE_OFFSET_LINENO(2); 000472 static const VdbeOpList autoInc[] = { 000473 /* 0 */ {OP_Null, 0, 0, 0}, 000474 /* 1 */ {OP_Rewind, 0, 10, 0}, 000475 /* 2 */ {OP_Column, 0, 0, 0}, 000476 /* 3 */ {OP_Ne, 0, 9, 0}, 000477 /* 4 */ {OP_Rowid, 0, 0, 0}, 000478 /* 5 */ {OP_Column, 0, 1, 0}, 000479 /* 6 */ {OP_AddImm, 0, 0, 0}, 000480 /* 7 */ {OP_Copy, 0, 0, 0}, 000481 /* 8 */ {OP_Goto, 0, 11, 0}, 000482 /* 9 */ {OP_Next, 0, 2, 0}, 000483 /* 10 */ {OP_Integer, 0, 0, 0}, 000484 /* 11 */ {OP_Close, 0, 0, 0} 000485 }; 000486 VdbeOp *aOp; 000487 pDb = &db->aDb[p->iDb]; 000488 memId = p->regCtr; 000489 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000490 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 000491 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 000492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 000493 if( aOp==0 ) break; 000494 aOp[0].p2 = memId; 000495 aOp[0].p3 = memId+2; 000496 aOp[2].p3 = memId; 000497 aOp[3].p1 = memId-1; 000498 aOp[3].p3 = memId; 000499 aOp[3].p5 = SQLITE_JUMPIFNULL; 000500 aOp[4].p2 = memId+1; 000501 aOp[5].p3 = memId; 000502 aOp[6].p1 = memId; 000503 aOp[7].p2 = memId+2; 000504 aOp[7].p1 = memId; 000505 aOp[10].p2 = memId; 000506 if( pParse->nTab==0 ) pParse->nTab = 1; 000507 } 000508 } 000509 000510 /* 000511 ** Update the maximum rowid for an autoincrement calculation. 000512 ** 000513 ** This routine should be called when the regRowid register holds a 000514 ** new rowid that is about to be inserted. If that new rowid is 000515 ** larger than the maximum rowid in the memId memory cell, then the 000516 ** memory cell is updated. 000517 */ 000518 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 000519 if( memId>0 ){ 000520 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 000521 } 000522 } 000523 000524 /* 000525 ** This routine generates the code needed to write autoincrement 000526 ** maximum rowid values back into the sqlite_sequence register. 000527 ** Every statement that might do an INSERT into an autoincrement 000528 ** table (either directly or through triggers) needs to call this 000529 ** routine just before the "exit" code. 000530 */ 000531 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 000532 AutoincInfo *p; 000533 Vdbe *v = pParse->pVdbe; 000534 sqlite3 *db = pParse->db; 000535 000536 assert( v ); 000537 for(p = pParse->pAinc; p; p = p->pNext){ 000538 static const int iLn = VDBE_OFFSET_LINENO(2); 000539 static const VdbeOpList autoIncEnd[] = { 000540 /* 0 */ {OP_NotNull, 0, 2, 0}, 000541 /* 1 */ {OP_NewRowid, 0, 0, 0}, 000542 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 000543 /* 3 */ {OP_Insert, 0, 0, 0}, 000544 /* 4 */ {OP_Close, 0, 0, 0} 000545 }; 000546 VdbeOp *aOp; 000547 Db *pDb = &db->aDb[p->iDb]; 000548 int iRec; 000549 int memId = p->regCtr; 000550 000551 iRec = sqlite3GetTempReg(pParse); 000552 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000553 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 000554 VdbeCoverage(v); 000555 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 000556 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 000557 if( aOp==0 ) break; 000558 aOp[0].p1 = memId+1; 000559 aOp[1].p2 = memId+1; 000560 aOp[2].p1 = memId-1; 000561 aOp[2].p3 = iRec; 000562 aOp[3].p2 = iRec; 000563 aOp[3].p3 = memId+1; 000564 aOp[3].p5 = OPFLAG_APPEND; 000565 sqlite3ReleaseTempReg(pParse, iRec); 000566 } 000567 } 000568 void sqlite3AutoincrementEnd(Parse *pParse){ 000569 if( pParse->pAinc ) autoIncrementEnd(pParse); 000570 } 000571 #else 000572 /* 000573 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 000574 ** above are all no-ops 000575 */ 000576 # define autoIncBegin(A,B,C) (0) 000577 # define autoIncStep(A,B,C) 000578 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 000579 000580 /* 000581 ** If argument pVal is a Select object returned by an sqlite3MultiValues() 000582 ** that was able to use the co-routine optimization, finish coding the 000583 ** co-routine. 000584 */ 000585 void sqlite3MultiValuesEnd(Parse *pParse, Select *pVal){ 000586 if( ALWAYS(pVal) && pVal->pSrc->nSrc>0 ){ 000587 SrcItem *pItem = &pVal->pSrc->a[0]; 000588 assert( (pItem->fg.isSubquery && pItem->u4.pSubq!=0) || pParse->nErr ); 000589 if( pItem->fg.isSubquery ){ 000590 sqlite3VdbeEndCoroutine(pParse->pVdbe, pItem->u4.pSubq->regReturn); 000591 sqlite3VdbeJumpHere(pParse->pVdbe, pItem->u4.pSubq->addrFillSub - 1); 000592 } 000593 } 000594 } 000595 000596 /* 000597 ** Return true if all expressions in the expression-list passed as the 000598 ** only argument are constant. 000599 */ 000600 static int exprListIsConstant(Parse *pParse, ExprList *pRow){ 000601 int ii; 000602 for(ii=0; ii<pRow->nExpr; ii++){ 000603 if( 0==sqlite3ExprIsConstant(pParse, pRow->a[ii].pExpr) ) return 0; 000604 } 000605 return 1; 000606 } 000607 000608 /* 000609 ** Return true if all expressions in the expression-list passed as the 000610 ** only argument are both constant and have no affinity. 000611 */ 000612 static int exprListIsNoAffinity(Parse *pParse, ExprList *pRow){ 000613 int ii; 000614 if( exprListIsConstant(pParse,pRow)==0 ) return 0; 000615 for(ii=0; ii<pRow->nExpr; ii++){ 000616 Expr *pExpr = pRow->a[ii].pExpr; 000617 assert( pExpr->op!=TK_RAISE ); 000618 assert( pExpr->affExpr==0 ); 000619 if( 0!=sqlite3ExprAffinity(pExpr) ) return 0; 000620 } 000621 return 1; 000622 000623 } 000624 000625 /* 000626 ** This function is called by the parser for the second and subsequent 000627 ** rows of a multi-row VALUES clause. Argument pLeft is the part of 000628 ** the VALUES clause already parsed, argument pRow is the vector of values 000629 ** for the new row. The Select object returned represents the complete 000630 ** VALUES clause, including the new row. 000631 ** 000632 ** There are two ways in which this may be achieved - by incremental 000633 ** coding of a co-routine (the "co-routine" method) or by returning a 000634 ** Select object equivalent to the following (the "UNION ALL" method): 000635 ** 000636 ** "pLeft UNION ALL SELECT pRow" 000637 ** 000638 ** If the VALUES clause contains a lot of rows, this compound Select 000639 ** object may consume a lot of memory. 000640 ** 000641 ** When the co-routine method is used, each row that will be returned 000642 ** by the VALUES clause is coded into part of a co-routine as it is 000643 ** passed to this function. The returned Select object is equivalent to: 000644 ** 000645 ** SELECT * FROM ( 000646 ** Select object to read co-routine 000647 ** ) 000648 ** 000649 ** The co-routine method is used in most cases. Exceptions are: 000650 ** 000651 ** a) If the current statement has a WITH clause. This is to avoid 000652 ** statements like: 000653 ** 000654 ** WITH cte AS ( VALUES('x'), ('y') ... ) 000655 ** SELECT * FROM cte AS a, cte AS b; 000656 ** 000657 ** This will not work, as the co-routine uses a hard-coded register 000658 ** for its OP_Yield instructions, and so it is not possible for two 000659 ** cursors to iterate through it concurrently. 000660 ** 000661 ** b) The schema is currently being parsed (i.e. the VALUES clause is part 000662 ** of a schema item like a VIEW or TRIGGER). In this case there is no VM 000663 ** being generated when parsing is taking place, and so generating 000664 ** a co-routine is not possible. 000665 ** 000666 ** c) There are non-constant expressions in the VALUES clause (e.g. 000667 ** the VALUES clause is part of a correlated sub-query). 000668 ** 000669 ** d) One or more of the values in the first row of the VALUES clause 000670 ** has an affinity (i.e. is a CAST expression). This causes problems 000671 ** because the complex rules SQLite uses (see function 000672 ** sqlite3SubqueryColumnTypes() in select.c) to determine the effective 000673 ** affinity of such a column for all rows require access to all values in 000674 ** the column simultaneously. 000675 */ 000676 Select *sqlite3MultiValues(Parse *pParse, Select *pLeft, ExprList *pRow){ 000677 000678 if( pParse->bHasWith /* condition (a) above */ 000679 || pParse->db->init.busy /* condition (b) above */ 000680 || exprListIsConstant(pParse,pRow)==0 /* condition (c) above */ 000681 || (pLeft->pSrc->nSrc==0 && 000682 exprListIsNoAffinity(pParse,pLeft->pEList)==0) /* condition (d) above */ 000683 || IN_SPECIAL_PARSE 000684 ){ 000685 /* The co-routine method cannot be used. Fall back to UNION ALL. */ 000686 Select *pSelect = 0; 000687 int f = SF_Values | SF_MultiValue; 000688 if( pLeft->pSrc->nSrc ){ 000689 sqlite3MultiValuesEnd(pParse, pLeft); 000690 f = SF_Values; 000691 }else if( pLeft->pPrior ){ 000692 /* In this case set the SF_MultiValue flag only if it was set on pLeft */ 000693 f = (f & pLeft->selFlags); 000694 } 000695 pSelect = sqlite3SelectNew(pParse, pRow, 0, 0, 0, 0, 0, f, 0); 000696 pLeft->selFlags &= ~SF_MultiValue; 000697 if( pSelect ){ 000698 pSelect->op = TK_ALL; 000699 pSelect->pPrior = pLeft; 000700 pLeft = pSelect; 000701 } 000702 }else{ 000703 SrcItem *p = 0; /* SrcItem that reads from co-routine */ 000704 000705 if( pLeft->pSrc->nSrc==0 ){ 000706 /* Co-routine has not yet been started and the special Select object 000707 ** that accesses the co-routine has not yet been created. This block 000708 ** does both those things. */ 000709 Vdbe *v = sqlite3GetVdbe(pParse); 000710 Select *pRet = sqlite3SelectNew(pParse, 0, 0, 0, 0, 0, 0, 0, 0); 000711 000712 /* Ensure the database schema has been read. This is to ensure we have 000713 ** the correct text encoding. */ 000714 if( (pParse->db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ){ 000715 sqlite3ReadSchema(pParse); 000716 } 000717 000718 if( pRet ){ 000719 SelectDest dest; 000720 Subquery *pSubq; 000721 pRet->pSrc->nSrc = 1; 000722 pRet->pPrior = pLeft->pPrior; 000723 pRet->op = pLeft->op; 000724 if( pRet->pPrior ) pRet->selFlags |= SF_Values; 000725 pLeft->pPrior = 0; 000726 pLeft->op = TK_SELECT; 000727 assert( pLeft->pNext==0 ); 000728 assert( pRet->pNext==0 ); 000729 p = &pRet->pSrc->a[0]; 000730 p->fg.viaCoroutine = 1; 000731 p->iCursor = -1; 000732 assert( !p->fg.isIndexedBy && !p->fg.isTabFunc ); 000733 p->u1.nRow = 2; 000734 if( sqlite3SrcItemAttachSubquery(pParse, p, pLeft, 0) ){ 000735 pSubq = p->u4.pSubq; 000736 pSubq->addrFillSub = sqlite3VdbeCurrentAddr(v) + 1; 000737 pSubq->regReturn = ++pParse->nMem; 000738 sqlite3VdbeAddOp3(v, OP_InitCoroutine, 000739 pSubq->regReturn, 0, pSubq->addrFillSub); 000740 sqlite3SelectDestInit(&dest, SRT_Coroutine, pSubq->regReturn); 000741 000742 /* Allocate registers for the output of the co-routine. Do so so 000743 ** that there are two unused registers immediately before those 000744 ** used by the co-routine. This allows the code in sqlite3Insert() 000745 ** to use these registers directly, instead of copying the output 000746 ** of the co-routine to a separate array for processing. */ 000747 dest.iSdst = pParse->nMem + 3; 000748 dest.nSdst = pLeft->pEList->nExpr; 000749 pParse->nMem += 2 + dest.nSdst; 000750 000751 pLeft->selFlags |= SF_MultiValue; 000752 sqlite3Select(pParse, pLeft, &dest); 000753 pSubq->regResult = dest.iSdst; 000754 assert( pParse->nErr || dest.iSdst>0 ); 000755 } 000756 pLeft = pRet; 000757 } 000758 }else{ 000759 p = &pLeft->pSrc->a[0]; 000760 assert( !p->fg.isTabFunc && !p->fg.isIndexedBy ); 000761 p->u1.nRow++; 000762 } 000763 000764 if( pParse->nErr==0 ){ 000765 Subquery *pSubq; 000766 assert( p!=0 ); 000767 assert( p->fg.isSubquery ); 000768 pSubq = p->u4.pSubq; 000769 assert( pSubq!=0 ); 000770 assert( pSubq->pSelect!=0 ); 000771 assert( pSubq->pSelect->pEList!=0 ); 000772 if( pSubq->pSelect->pEList->nExpr!=pRow->nExpr ){ 000773 sqlite3SelectWrongNumTermsError(pParse, pSubq->pSelect); 000774 }else{ 000775 sqlite3ExprCodeExprList(pParse, pRow, pSubq->regResult, 0, 0); 000776 sqlite3VdbeAddOp1(pParse->pVdbe, OP_Yield, pSubq->regReturn); 000777 } 000778 } 000779 sqlite3ExprListDelete(pParse->db, pRow); 000780 } 000781 000782 return pLeft; 000783 } 000784 000785 /* Forward declaration */ 000786 static int xferOptimization( 000787 Parse *pParse, /* Parser context */ 000788 Table *pDest, /* The table we are inserting into */ 000789 Select *pSelect, /* A SELECT statement to use as the data source */ 000790 int onError, /* How to handle constraint errors */ 000791 int iDbDest /* The database of pDest */ 000792 ); 000793 000794 /* 000795 ** This routine is called to handle SQL of the following forms: 000796 ** 000797 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 000798 ** insert into TABLE (IDLIST) select 000799 ** insert into TABLE (IDLIST) default values 000800 ** 000801 ** The IDLIST following the table name is always optional. If omitted, 000802 ** then a list of all (non-hidden) columns for the table is substituted. 000803 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 000804 ** is omitted. 000805 ** 000806 ** For the pSelect parameter holds the values to be inserted for the 000807 ** first two forms shown above. A VALUES clause is really just short-hand 000808 ** for a SELECT statement that omits the FROM clause and everything else 000809 ** that follows. If the pSelect parameter is NULL, that means that the 000810 ** DEFAULT VALUES form of the INSERT statement is intended. 000811 ** 000812 ** The code generated follows one of four templates. For a simple 000813 ** insert with data coming from a single-row VALUES clause, the code executes 000814 ** once straight down through. Pseudo-code follows (we call this 000815 ** the "1st template"): 000816 ** 000817 ** open write cursor to <table> and its indices 000818 ** put VALUES clause expressions into registers 000819 ** write the resulting record into <table> 000820 ** cleanup 000821 ** 000822 ** The three remaining templates assume the statement is of the form 000823 ** 000824 ** INSERT INTO <table> SELECT ... 000825 ** 000826 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 000827 ** in other words if the SELECT pulls all columns from a single table 000828 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 000829 ** if <table2> and <table1> are distinct tables but have identical 000830 ** schemas, including all the same indices, then a special optimization 000831 ** is invoked that copies raw records from <table2> over to <table1>. 000832 ** See the xferOptimization() function for the implementation of this 000833 ** template. This is the 2nd template. 000834 ** 000835 ** open a write cursor to <table> 000836 ** open read cursor on <table2> 000837 ** transfer all records in <table2> over to <table> 000838 ** close cursors 000839 ** foreach index on <table> 000840 ** open a write cursor on the <table> index 000841 ** open a read cursor on the corresponding <table2> index 000842 ** transfer all records from the read to the write cursors 000843 ** close cursors 000844 ** end foreach 000845 ** 000846 ** The 3rd template is for when the second template does not apply 000847 ** and the SELECT clause does not read from <table> at any time. 000848 ** The generated code follows this template: 000849 ** 000850 ** X <- A 000851 ** goto B 000852 ** A: setup for the SELECT 000853 ** loop over the rows in the SELECT 000854 ** load values into registers R..R+n 000855 ** yield X 000856 ** end loop 000857 ** cleanup after the SELECT 000858 ** end-coroutine X 000859 ** B: open write cursor to <table> and its indices 000860 ** C: yield X, at EOF goto D 000861 ** insert the select result into <table> from R..R+n 000862 ** goto C 000863 ** D: cleanup 000864 ** 000865 ** The 4th template is used if the insert statement takes its 000866 ** values from a SELECT but the data is being inserted into a table 000867 ** that is also read as part of the SELECT. In the third form, 000868 ** we have to use an intermediate table to store the results of 000869 ** the select. The template is like this: 000870 ** 000871 ** X <- A 000872 ** goto B 000873 ** A: setup for the SELECT 000874 ** loop over the tables in the SELECT 000875 ** load value into register R..R+n 000876 ** yield X 000877 ** end loop 000878 ** cleanup after the SELECT 000879 ** end co-routine R 000880 ** B: open temp table 000881 ** L: yield X, at EOF goto M 000882 ** insert row from R..R+n into temp table 000883 ** goto L 000884 ** M: open write cursor to <table> and its indices 000885 ** rewind temp table 000886 ** C: loop over rows of intermediate table 000887 ** transfer values form intermediate table into <table> 000888 ** end loop 000889 ** D: cleanup 000890 */ 000891 void sqlite3Insert( 000892 Parse *pParse, /* Parser context */ 000893 SrcList *pTabList, /* Name of table into which we are inserting */ 000894 Select *pSelect, /* A SELECT statement to use as the data source */ 000895 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 000896 int onError, /* How to handle constraint errors */ 000897 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 000898 ){ 000899 sqlite3 *db; /* The main database structure */ 000900 Table *pTab; /* The table to insert into. aka TABLE */ 000901 int i, j; /* Loop counters */ 000902 Vdbe *v; /* Generate code into this virtual machine */ 000903 Index *pIdx; /* For looping over indices of the table */ 000904 int nColumn; /* Number of columns in the data */ 000905 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 000906 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 000907 int iIdxCur = 0; /* First index cursor */ 000908 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 000909 int endOfLoop; /* Label for the end of the insertion loop */ 000910 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 000911 int addrInsTop = 0; /* Jump to label "D" */ 000912 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 000913 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 000914 int iDb; /* Index of database holding TABLE */ 000915 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 000916 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 000917 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 000918 u8 bIdListInOrder; /* True if IDLIST is in table order */ 000919 ExprList *pList = 0; /* List of VALUES() to be inserted */ 000920 int iRegStore; /* Register in which to store next column */ 000921 000922 /* Register allocations */ 000923 int regFromSelect = 0;/* Base register for data coming from SELECT */ 000924 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 000925 int regRowCount = 0; /* Memory cell used for the row counter */ 000926 int regIns; /* Block of regs holding rowid+data being inserted */ 000927 int regRowid; /* registers holding insert rowid */ 000928 int regData; /* register holding first column to insert */ 000929 int *aRegIdx = 0; /* One register allocated to each index */ 000930 int *aTabColMap = 0; /* Mapping from pTab columns to pCol entries */ 000931 000932 #ifndef SQLITE_OMIT_TRIGGER 000933 int isView; /* True if attempting to insert into a view */ 000934 Trigger *pTrigger; /* List of triggers on pTab, if required */ 000935 int tmask; /* Mask of trigger times */ 000936 #endif 000937 000938 db = pParse->db; 000939 assert( db->pParse==pParse ); 000940 if( pParse->nErr ){ 000941 goto insert_cleanup; 000942 } 000943 assert( db->mallocFailed==0 ); 000944 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 000945 000946 /* If the Select object is really just a simple VALUES() list with a 000947 ** single row (the common case) then keep that one row of values 000948 ** and discard the other (unused) parts of the pSelect object 000949 */ 000950 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 000951 pList = pSelect->pEList; 000952 pSelect->pEList = 0; 000953 sqlite3SelectDelete(db, pSelect); 000954 pSelect = 0; 000955 } 000956 000957 /* Locate the table into which we will be inserting new information. 000958 */ 000959 assert( pTabList->nSrc==1 ); 000960 pTab = sqlite3SrcListLookup(pParse, pTabList); 000961 if( pTab==0 ){ 000962 goto insert_cleanup; 000963 } 000964 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000965 assert( iDb<db->nDb ); 000966 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 000967 db->aDb[iDb].zDbSName) ){ 000968 goto insert_cleanup; 000969 } 000970 withoutRowid = !HasRowid(pTab); 000971 000972 /* Figure out if we have any triggers and if the table being 000973 ** inserted into is a view 000974 */ 000975 #ifndef SQLITE_OMIT_TRIGGER 000976 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 000977 isView = IsView(pTab); 000978 #else 000979 # define pTrigger 0 000980 # define tmask 0 000981 # define isView 0 000982 #endif 000983 #ifdef SQLITE_OMIT_VIEW 000984 # undef isView 000985 # define isView 0 000986 #endif 000987 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 000988 000989 #if TREETRACE_ENABLED 000990 if( sqlite3TreeTrace & 0x10000 ){ 000991 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 000992 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 000993 onError, pUpsert, pTrigger); 000994 } 000995 #endif 000996 000997 /* If pTab is really a view, make sure it has been initialized. 000998 ** ViewGetColumnNames() is a no-op if pTab is not a view. 000999 */ 001000 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 001001 goto insert_cleanup; 001002 } 001003 001004 /* Cannot insert into a read-only table. 001005 */ 001006 if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ 001007 goto insert_cleanup; 001008 } 001009 001010 /* Allocate a VDBE 001011 */ 001012 v = sqlite3GetVdbe(pParse); 001013 if( v==0 ) goto insert_cleanup; 001014 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 001015 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 001016 001017 #ifndef SQLITE_OMIT_XFER_OPT 001018 /* If the statement is of the form 001019 ** 001020 ** INSERT INTO <table1> SELECT * FROM <table2>; 001021 ** 001022 ** Then special optimizations can be applied that make the transfer 001023 ** very fast and which reduce fragmentation of indices. 001024 ** 001025 ** This is the 2nd template. 001026 */ 001027 if( pColumn==0 001028 && pSelect!=0 001029 && pTrigger==0 001030 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 001031 ){ 001032 assert( !pTrigger ); 001033 assert( pList==0 ); 001034 goto insert_end; 001035 } 001036 #endif /* SQLITE_OMIT_XFER_OPT */ 001037 001038 /* If this is an AUTOINCREMENT table, look up the sequence number in the 001039 ** sqlite_sequence table and store it in memory cell regAutoinc. 001040 */ 001041 regAutoinc = autoIncBegin(pParse, iDb, pTab); 001042 001043 /* Allocate a block registers to hold the rowid and the values 001044 ** for all columns of the new row. 001045 */ 001046 regRowid = regIns = pParse->nMem+1; 001047 pParse->nMem += pTab->nCol + 1; 001048 if( IsVirtual(pTab) ){ 001049 regRowid++; 001050 pParse->nMem++; 001051 } 001052 regData = regRowid+1; 001053 001054 /* If the INSERT statement included an IDLIST term, then make sure 001055 ** all elements of the IDLIST really are columns of the table and 001056 ** remember the column indices. 001057 ** 001058 ** If the table has an INTEGER PRIMARY KEY column and that column 001059 ** is named in the IDLIST, then record in the ipkColumn variable 001060 ** the index into IDLIST of the primary key column. ipkColumn is 001061 ** the index of the primary key as it appears in IDLIST, not as 001062 ** is appears in the original table. (The index of the INTEGER 001063 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 001064 ** loop, if ipkColumn==(-1), that means that integer primary key 001065 ** is unspecified, and hence the table is either WITHOUT ROWID or 001066 ** it will automatically generated an integer primary key. 001067 ** 001068 ** bIdListInOrder is true if the columns in IDLIST are in storage 001069 ** order. This enables an optimization that avoids shuffling the 001070 ** columns into storage order. False negatives are harmless, 001071 ** but false positives will cause database corruption. 001072 */ 001073 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 001074 if( pColumn ){ 001075 aTabColMap = sqlite3DbMallocZero(db, pTab->nCol*sizeof(int)); 001076 if( aTabColMap==0 ) goto insert_cleanup; 001077 for(i=0; i<pColumn->nId; i++){ 001078 const char *zCName = pColumn->a[i].zName; 001079 u8 hName = sqlite3StrIHash(zCName); 001080 for(j=0; j<pTab->nCol; j++){ 001081 if( pTab->aCol[j].hName!=hName ) continue; 001082 if( sqlite3StrICmp(zCName, pTab->aCol[j].zCnName)==0 ){ 001083 if( aTabColMap[j]==0 ) aTabColMap[j] = i+1; 001084 if( i!=j ) bIdListInOrder = 0; 001085 if( j==pTab->iPKey ){ 001086 ipkColumn = i; assert( !withoutRowid ); 001087 } 001088 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001089 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 001090 sqlite3ErrorMsg(pParse, 001091 "cannot INSERT into generated column \"%s\"", 001092 pTab->aCol[j].zCnName); 001093 goto insert_cleanup; 001094 } 001095 #endif 001096 break; 001097 } 001098 } 001099 if( j>=pTab->nCol ){ 001100 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 001101 ipkColumn = i; 001102 bIdListInOrder = 0; 001103 }else{ 001104 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 001105 pTabList->a, pColumn->a[i].zName); 001106 pParse->checkSchema = 1; 001107 goto insert_cleanup; 001108 } 001109 } 001110 } 001111 } 001112 001113 /* Figure out how many columns of data are supplied. If the data 001114 ** is coming from a SELECT statement, then generate a co-routine that 001115 ** produces a single row of the SELECT on each invocation. The 001116 ** co-routine is the common header to the 3rd and 4th templates. 001117 */ 001118 if( pSelect ){ 001119 /* Data is coming from a SELECT or from a multi-row VALUES clause. 001120 ** Generate a co-routine to run the SELECT. */ 001121 int rc; /* Result code */ 001122 001123 if( pSelect->pSrc->nSrc==1 001124 && pSelect->pSrc->a[0].fg.viaCoroutine 001125 && pSelect->pPrior==0 001126 ){ 001127 SrcItem *pItem = &pSelect->pSrc->a[0]; 001128 Subquery *pSubq; 001129 assert( pItem->fg.isSubquery ); 001130 pSubq = pItem->u4.pSubq; 001131 dest.iSDParm = pSubq->regReturn; 001132 regFromSelect = pSubq->regResult; 001133 assert( pSubq->pSelect!=0 ); 001134 assert( pSubq->pSelect->pEList!=0 ); 001135 nColumn = pSubq->pSelect->pEList->nExpr; 001136 ExplainQueryPlan((pParse, 0, "SCAN %S", pItem)); 001137 if( bIdListInOrder && nColumn==pTab->nCol ){ 001138 regData = regFromSelect; 001139 regRowid = regData - 1; 001140 regIns = regRowid - (IsVirtual(pTab) ? 1 : 0); 001141 } 001142 }else{ 001143 int addrTop; /* Top of the co-routine */ 001144 int regYield = ++pParse->nMem; 001145 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 001146 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 001147 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 001148 dest.iSdst = bIdListInOrder ? regData : 0; 001149 dest.nSdst = pTab->nCol; 001150 rc = sqlite3Select(pParse, pSelect, &dest); 001151 regFromSelect = dest.iSdst; 001152 assert( db->pParse==pParse ); 001153 if( rc || pParse->nErr ) goto insert_cleanup; 001154 assert( db->mallocFailed==0 ); 001155 sqlite3VdbeEndCoroutine(v, regYield); 001156 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 001157 assert( pSelect->pEList ); 001158 nColumn = pSelect->pEList->nExpr; 001159 } 001160 001161 /* Set useTempTable to TRUE if the result of the SELECT statement 001162 ** should be written into a temporary table (template 4). Set to 001163 ** FALSE if each output row of the SELECT can be written directly into 001164 ** the destination table (template 3). 001165 ** 001166 ** A temp table must be used if the table being updated is also one 001167 ** of the tables being read by the SELECT statement. Also use a 001168 ** temp table in the case of row triggers. 001169 */ 001170 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 001171 useTempTable = 1; 001172 } 001173 001174 if( useTempTable ){ 001175 /* Invoke the coroutine to extract information from the SELECT 001176 ** and add it to a transient table srcTab. The code generated 001177 ** here is from the 4th template: 001178 ** 001179 ** B: open temp table 001180 ** L: yield X, goto M at EOF 001181 ** insert row from R..R+n into temp table 001182 ** goto L 001183 ** M: ... 001184 */ 001185 int regRec; /* Register to hold packed record */ 001186 int regTempRowid; /* Register to hold temp table ROWID */ 001187 int addrL; /* Label "L" */ 001188 001189 srcTab = pParse->nTab++; 001190 regRec = sqlite3GetTempReg(pParse); 001191 regTempRowid = sqlite3GetTempReg(pParse); 001192 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 001193 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 001194 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 001195 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 001196 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 001197 sqlite3VdbeGoto(v, addrL); 001198 sqlite3VdbeJumpHere(v, addrL); 001199 sqlite3ReleaseTempReg(pParse, regRec); 001200 sqlite3ReleaseTempReg(pParse, regTempRowid); 001201 } 001202 }else{ 001203 /* This is the case if the data for the INSERT is coming from a 001204 ** single-row VALUES clause 001205 */ 001206 NameContext sNC; 001207 memset(&sNC, 0, sizeof(sNC)); 001208 sNC.pParse = pParse; 001209 srcTab = -1; 001210 assert( useTempTable==0 ); 001211 if( pList ){ 001212 nColumn = pList->nExpr; 001213 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 001214 goto insert_cleanup; 001215 } 001216 }else{ 001217 nColumn = 0; 001218 } 001219 } 001220 001221 /* If there is no IDLIST term but the table has an integer primary 001222 ** key, the set the ipkColumn variable to the integer primary key 001223 ** column index in the original table definition. 001224 */ 001225 if( pColumn==0 && nColumn>0 ){ 001226 ipkColumn = pTab->iPKey; 001227 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001228 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 001229 testcase( pTab->tabFlags & TF_HasVirtual ); 001230 testcase( pTab->tabFlags & TF_HasStored ); 001231 for(i=ipkColumn-1; i>=0; i--){ 001232 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 001233 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 001234 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 001235 ipkColumn--; 001236 } 001237 } 001238 } 001239 #endif 001240 001241 /* Make sure the number of columns in the source data matches the number 001242 ** of columns to be inserted into the table. 001243 */ 001244 assert( TF_HasHidden==COLFLAG_HIDDEN ); 001245 assert( TF_HasGenerated==COLFLAG_GENERATED ); 001246 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 001247 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 001248 for(i=0; i<pTab->nCol; i++){ 001249 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 001250 } 001251 } 001252 if( nColumn!=(pTab->nCol-nHidden) ){ 001253 sqlite3ErrorMsg(pParse, 001254 "table %S has %d columns but %d values were supplied", 001255 pTabList->a, pTab->nCol-nHidden, nColumn); 001256 goto insert_cleanup; 001257 } 001258 } 001259 if( pColumn!=0 && nColumn!=pColumn->nId ){ 001260 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 001261 goto insert_cleanup; 001262 } 001263 001264 /* Initialize the count of rows to be inserted 001265 */ 001266 if( (db->flags & SQLITE_CountRows)!=0 001267 && !pParse->nested 001268 && !pParse->pTriggerTab 001269 && !pParse->bReturning 001270 ){ 001271 regRowCount = ++pParse->nMem; 001272 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 001273 } 001274 001275 /* If this is not a view, open the table and and all indices */ 001276 if( !isView ){ 001277 int nIdx; 001278 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 001279 &iDataCur, &iIdxCur); 001280 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 001281 if( aRegIdx==0 ){ 001282 goto insert_cleanup; 001283 } 001284 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 001285 assert( pIdx ); 001286 aRegIdx[i] = ++pParse->nMem; 001287 pParse->nMem += pIdx->nColumn; 001288 } 001289 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 001290 } 001291 #ifndef SQLITE_OMIT_UPSERT 001292 if( pUpsert ){ 001293 Upsert *pNx; 001294 if( IsVirtual(pTab) ){ 001295 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 001296 pTab->zName); 001297 goto insert_cleanup; 001298 } 001299 if( IsView(pTab) ){ 001300 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 001301 goto insert_cleanup; 001302 } 001303 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 001304 goto insert_cleanup; 001305 } 001306 pTabList->a[0].iCursor = iDataCur; 001307 pNx = pUpsert; 001308 do{ 001309 pNx->pUpsertSrc = pTabList; 001310 pNx->regData = regData; 001311 pNx->iDataCur = iDataCur; 001312 pNx->iIdxCur = iIdxCur; 001313 if( pNx->pUpsertTarget ){ 001314 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx, pUpsert) ){ 001315 goto insert_cleanup; 001316 } 001317 } 001318 pNx = pNx->pNextUpsert; 001319 }while( pNx!=0 ); 001320 } 001321 #endif 001322 001323 001324 /* This is the top of the main insertion loop */ 001325 if( useTempTable ){ 001326 /* This block codes the top of loop only. The complete loop is the 001327 ** following pseudocode (template 4): 001328 ** 001329 ** rewind temp table, if empty goto D 001330 ** C: loop over rows of intermediate table 001331 ** transfer values form intermediate table into <table> 001332 ** end loop 001333 ** D: ... 001334 */ 001335 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 001336 addrCont = sqlite3VdbeCurrentAddr(v); 001337 }else if( pSelect ){ 001338 /* This block codes the top of loop only. The complete loop is the 001339 ** following pseudocode (template 3): 001340 ** 001341 ** C: yield X, at EOF goto D 001342 ** insert the select result into <table> from R..R+n 001343 ** goto C 001344 ** D: ... 001345 */ 001346 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 001347 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 001348 VdbeCoverage(v); 001349 if( ipkColumn>=0 ){ 001350 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 001351 ** SELECT, go ahead and copy the value into the rowid slot now, so that 001352 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 001353 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 001354 } 001355 } 001356 001357 /* Compute data for ordinary columns of the new entry. Values 001358 ** are written in storage order into registers starting with regData. 001359 ** Only ordinary columns are computed in this loop. The rowid 001360 ** (if there is one) is computed later and generated columns are 001361 ** computed after the rowid since they might depend on the value 001362 ** of the rowid. 001363 */ 001364 nHidden = 0; 001365 iRegStore = regData; assert( regData==regRowid+1 ); 001366 for(i=0; i<pTab->nCol; i++, iRegStore++){ 001367 int k; 001368 u32 colFlags; 001369 assert( i>=nHidden ); 001370 if( i==pTab->iPKey ){ 001371 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 001372 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 001373 ** using excess space. The file format definition requires this extra 001374 ** NULL - we cannot optimize further by skipping the column completely */ 001375 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001376 continue; 001377 } 001378 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 001379 nHidden++; 001380 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 001381 /* Virtual columns do not participate in OP_MakeRecord. So back up 001382 ** iRegStore by one slot to compensate for the iRegStore++ in the 001383 ** outer for() loop */ 001384 iRegStore--; 001385 continue; 001386 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 001387 /* Stored columns are computed later. But if there are BEFORE 001388 ** triggers, the slots used for stored columns will be OP_Copy-ed 001389 ** to a second block of registers, so the register needs to be 001390 ** initialized to NULL to avoid an uninitialized register read */ 001391 if( tmask & TRIGGER_BEFORE ){ 001392 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001393 } 001394 continue; 001395 }else if( pColumn==0 ){ 001396 /* Hidden columns that are not explicitly named in the INSERT 001397 ** get there default value */ 001398 sqlite3ExprCodeFactorable(pParse, 001399 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001400 iRegStore); 001401 continue; 001402 } 001403 } 001404 if( pColumn ){ 001405 j = aTabColMap[i]; 001406 assert( j>=0 && j<=pColumn->nId ); 001407 if( j==0 ){ 001408 /* A column not named in the insert column list gets its 001409 ** default value */ 001410 sqlite3ExprCodeFactorable(pParse, 001411 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001412 iRegStore); 001413 continue; 001414 } 001415 k = j - 1; 001416 }else if( nColumn==0 ){ 001417 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 001418 sqlite3ExprCodeFactorable(pParse, 001419 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001420 iRegStore); 001421 continue; 001422 }else{ 001423 k = i - nHidden; 001424 } 001425 001426 if( useTempTable ){ 001427 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 001428 }else if( pSelect ){ 001429 if( regFromSelect!=regData ){ 001430 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 001431 } 001432 }else{ 001433 Expr *pX = pList->a[k].pExpr; 001434 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 001435 if( y!=iRegStore ){ 001436 sqlite3VdbeAddOp2(v, 001437 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 001438 } 001439 } 001440 } 001441 001442 001443 /* Run the BEFORE and INSTEAD OF triggers, if there are any 001444 */ 001445 endOfLoop = sqlite3VdbeMakeLabel(pParse); 001446 if( tmask & TRIGGER_BEFORE ){ 001447 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 001448 001449 /* build the NEW.* reference row. Note that if there is an INTEGER 001450 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 001451 ** translated into a unique ID for the row. But on a BEFORE trigger, 001452 ** we do not know what the unique ID will be (because the insert has 001453 ** not happened yet) so we substitute a rowid of -1 001454 */ 001455 if( ipkColumn<0 ){ 001456 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001457 }else{ 001458 int addr1; 001459 assert( !withoutRowid ); 001460 if( useTempTable ){ 001461 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 001462 }else{ 001463 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 001464 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 001465 } 001466 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 001467 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001468 sqlite3VdbeJumpHere(v, addr1); 001469 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 001470 } 001471 001472 /* Copy the new data already generated. */ 001473 assert( pTab->nNVCol>0 || pParse->nErr>0 ); 001474 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 001475 001476 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001477 /* Compute the new value for generated columns after all other 001478 ** columns have already been computed. This must be done after 001479 ** computing the ROWID in case one of the generated columns 001480 ** refers to the ROWID. */ 001481 if( pTab->tabFlags & TF_HasGenerated ){ 001482 testcase( pTab->tabFlags & TF_HasVirtual ); 001483 testcase( pTab->tabFlags & TF_HasStored ); 001484 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 001485 } 001486 #endif 001487 001488 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 001489 ** do not attempt any conversions before assembling the record. 001490 ** If this is a real table, attempt conversions as required by the 001491 ** table column affinities. 001492 */ 001493 if( !isView ){ 001494 sqlite3TableAffinity(v, pTab, regCols+1); 001495 } 001496 001497 /* Fire BEFORE or INSTEAD OF triggers */ 001498 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 001499 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 001500 001501 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 001502 } 001503 001504 if( !isView ){ 001505 if( IsVirtual(pTab) ){ 001506 /* The row that the VUpdate opcode will delete: none */ 001507 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 001508 } 001509 if( ipkColumn>=0 ){ 001510 /* Compute the new rowid */ 001511 if( useTempTable ){ 001512 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 001513 }else if( pSelect ){ 001514 /* Rowid already initialized at tag-20191021-001 */ 001515 }else{ 001516 Expr *pIpk = pList->a[ipkColumn].pExpr; 001517 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 001518 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001519 appendFlag = 1; 001520 }else{ 001521 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 001522 } 001523 } 001524 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 001525 ** to generate a unique primary key value. 001526 */ 001527 if( !appendFlag ){ 001528 int addr1; 001529 if( !IsVirtual(pTab) ){ 001530 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 001531 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001532 sqlite3VdbeJumpHere(v, addr1); 001533 }else{ 001534 addr1 = sqlite3VdbeCurrentAddr(v); 001535 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 001536 } 001537 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 001538 } 001539 }else if( IsVirtual(pTab) || withoutRowid ){ 001540 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 001541 }else{ 001542 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001543 appendFlag = 1; 001544 } 001545 autoIncStep(pParse, regAutoinc, regRowid); 001546 001547 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001548 /* Compute the new value for generated columns after all other 001549 ** columns have already been computed. This must be done after 001550 ** computing the ROWID in case one of the generated columns 001551 ** is derived from the INTEGER PRIMARY KEY. */ 001552 if( pTab->tabFlags & TF_HasGenerated ){ 001553 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 001554 } 001555 #endif 001556 001557 /* Generate code to check constraints and generate index keys and 001558 ** do the insertion. 001559 */ 001560 #ifndef SQLITE_OMIT_VIRTUALTABLE 001561 if( IsVirtual(pTab) ){ 001562 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 001563 sqlite3VtabMakeWritable(pParse, pTab); 001564 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 001565 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 001566 sqlite3MayAbort(pParse); 001567 }else 001568 #endif 001569 { 001570 int isReplace = 0;/* Set to true if constraints may cause a replace */ 001571 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 001572 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 001573 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 001574 ); 001575 if( db->flags & SQLITE_ForeignKeys ){ 001576 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 001577 } 001578 001579 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 001580 ** constraints or (b) there are no triggers and this table is not a 001581 ** parent table in a foreign key constraint. It is safe to set the 001582 ** flag in the second case as if any REPLACE constraint is hit, an 001583 ** OP_Delete or OP_IdxDelete instruction will be executed on each 001584 ** cursor that is disturbed. And these instructions both clear the 001585 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 001586 ** functionality. */ 001587 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 001588 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 001589 regIns, aRegIdx, 0, appendFlag, bUseSeek 001590 ); 001591 } 001592 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 001593 }else if( pParse->bReturning ){ 001594 /* If there is a RETURNING clause, populate the rowid register with 001595 ** constant value -1, in case one or more of the returned expressions 001596 ** refer to the "rowid" of the view. */ 001597 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 001598 #endif 001599 } 001600 001601 /* Update the count of rows that are inserted 001602 */ 001603 if( regRowCount ){ 001604 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 001605 } 001606 001607 if( pTrigger ){ 001608 /* Code AFTER triggers */ 001609 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 001610 pTab, regData-2-pTab->nCol, onError, endOfLoop); 001611 } 001612 001613 /* The bottom of the main insertion loop, if the data source 001614 ** is a SELECT statement. 001615 */ 001616 sqlite3VdbeResolveLabel(v, endOfLoop); 001617 if( useTempTable ){ 001618 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 001619 sqlite3VdbeJumpHere(v, addrInsTop); 001620 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 001621 }else if( pSelect ){ 001622 sqlite3VdbeGoto(v, addrCont); 001623 #ifdef SQLITE_DEBUG 001624 /* If we are jumping back to an OP_Yield that is preceded by an 001625 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 001626 ** OP_ReleaseReg will be included in the loop. */ 001627 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 001628 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 001629 sqlite3VdbeChangeP5(v, 1); 001630 } 001631 #endif 001632 sqlite3VdbeJumpHere(v, addrInsTop); 001633 } 001634 001635 #ifndef SQLITE_OMIT_XFER_OPT 001636 insert_end: 001637 #endif /* SQLITE_OMIT_XFER_OPT */ 001638 /* Update the sqlite_sequence table by storing the content of the 001639 ** maximum rowid counter values recorded while inserting into 001640 ** autoincrement tables. 001641 */ 001642 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 001643 sqlite3AutoincrementEnd(pParse); 001644 } 001645 001646 /* 001647 ** Return the number of rows inserted. If this routine is 001648 ** generating code because of a call to sqlite3NestedParse(), do not 001649 ** invoke the callback function. 001650 */ 001651 if( regRowCount ){ 001652 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 001653 } 001654 001655 insert_cleanup: 001656 sqlite3SrcListDelete(db, pTabList); 001657 sqlite3ExprListDelete(db, pList); 001658 sqlite3UpsertDelete(db, pUpsert); 001659 sqlite3SelectDelete(db, pSelect); 001660 if( pColumn ){ 001661 sqlite3IdListDelete(db, pColumn); 001662 sqlite3DbFree(db, aTabColMap); 001663 } 001664 if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); 001665 } 001666 001667 /* Make sure "isView" and other macros defined above are undefined. Otherwise 001668 ** they may interfere with compilation of other functions in this file 001669 ** (or in another file, if this file becomes part of the amalgamation). */ 001670 #ifdef isView 001671 #undef isView 001672 #endif 001673 #ifdef pTrigger 001674 #undef pTrigger 001675 #endif 001676 #ifdef tmask 001677 #undef tmask 001678 #endif 001679 001680 /* 001681 ** Meanings of bits in of pWalker->eCode for 001682 ** sqlite3ExprReferencesUpdatedColumn() 001683 */ 001684 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 001685 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 001686 001687 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 001688 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 001689 ** expression node references any of the 001690 ** columns that are being modified by an UPDATE statement. 001691 */ 001692 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 001693 if( pExpr->op==TK_COLUMN ){ 001694 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 001695 if( pExpr->iColumn>=0 ){ 001696 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 001697 pWalker->eCode |= CKCNSTRNT_COLUMN; 001698 } 001699 }else{ 001700 pWalker->eCode |= CKCNSTRNT_ROWID; 001701 } 001702 } 001703 return WRC_Continue; 001704 } 001705 001706 /* 001707 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 001708 ** only columns that are modified by the UPDATE are those for which 001709 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 001710 ** 001711 ** Return true if CHECK constraint pExpr uses any of the 001712 ** changing columns (or the rowid if it is changing). In other words, 001713 ** return true if this CHECK constraint must be validated for 001714 ** the new row in the UPDATE statement. 001715 ** 001716 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 001717 ** The operation of this routine is the same - return true if an only if 001718 ** the expression uses one or more of columns identified by the second and 001719 ** third arguments. 001720 */ 001721 int sqlite3ExprReferencesUpdatedColumn( 001722 Expr *pExpr, /* The expression to be checked */ 001723 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 001724 int chngRowid /* True if UPDATE changes the rowid */ 001725 ){ 001726 Walker w; 001727 memset(&w, 0, sizeof(w)); 001728 w.eCode = 0; 001729 w.xExprCallback = checkConstraintExprNode; 001730 w.u.aiCol = aiChng; 001731 sqlite3WalkExpr(&w, pExpr); 001732 if( !chngRowid ){ 001733 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 001734 w.eCode &= ~CKCNSTRNT_ROWID; 001735 } 001736 testcase( w.eCode==0 ); 001737 testcase( w.eCode==CKCNSTRNT_COLUMN ); 001738 testcase( w.eCode==CKCNSTRNT_ROWID ); 001739 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 001740 return w.eCode!=0; 001741 } 001742 001743 /* 001744 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 001745 ** the indexes of a table in the order provided in the Table->pIndex list. 001746 ** However, sometimes (rarely - when there is an upsert) it wants to visit 001747 ** the indexes in a different order. The following data structures accomplish 001748 ** this. 001749 ** 001750 ** The IndexIterator object is used to walk through all of the indexes 001751 ** of a table in either Index.pNext order, or in some other order established 001752 ** by an array of IndexListTerm objects. 001753 */ 001754 typedef struct IndexListTerm IndexListTerm; 001755 typedef struct IndexIterator IndexIterator; 001756 struct IndexIterator { 001757 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 001758 int i; /* Index of the current item from the list */ 001759 union { 001760 struct { /* Use this object for eType==0: A Index.pNext list */ 001761 Index *pIdx; /* The current Index */ 001762 } lx; 001763 struct { /* Use this object for eType==1; Array of IndexListTerm */ 001764 int nIdx; /* Size of the array */ 001765 IndexListTerm *aIdx; /* Array of IndexListTerms */ 001766 } ax; 001767 } u; 001768 }; 001769 001770 /* When IndexIterator.eType==1, then each index is an array of instances 001771 ** of the following object 001772 */ 001773 struct IndexListTerm { 001774 Index *p; /* The index */ 001775 int ix; /* Which entry in the original Table.pIndex list is this index*/ 001776 }; 001777 001778 /* Return the first index on the list */ 001779 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 001780 assert( pIter->i==0 ); 001781 if( pIter->eType ){ 001782 *pIx = pIter->u.ax.aIdx[0].ix; 001783 return pIter->u.ax.aIdx[0].p; 001784 }else{ 001785 *pIx = 0; 001786 return pIter->u.lx.pIdx; 001787 } 001788 } 001789 001790 /* Return the next index from the list. Return NULL when out of indexes */ 001791 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 001792 if( pIter->eType ){ 001793 int i = ++pIter->i; 001794 if( i>=pIter->u.ax.nIdx ){ 001795 *pIx = i; 001796 return 0; 001797 } 001798 *pIx = pIter->u.ax.aIdx[i].ix; 001799 return pIter->u.ax.aIdx[i].p; 001800 }else{ 001801 ++(*pIx); 001802 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 001803 return pIter->u.lx.pIdx; 001804 } 001805 } 001806 001807 /* 001808 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 001809 ** on table pTab. 001810 ** 001811 ** The regNewData parameter is the first register in a range that contains 001812 ** the data to be inserted or the data after the update. There will be 001813 ** pTab->nCol+1 registers in this range. The first register (the one 001814 ** that regNewData points to) will contain the new rowid, or NULL in the 001815 ** case of a WITHOUT ROWID table. The second register in the range will 001816 ** contain the content of the first table column. The third register will 001817 ** contain the content of the second table column. And so forth. 001818 ** 001819 ** The regOldData parameter is similar to regNewData except that it contains 001820 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 001821 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 001822 ** checking regOldData for zero. 001823 ** 001824 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 001825 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 001826 ** might be modified by the UPDATE. If pkChng is false, then the key of 001827 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 001828 ** 001829 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 001830 ** was explicitly specified as part of the INSERT statement. If pkChng 001831 ** is zero, it means that the either rowid is computed automatically or 001832 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 001833 ** pkChng will only be true if the INSERT statement provides an integer 001834 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 001835 ** 001836 ** The code generated by this routine will store new index entries into 001837 ** registers identified by aRegIdx[]. No index entry is created for 001838 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 001839 ** the same as the order of indices on the linked list of indices 001840 ** at pTab->pIndex. 001841 ** 001842 ** (2019-05-07) The generated code also creates a new record for the 001843 ** main table, if pTab is a rowid table, and stores that record in the 001844 ** register identified by aRegIdx[nIdx] - in other words in the first 001845 ** entry of aRegIdx[] past the last index. It is important that the 001846 ** record be generated during constraint checks to avoid affinity changes 001847 ** to the register content that occur after constraint checks but before 001848 ** the new record is inserted. 001849 ** 001850 ** The caller must have already opened writeable cursors on the main 001851 ** table and all applicable indices (that is to say, all indices for which 001852 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 001853 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 001854 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 001855 ** for the first index in the pTab->pIndex list. Cursors for other indices 001856 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 001857 ** 001858 ** This routine also generates code to check constraints. NOT NULL, 001859 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 001860 ** then the appropriate action is performed. There are five possible 001861 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 001862 ** 001863 ** Constraint type Action What Happens 001864 ** --------------- ---------- ---------------------------------------- 001865 ** any ROLLBACK The current transaction is rolled back and 001866 ** sqlite3_step() returns immediately with a 001867 ** return code of SQLITE_CONSTRAINT. 001868 ** 001869 ** any ABORT Back out changes from the current command 001870 ** only (do not do a complete rollback) then 001871 ** cause sqlite3_step() to return immediately 001872 ** with SQLITE_CONSTRAINT. 001873 ** 001874 ** any FAIL Sqlite3_step() returns immediately with a 001875 ** return code of SQLITE_CONSTRAINT. The 001876 ** transaction is not rolled back and any 001877 ** changes to prior rows are retained. 001878 ** 001879 ** any IGNORE The attempt in insert or update the current 001880 ** row is skipped, without throwing an error. 001881 ** Processing continues with the next row. 001882 ** (There is an immediate jump to ignoreDest.) 001883 ** 001884 ** NOT NULL REPLACE The NULL value is replace by the default 001885 ** value for that column. If the default value 001886 ** is NULL, the action is the same as ABORT. 001887 ** 001888 ** UNIQUE REPLACE The other row that conflicts with the row 001889 ** being inserted is removed. 001890 ** 001891 ** CHECK REPLACE Illegal. The results in an exception. 001892 ** 001893 ** Which action to take is determined by the overrideError parameter. 001894 ** Or if overrideError==OE_Default, then the pParse->onError parameter 001895 ** is used. Or if pParse->onError==OE_Default then the onError value 001896 ** for the constraint is used. 001897 */ 001898 void sqlite3GenerateConstraintChecks( 001899 Parse *pParse, /* The parser context */ 001900 Table *pTab, /* The table being inserted or updated */ 001901 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 001902 int iDataCur, /* Canonical data cursor (main table or PK index) */ 001903 int iIdxCur, /* First index cursor */ 001904 int regNewData, /* First register in a range holding values to insert */ 001905 int regOldData, /* Previous content. 0 for INSERTs */ 001906 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 001907 u8 overrideError, /* Override onError to this if not OE_Default */ 001908 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 001909 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 001910 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 001911 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 001912 ){ 001913 Vdbe *v; /* VDBE under construction */ 001914 Index *pIdx; /* Pointer to one of the indices */ 001915 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 001916 sqlite3 *db; /* Database connection */ 001917 int i; /* loop counter */ 001918 int ix; /* Index loop counter */ 001919 int nCol; /* Number of columns */ 001920 int onError; /* Conflict resolution strategy */ 001921 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 001922 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 001923 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 001924 u8 isUpdate; /* True if this is an UPDATE operation */ 001925 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 001926 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 001927 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 001928 int ipkTop = 0; /* Top of the IPK uniqueness check */ 001929 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 001930 /* Variables associated with retesting uniqueness constraints after 001931 ** replace triggers fire have run */ 001932 int regTrigCnt; /* Register used to count replace trigger invocations */ 001933 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 001934 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 001935 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 001936 int nReplaceTrig = 0; /* Number of replace triggers coded */ 001937 IndexIterator sIdxIter; /* Index iterator */ 001938 001939 isUpdate = regOldData!=0; 001940 db = pParse->db; 001941 v = pParse->pVdbe; 001942 assert( v!=0 ); 001943 assert( !IsView(pTab) ); /* This table is not a VIEW */ 001944 nCol = pTab->nCol; 001945 001946 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 001947 ** normal rowid tables. nPkField is the number of key fields in the 001948 ** pPk index or 1 for a rowid table. In other words, nPkField is the 001949 ** number of fields in the true primary key of the table. */ 001950 if( HasRowid(pTab) ){ 001951 pPk = 0; 001952 nPkField = 1; 001953 }else{ 001954 pPk = sqlite3PrimaryKeyIndex(pTab); 001955 nPkField = pPk->nKeyCol; 001956 } 001957 001958 /* Record that this module has started */ 001959 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 001960 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 001961 001962 /* Test all NOT NULL constraints. 001963 */ 001964 if( pTab->tabFlags & TF_HasNotNull ){ 001965 int b2ndPass = 0; /* True if currently running 2nd pass */ 001966 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 001967 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 001968 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 001969 for(i=0; i<nCol; i++){ 001970 int iReg; /* Register holding column value */ 001971 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 001972 int isGenerated; /* non-zero if column is generated */ 001973 onError = pCol->notNull; 001974 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 001975 if( i==pTab->iPKey ){ 001976 continue; /* ROWID is never NULL */ 001977 } 001978 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 001979 if( isGenerated && !b2ndPass ){ 001980 nGenerated++; 001981 continue; /* Generated columns processed on 2nd pass */ 001982 } 001983 if( aiChng && aiChng[i]<0 && !isGenerated ){ 001984 /* Do not check NOT NULL on columns that do not change */ 001985 continue; 001986 } 001987 if( overrideError!=OE_Default ){ 001988 onError = overrideError; 001989 }else if( onError==OE_Default ){ 001990 onError = OE_Abort; 001991 } 001992 if( onError==OE_Replace ){ 001993 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 001994 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 001995 ){ 001996 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001997 testcase( pCol->colFlags & COLFLAG_STORED ); 001998 testcase( pCol->colFlags & COLFLAG_GENERATED ); 001999 onError = OE_Abort; 002000 }else{ 002001 assert( !isGenerated ); 002002 } 002003 }else if( b2ndPass && !isGenerated ){ 002004 continue; 002005 } 002006 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 002007 || onError==OE_Ignore || onError==OE_Replace ); 002008 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 002009 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 002010 switch( onError ){ 002011 case OE_Replace: { 002012 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 002013 VdbeCoverage(v); 002014 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 002015 nSeenReplace++; 002016 sqlite3ExprCodeCopy(pParse, 002017 sqlite3ColumnExpr(pTab, pCol), iReg); 002018 sqlite3VdbeJumpHere(v, addr1); 002019 break; 002020 } 002021 case OE_Abort: 002022 sqlite3MayAbort(pParse); 002023 /* no break */ deliberate_fall_through 002024 case OE_Rollback: 002025 case OE_Fail: { 002026 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 002027 pCol->zCnName); 002028 testcase( zMsg==0 && db->mallocFailed==0 ); 002029 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 002030 onError, iReg); 002031 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 002032 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 002033 VdbeCoverage(v); 002034 break; 002035 } 002036 default: { 002037 assert( onError==OE_Ignore ); 002038 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 002039 VdbeCoverage(v); 002040 break; 002041 } 002042 } /* end switch(onError) */ 002043 } /* end loop i over columns */ 002044 if( nGenerated==0 && nSeenReplace==0 ){ 002045 /* If there are no generated columns with NOT NULL constraints 002046 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 002047 ** pass is sufficient */ 002048 break; 002049 } 002050 if( b2ndPass ) break; /* Never need more than 2 passes */ 002051 b2ndPass = 1; 002052 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 002053 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 002054 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 002055 ** first pass, recomputed values for all generated columns, as 002056 ** those values might depend on columns affected by the REPLACE. 002057 */ 002058 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 002059 } 002060 #endif 002061 } /* end of 2-pass loop */ 002062 } /* end if( has-not-null-constraints ) */ 002063 002064 /* Test all CHECK constraints 002065 */ 002066 #ifndef SQLITE_OMIT_CHECK 002067 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 002068 ExprList *pCheck = pTab->pCheck; 002069 pParse->iSelfTab = -(regNewData+1); 002070 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 002071 for(i=0; i<pCheck->nExpr; i++){ 002072 int allOk; 002073 Expr *pCopy; 002074 Expr *pExpr = pCheck->a[i].pExpr; 002075 if( aiChng 002076 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 002077 ){ 002078 /* The check constraints do not reference any of the columns being 002079 ** updated so there is no point it verifying the check constraint */ 002080 continue; 002081 } 002082 if( bAffinityDone==0 ){ 002083 sqlite3TableAffinity(v, pTab, regNewData+1); 002084 bAffinityDone = 1; 002085 } 002086 allOk = sqlite3VdbeMakeLabel(pParse); 002087 sqlite3VdbeVerifyAbortable(v, onError); 002088 pCopy = sqlite3ExprDup(db, pExpr, 0); 002089 if( !db->mallocFailed ){ 002090 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 002091 } 002092 sqlite3ExprDelete(db, pCopy); 002093 if( onError==OE_Ignore ){ 002094 sqlite3VdbeGoto(v, ignoreDest); 002095 }else{ 002096 char *zName = pCheck->a[i].zEName; 002097 assert( zName!=0 || pParse->db->mallocFailed ); 002098 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 002099 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 002100 onError, zName, P4_TRANSIENT, 002101 P5_ConstraintCheck); 002102 } 002103 sqlite3VdbeResolveLabel(v, allOk); 002104 } 002105 pParse->iSelfTab = 0; 002106 } 002107 #endif /* !defined(SQLITE_OMIT_CHECK) */ 002108 002109 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 002110 ** order: 002111 ** 002112 ** (1) OE_Update 002113 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 002114 ** (3) OE_Replace 002115 ** 002116 ** OE_Fail and OE_Ignore must happen before any changes are made. 002117 ** OE_Update guarantees that only a single row will change, so it 002118 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 002119 ** could happen in any order, but they are grouped up front for 002120 ** convenience. 002121 ** 002122 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 002123 ** The order of constraints used to have OE_Update as (2) and OE_Abort 002124 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 002125 ** constraint before any others, so it had to be moved. 002126 ** 002127 ** Constraint checking code is generated in this order: 002128 ** (A) The rowid constraint 002129 ** (B) Unique index constraints that do not have OE_Replace as their 002130 ** default conflict resolution strategy 002131 ** (C) Unique index that do use OE_Replace by default. 002132 ** 002133 ** The ordering of (2) and (3) is accomplished by making sure the linked 002134 ** list of indexes attached to a table puts all OE_Replace indexes last 002135 ** in the list. See sqlite3CreateIndex() for where that happens. 002136 */ 002137 sIdxIter.eType = 0; 002138 sIdxIter.i = 0; 002139 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 002140 sIdxIter.u.lx.pIdx = pTab->pIndex; 002141 if( pUpsert ){ 002142 if( pUpsert->pUpsertTarget==0 ){ 002143 /* There is just on ON CONFLICT clause and it has no constraint-target */ 002144 assert( pUpsert->pNextUpsert==0 ); 002145 if( pUpsert->isDoUpdate==0 ){ 002146 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 002147 ** Make all unique constraint resolution be OE_Ignore */ 002148 overrideError = OE_Ignore; 002149 pUpsert = 0; 002150 }else{ 002151 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 002152 overrideError = OE_Update; 002153 } 002154 }else if( pTab->pIndex!=0 ){ 002155 /* Otherwise, we'll need to run the IndexListTerm array version of the 002156 ** iterator to ensure that all of the ON CONFLICT conditions are 002157 ** checked first and in order. */ 002158 int nIdx, jj; 002159 u64 nByte; 002160 Upsert *pTerm; 002161 u8 *bUsed; 002162 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 002163 assert( aRegIdx[nIdx]>0 ); 002164 } 002165 sIdxIter.eType = 1; 002166 sIdxIter.u.ax.nIdx = nIdx; 002167 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 002168 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 002169 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 002170 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 002171 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 002172 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 002173 if( pTerm->pUpsertTarget==0 ) break; 002174 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 002175 jj = 0; 002176 pIdx = pTab->pIndex; 002177 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 002178 pIdx = pIdx->pNext; 002179 jj++; 002180 } 002181 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 002182 bUsed[jj] = 1; 002183 sIdxIter.u.ax.aIdx[i].p = pIdx; 002184 sIdxIter.u.ax.aIdx[i].ix = jj; 002185 i++; 002186 } 002187 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 002188 if( bUsed[jj] ) continue; 002189 sIdxIter.u.ax.aIdx[i].p = pIdx; 002190 sIdxIter.u.ax.aIdx[i].ix = jj; 002191 i++; 002192 } 002193 assert( i==nIdx ); 002194 } 002195 } 002196 002197 /* Determine if it is possible that triggers (either explicitly coded 002198 ** triggers or FK resolution actions) might run as a result of deletes 002199 ** that happen when OE_Replace conflict resolution occurs. (Call these 002200 ** "replace triggers".) If any replace triggers run, we will need to 002201 ** recheck all of the uniqueness constraints after they have all run. 002202 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 002203 ** 002204 ** If replace triggers are a possibility, then 002205 ** 002206 ** (1) Allocate register regTrigCnt and initialize it to zero. 002207 ** That register will count the number of replace triggers that 002208 ** fire. Constraint recheck only occurs if the number is positive. 002209 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 002210 ** (3) Initialize addrRecheck and lblRecheckOk 002211 ** 002212 ** The uniqueness rechecking code will create a series of tests to run 002213 ** in a second pass. The addrRecheck and lblRecheckOk variables are 002214 ** used to link together these tests which are separated from each other 002215 ** in the generate bytecode. 002216 */ 002217 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 002218 /* There are not DELETE triggers nor FK constraints. No constraint 002219 ** rechecks are needed. */ 002220 pTrigger = 0; 002221 regTrigCnt = 0; 002222 }else{ 002223 if( db->flags&SQLITE_RecTriggers ){ 002224 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 002225 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 002226 }else{ 002227 pTrigger = 0; 002228 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 002229 } 002230 if( regTrigCnt ){ 002231 /* Replace triggers might exist. Allocate the counter and 002232 ** initialize it to zero. */ 002233 regTrigCnt = ++pParse->nMem; 002234 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 002235 VdbeComment((v, "trigger count")); 002236 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002237 addrRecheck = lblRecheckOk; 002238 } 002239 } 002240 002241 /* If rowid is changing, make sure the new rowid does not previously 002242 ** exist in the table. 002243 */ 002244 if( pkChng && pPk==0 ){ 002245 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 002246 002247 /* Figure out what action to take in case of a rowid collision */ 002248 onError = pTab->keyConf; 002249 if( overrideError!=OE_Default ){ 002250 onError = overrideError; 002251 }else if( onError==OE_Default ){ 002252 onError = OE_Abort; 002253 } 002254 002255 /* figure out whether or not upsert applies in this case */ 002256 if( pUpsert ){ 002257 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 002258 if( pUpsertClause!=0 ){ 002259 if( pUpsertClause->isDoUpdate==0 ){ 002260 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002261 }else{ 002262 onError = OE_Update; /* DO UPDATE */ 002263 } 002264 } 002265 if( pUpsertClause!=pUpsert ){ 002266 /* The first ON CONFLICT clause has a conflict target other than 002267 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 002268 ** and then come back here and deal with the IPK afterwards */ 002269 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 002270 } 002271 } 002272 002273 /* If the response to a rowid conflict is REPLACE but the response 002274 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 002275 ** to defer the running of the rowid conflict checking until after 002276 ** the UNIQUE constraints have run. 002277 */ 002278 if( onError==OE_Replace /* IPK rule is REPLACE */ 002279 && onError!=overrideError /* Rules for other constraints are different */ 002280 && pTab->pIndex /* There exist other constraints */ 002281 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 002282 ){ 002283 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 002284 VdbeComment((v, "defer IPK REPLACE until last")); 002285 } 002286 002287 if( isUpdate ){ 002288 /* pkChng!=0 does not mean that the rowid has changed, only that 002289 ** it might have changed. Skip the conflict logic below if the rowid 002290 ** is unchanged. */ 002291 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 002292 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002293 VdbeCoverage(v); 002294 } 002295 002296 /* Check to see if the new rowid already exists in the table. Skip 002297 ** the following conflict logic if it does not. */ 002298 VdbeNoopComment((v, "uniqueness check for ROWID")); 002299 sqlite3VdbeVerifyAbortable(v, onError); 002300 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 002301 VdbeCoverage(v); 002302 002303 switch( onError ){ 002304 default: { 002305 onError = OE_Abort; 002306 /* no break */ deliberate_fall_through 002307 } 002308 case OE_Rollback: 002309 case OE_Abort: 002310 case OE_Fail: { 002311 testcase( onError==OE_Rollback ); 002312 testcase( onError==OE_Abort ); 002313 testcase( onError==OE_Fail ); 002314 sqlite3RowidConstraint(pParse, onError, pTab); 002315 break; 002316 } 002317 case OE_Replace: { 002318 /* If there are DELETE triggers on this table and the 002319 ** recursive-triggers flag is set, call GenerateRowDelete() to 002320 ** remove the conflicting row from the table. This will fire 002321 ** the triggers and remove both the table and index b-tree entries. 002322 ** 002323 ** Otherwise, if there are no triggers or the recursive-triggers 002324 ** flag is not set, but the table has one or more indexes, call 002325 ** GenerateRowIndexDelete(). This removes the index b-tree entries 002326 ** only. The table b-tree entry will be replaced by the new entry 002327 ** when it is inserted. 002328 ** 002329 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 002330 ** also invoke MultiWrite() to indicate that this VDBE may require 002331 ** statement rollback (if the statement is aborted after the delete 002332 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 002333 ** but being more selective here allows statements like: 002334 ** 002335 ** REPLACE INTO t(rowid) VALUES($newrowid) 002336 ** 002337 ** to run without a statement journal if there are no indexes on the 002338 ** table. 002339 */ 002340 if( regTrigCnt ){ 002341 sqlite3MultiWrite(pParse); 002342 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002343 regNewData, 1, 0, OE_Replace, 1, -1); 002344 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002345 nReplaceTrig++; 002346 }else{ 002347 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002348 assert( HasRowid(pTab) ); 002349 /* This OP_Delete opcode fires the pre-update-hook only. It does 002350 ** not modify the b-tree. It is more efficient to let the coming 002351 ** OP_Insert replace the existing entry than it is to delete the 002352 ** existing entry and then insert a new one. */ 002353 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 002354 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002355 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002356 if( pTab->pIndex ){ 002357 sqlite3MultiWrite(pParse); 002358 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 002359 } 002360 } 002361 seenReplace = 1; 002362 break; 002363 } 002364 #ifndef SQLITE_OMIT_UPSERT 002365 case OE_Update: { 002366 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 002367 /* no break */ deliberate_fall_through 002368 } 002369 #endif 002370 case OE_Ignore: { 002371 testcase( onError==OE_Ignore ); 002372 sqlite3VdbeGoto(v, ignoreDest); 002373 break; 002374 } 002375 } 002376 sqlite3VdbeResolveLabel(v, addrRowidOk); 002377 if( pUpsert && pUpsertClause!=pUpsert ){ 002378 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 002379 }else if( ipkTop ){ 002380 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 002381 sqlite3VdbeJumpHere(v, ipkTop-1); 002382 } 002383 } 002384 002385 /* Test all UNIQUE constraints by creating entries for each UNIQUE 002386 ** index and making sure that duplicate entries do not already exist. 002387 ** Compute the revised record entries for indices as we go. 002388 ** 002389 ** This loop also handles the case of the PRIMARY KEY index for a 002390 ** WITHOUT ROWID table. 002391 */ 002392 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 002393 pIdx; 002394 pIdx = indexIteratorNext(&sIdxIter, &ix) 002395 ){ 002396 int regIdx; /* Range of registers holding content for pIdx */ 002397 int regR; /* Range of registers holding conflicting PK */ 002398 int iThisCur; /* Cursor for this UNIQUE index */ 002399 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 002400 int addrConflictCk; /* First opcode in the conflict check logic */ 002401 002402 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 002403 if( pUpsert ){ 002404 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 002405 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 002406 sqlite3VdbeJumpHere(v, upsertIpkDelay); 002407 } 002408 } 002409 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 002410 if( bAffinityDone==0 ){ 002411 sqlite3TableAffinity(v, pTab, regNewData+1); 002412 bAffinityDone = 1; 002413 } 002414 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 002415 iThisCur = iIdxCur+ix; 002416 002417 002418 /* Skip partial indices for which the WHERE clause is not true */ 002419 if( pIdx->pPartIdxWhere ){ 002420 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 002421 pParse->iSelfTab = -(regNewData+1); 002422 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 002423 SQLITE_JUMPIFNULL); 002424 pParse->iSelfTab = 0; 002425 } 002426 002427 /* Create a record for this index entry as it should appear after 002428 ** the insert or update. Store that record in the aRegIdx[ix] register 002429 */ 002430 regIdx = aRegIdx[ix]+1; 002431 for(i=0; i<pIdx->nColumn; i++){ 002432 int iField = pIdx->aiColumn[i]; 002433 int x; 002434 if( iField==XN_EXPR ){ 002435 pParse->iSelfTab = -(regNewData+1); 002436 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 002437 pParse->iSelfTab = 0; 002438 VdbeComment((v, "%s column %d", pIdx->zName, i)); 002439 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 002440 x = regNewData; 002441 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 002442 VdbeComment((v, "rowid")); 002443 }else{ 002444 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 002445 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 002446 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 002447 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 002448 } 002449 } 002450 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 002451 VdbeComment((v, "for %s", pIdx->zName)); 002452 #ifdef SQLITE_ENABLE_NULL_TRIM 002453 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 002454 sqlite3SetMakeRecordP5(v, pIdx->pTable); 002455 } 002456 #endif 002457 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 002458 002459 /* In an UPDATE operation, if this index is the PRIMARY KEY index 002460 ** of a WITHOUT ROWID table and there has been no change the 002461 ** primary key, then no collision is possible. The collision detection 002462 ** logic below can all be skipped. */ 002463 if( isUpdate && pPk==pIdx && pkChng==0 ){ 002464 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002465 continue; 002466 } 002467 002468 /* Find out what action to take in case there is a uniqueness conflict */ 002469 onError = pIdx->onError; 002470 if( onError==OE_None ){ 002471 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002472 continue; /* pIdx is not a UNIQUE index */ 002473 } 002474 if( overrideError!=OE_Default ){ 002475 onError = overrideError; 002476 }else if( onError==OE_Default ){ 002477 onError = OE_Abort; 002478 } 002479 002480 /* Figure out if the upsert clause applies to this index */ 002481 if( pUpsertClause ){ 002482 if( pUpsertClause->isDoUpdate==0 ){ 002483 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002484 }else{ 002485 onError = OE_Update; /* DO UPDATE */ 002486 } 002487 } 002488 002489 /* Collision detection may be omitted if all of the following are true: 002490 ** (1) The conflict resolution algorithm is REPLACE 002491 ** (2) The table is a WITHOUT ROWID table 002492 ** (3) There are no secondary indexes on the table 002493 ** (4) No delete triggers need to be fired if there is a conflict 002494 ** (5) No FK constraint counters need to be updated if a conflict occurs. 002495 ** 002496 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 002497 ** must be explicitly deleted in order to ensure any pre-update hook 002498 ** is invoked. */ 002499 assert( IsOrdinaryTable(pTab) ); 002500 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 002501 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 002502 && pPk==pIdx /* Condition 2 */ 002503 && onError==OE_Replace /* Condition 1 */ 002504 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 002505 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 002506 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 002507 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 002508 ){ 002509 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002510 continue; 002511 } 002512 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 002513 002514 /* Check to see if the new index entry will be unique */ 002515 sqlite3VdbeVerifyAbortable(v, onError); 002516 addrConflictCk = 002517 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 002518 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 002519 002520 /* Generate code to handle collisions */ 002521 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 002522 if( isUpdate || onError==OE_Replace ){ 002523 if( HasRowid(pTab) ){ 002524 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 002525 /* Conflict only if the rowid of the existing index entry 002526 ** is different from old-rowid */ 002527 if( isUpdate ){ 002528 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 002529 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002530 VdbeCoverage(v); 002531 } 002532 }else{ 002533 int x; 002534 /* Extract the PRIMARY KEY from the end of the index entry and 002535 ** store it in registers regR..regR+nPk-1 */ 002536 if( pIdx!=pPk ){ 002537 for(i=0; i<pPk->nKeyCol; i++){ 002538 assert( pPk->aiColumn[i]>=0 ); 002539 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 002540 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 002541 VdbeComment((v, "%s.%s", pTab->zName, 002542 pTab->aCol[pPk->aiColumn[i]].zCnName)); 002543 } 002544 } 002545 if( isUpdate ){ 002546 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 002547 ** table, only conflict if the new PRIMARY KEY values are actually 002548 ** different from the old. See TH3 withoutrowid04.test. 002549 ** 002550 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 002551 ** of the matched index row are different from the original PRIMARY 002552 ** KEY values of this row before the update. */ 002553 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 002554 int op = OP_Ne; 002555 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 002556 002557 for(i=0; i<pPk->nKeyCol; i++){ 002558 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 002559 x = pPk->aiColumn[i]; 002560 assert( x>=0 ); 002561 if( i==(pPk->nKeyCol-1) ){ 002562 addrJump = addrUniqueOk; 002563 op = OP_Eq; 002564 } 002565 x = sqlite3TableColumnToStorage(pTab, x); 002566 sqlite3VdbeAddOp4(v, op, 002567 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 002568 ); 002569 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002570 VdbeCoverageIf(v, op==OP_Eq); 002571 VdbeCoverageIf(v, op==OP_Ne); 002572 } 002573 } 002574 } 002575 } 002576 002577 /* Generate code that executes if the new index entry is not unique */ 002578 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 002579 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 002580 switch( onError ){ 002581 case OE_Rollback: 002582 case OE_Abort: 002583 case OE_Fail: { 002584 testcase( onError==OE_Rollback ); 002585 testcase( onError==OE_Abort ); 002586 testcase( onError==OE_Fail ); 002587 sqlite3UniqueConstraint(pParse, onError, pIdx); 002588 break; 002589 } 002590 #ifndef SQLITE_OMIT_UPSERT 002591 case OE_Update: { 002592 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 002593 /* no break */ deliberate_fall_through 002594 } 002595 #endif 002596 case OE_Ignore: { 002597 testcase( onError==OE_Ignore ); 002598 sqlite3VdbeGoto(v, ignoreDest); 002599 break; 002600 } 002601 default: { 002602 int nConflictCk; /* Number of opcodes in conflict check logic */ 002603 002604 assert( onError==OE_Replace ); 002605 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 002606 assert( nConflictCk>0 || db->mallocFailed ); 002607 testcase( nConflictCk<=0 ); 002608 testcase( nConflictCk>1 ); 002609 if( regTrigCnt ){ 002610 sqlite3MultiWrite(pParse); 002611 nReplaceTrig++; 002612 } 002613 if( pTrigger && isUpdate ){ 002614 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 002615 } 002616 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002617 regR, nPkField, 0, OE_Replace, 002618 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 002619 if( pTrigger && isUpdate ){ 002620 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 002621 } 002622 if( regTrigCnt ){ 002623 int addrBypass; /* Jump destination to bypass recheck logic */ 002624 002625 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002626 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 002627 VdbeComment((v, "bypass recheck")); 002628 002629 /* Here we insert code that will be invoked after all constraint 002630 ** checks have run, if and only if one or more replace triggers 002631 ** fired. */ 002632 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002633 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002634 if( pIdx->pPartIdxWhere ){ 002635 /* Bypass the recheck if this partial index is not defined 002636 ** for the current row */ 002637 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 002638 VdbeCoverage(v); 002639 } 002640 /* Copy the constraint check code from above, except change 002641 ** the constraint-ok jump destination to be the address of 002642 ** the next retest block */ 002643 while( nConflictCk>0 ){ 002644 VdbeOp x; /* Conflict check opcode to copy */ 002645 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 002646 ** Hence, make a complete copy of the opcode, rather than using 002647 ** a pointer to the opcode. */ 002648 x = *sqlite3VdbeGetOp(v, addrConflictCk); 002649 if( x.opcode!=OP_IdxRowid ){ 002650 int p2; /* New P2 value for copied conflict check opcode */ 002651 const char *zP4; 002652 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 002653 p2 = lblRecheckOk; 002654 }else{ 002655 p2 = x.p2; 002656 } 002657 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 002658 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 002659 sqlite3VdbeChangeP5(v, x.p5); 002660 VdbeCoverageIf(v, p2!=x.p2); 002661 } 002662 nConflictCk--; 002663 addrConflictCk++; 002664 } 002665 /* If the retest fails, issue an abort */ 002666 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 002667 002668 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 002669 } 002670 seenReplace = 1; 002671 break; 002672 } 002673 } 002674 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002675 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 002676 if( pUpsertClause 002677 && upsertIpkReturn 002678 && sqlite3UpsertNextIsIPK(pUpsertClause) 002679 ){ 002680 sqlite3VdbeGoto(v, upsertIpkDelay+1); 002681 sqlite3VdbeJumpHere(v, upsertIpkReturn); 002682 upsertIpkReturn = 0; 002683 } 002684 } 002685 002686 /* If the IPK constraint is a REPLACE, run it last */ 002687 if( ipkTop ){ 002688 sqlite3VdbeGoto(v, ipkTop); 002689 VdbeComment((v, "Do IPK REPLACE")); 002690 assert( ipkBottom>0 ); 002691 sqlite3VdbeJumpHere(v, ipkBottom); 002692 } 002693 002694 /* Recheck all uniqueness constraints after replace triggers have run */ 002695 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 002696 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 002697 if( nReplaceTrig ){ 002698 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 002699 if( !pPk ){ 002700 if( isUpdate ){ 002701 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 002702 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002703 VdbeCoverage(v); 002704 } 002705 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 002706 VdbeCoverage(v); 002707 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 002708 }else{ 002709 sqlite3VdbeGoto(v, addrRecheck); 002710 } 002711 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002712 } 002713 002714 /* Generate the table record */ 002715 if( HasRowid(pTab) ){ 002716 int regRec = aRegIdx[ix]; 002717 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 002718 sqlite3SetMakeRecordP5(v, pTab); 002719 if( !bAffinityDone ){ 002720 sqlite3TableAffinity(v, pTab, 0); 002721 } 002722 } 002723 002724 *pbMayReplace = seenReplace; 002725 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 002726 } 002727 002728 #ifdef SQLITE_ENABLE_NULL_TRIM 002729 /* 002730 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 002731 ** to be the number of columns in table pTab that must not be NULL-trimmed. 002732 ** 002733 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 002734 */ 002735 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 002736 u16 i; 002737 002738 /* Records with omitted columns are only allowed for schema format 002739 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 002740 if( pTab->pSchema->file_format<2 ) return; 002741 002742 for(i=pTab->nCol-1; i>0; i--){ 002743 if( pTab->aCol[i].iDflt!=0 ) break; 002744 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 002745 } 002746 sqlite3VdbeChangeP5(v, i+1); 002747 } 002748 #endif 002749 002750 /* 002751 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 002752 ** number is iCur, and register regData contains the new record for the 002753 ** PK index. This function adds code to invoke the pre-update hook, 002754 ** if one is registered. 002755 */ 002756 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002757 static void codeWithoutRowidPreupdate( 002758 Parse *pParse, /* Parse context */ 002759 Table *pTab, /* Table being updated */ 002760 int iCur, /* Cursor number for table */ 002761 int regData /* Data containing new record */ 002762 ){ 002763 Vdbe *v = pParse->pVdbe; 002764 int r = sqlite3GetTempReg(pParse); 002765 assert( !HasRowid(pTab) ); 002766 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 002767 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 002768 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 002769 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 002770 sqlite3ReleaseTempReg(pParse, r); 002771 } 002772 #else 002773 # define codeWithoutRowidPreupdate(a,b,c,d) 002774 #endif 002775 002776 /* 002777 ** This routine generates code to finish the INSERT or UPDATE operation 002778 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 002779 ** A consecutive range of registers starting at regNewData contains the 002780 ** rowid and the content to be inserted. 002781 ** 002782 ** The arguments to this routine should be the same as the first six 002783 ** arguments to sqlite3GenerateConstraintChecks. 002784 */ 002785 void sqlite3CompleteInsertion( 002786 Parse *pParse, /* The parser context */ 002787 Table *pTab, /* the table into which we are inserting */ 002788 int iDataCur, /* Cursor of the canonical data source */ 002789 int iIdxCur, /* First index cursor */ 002790 int regNewData, /* Range of content */ 002791 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 002792 int update_flags, /* True for UPDATE, False for INSERT */ 002793 int appendBias, /* True if this is likely to be an append */ 002794 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 002795 ){ 002796 Vdbe *v; /* Prepared statements under construction */ 002797 Index *pIdx; /* An index being inserted or updated */ 002798 u8 pik_flags; /* flag values passed to the btree insert */ 002799 int i; /* Loop counter */ 002800 002801 assert( update_flags==0 002802 || update_flags==OPFLAG_ISUPDATE 002803 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 002804 ); 002805 002806 v = pParse->pVdbe; 002807 assert( v!=0 ); 002808 assert( !IsView(pTab) ); /* This table is not a VIEW */ 002809 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002810 /* All REPLACE indexes are at the end of the list */ 002811 assert( pIdx->onError!=OE_Replace 002812 || pIdx->pNext==0 002813 || pIdx->pNext->onError==OE_Replace ); 002814 if( aRegIdx[i]==0 ) continue; 002815 if( pIdx->pPartIdxWhere ){ 002816 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 002817 VdbeCoverage(v); 002818 } 002819 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 002820 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002821 pik_flags |= OPFLAG_NCHANGE; 002822 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 002823 if( update_flags==0 ){ 002824 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 002825 } 002826 } 002827 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 002828 aRegIdx[i]+1, 002829 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 002830 sqlite3VdbeChangeP5(v, pik_flags); 002831 } 002832 if( !HasRowid(pTab) ) return; 002833 if( pParse->nested ){ 002834 pik_flags = 0; 002835 }else{ 002836 pik_flags = OPFLAG_NCHANGE; 002837 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 002838 } 002839 if( appendBias ){ 002840 pik_flags |= OPFLAG_APPEND; 002841 } 002842 if( useSeekResult ){ 002843 pik_flags |= OPFLAG_USESEEKRESULT; 002844 } 002845 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 002846 if( !pParse->nested ){ 002847 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002848 } 002849 sqlite3VdbeChangeP5(v, pik_flags); 002850 } 002851 002852 /* 002853 ** Allocate cursors for the pTab table and all its indices and generate 002854 ** code to open and initialized those cursors. 002855 ** 002856 ** The cursor for the object that contains the complete data (normally 002857 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 002858 ** ROWID table) is returned in *piDataCur. The first index cursor is 002859 ** returned in *piIdxCur. The number of indices is returned. 002860 ** 002861 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 002862 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 002863 ** If iBase is negative, then allocate the next available cursor. 002864 ** 002865 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 002866 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 002867 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 002868 ** pTab->pIndex list. 002869 ** 002870 ** If pTab is a virtual table, then this routine is a no-op and the 002871 ** *piDataCur and *piIdxCur values are left uninitialized. 002872 */ 002873 int sqlite3OpenTableAndIndices( 002874 Parse *pParse, /* Parsing context */ 002875 Table *pTab, /* Table to be opened */ 002876 int op, /* OP_OpenRead or OP_OpenWrite */ 002877 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 002878 int iBase, /* Use this for the table cursor, if there is one */ 002879 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 002880 int *piDataCur, /* Write the database source cursor number here */ 002881 int *piIdxCur /* Write the first index cursor number here */ 002882 ){ 002883 int i; 002884 int iDb; 002885 int iDataCur; 002886 Index *pIdx; 002887 Vdbe *v; 002888 002889 assert( op==OP_OpenRead || op==OP_OpenWrite ); 002890 assert( op==OP_OpenWrite || p5==0 ); 002891 assert( piDataCur!=0 ); 002892 assert( piIdxCur!=0 ); 002893 if( IsVirtual(pTab) ){ 002894 /* This routine is a no-op for virtual tables. Leave the output 002895 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 002896 ** for improved error detection. */ 002897 *piDataCur = *piIdxCur = -999; 002898 return 0; 002899 } 002900 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 002901 v = pParse->pVdbe; 002902 assert( v!=0 ); 002903 if( iBase<0 ) iBase = pParse->nTab; 002904 iDataCur = iBase++; 002905 *piDataCur = iDataCur; 002906 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 002907 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 002908 }else if( pParse->db->noSharedCache==0 ){ 002909 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 002910 } 002911 *piIdxCur = iBase; 002912 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002913 int iIdxCur = iBase++; 002914 assert( pIdx->pSchema==pTab->pSchema ); 002915 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002916 *piDataCur = iIdxCur; 002917 p5 = 0; 002918 } 002919 if( aToOpen==0 || aToOpen[i+1] ){ 002920 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 002921 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 002922 sqlite3VdbeChangeP5(v, p5); 002923 VdbeComment((v, "%s", pIdx->zName)); 002924 } 002925 } 002926 if( iBase>pParse->nTab ) pParse->nTab = iBase; 002927 return i; 002928 } 002929 002930 002931 #ifdef SQLITE_TEST 002932 /* 002933 ** The following global variable is incremented whenever the 002934 ** transfer optimization is used. This is used for testing 002935 ** purposes only - to make sure the transfer optimization really 002936 ** is happening when it is supposed to. 002937 */ 002938 int sqlite3_xferopt_count; 002939 #endif /* SQLITE_TEST */ 002940 002941 002942 #ifndef SQLITE_OMIT_XFER_OPT 002943 /* 002944 ** Check to see if index pSrc is compatible as a source of data 002945 ** for index pDest in an insert transfer optimization. The rules 002946 ** for a compatible index: 002947 ** 002948 ** * The index is over the same set of columns 002949 ** * The same DESC and ASC markings occurs on all columns 002950 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 002951 ** * The same collating sequence on each column 002952 ** * The index has the exact same WHERE clause 002953 */ 002954 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 002955 int i; 002956 assert( pDest && pSrc ); 002957 assert( pDest->pTable!=pSrc->pTable ); 002958 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 002959 return 0; /* Different number of columns */ 002960 } 002961 if( pDest->onError!=pSrc->onError ){ 002962 return 0; /* Different conflict resolution strategies */ 002963 } 002964 for(i=0; i<pSrc->nKeyCol; i++){ 002965 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 002966 return 0; /* Different columns indexed */ 002967 } 002968 if( pSrc->aiColumn[i]==XN_EXPR ){ 002969 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 002970 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 002971 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 002972 return 0; /* Different expressions in the index */ 002973 } 002974 } 002975 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 002976 return 0; /* Different sort orders */ 002977 } 002978 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 002979 return 0; /* Different collating sequences */ 002980 } 002981 } 002982 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 002983 return 0; /* Different WHERE clauses */ 002984 } 002985 002986 /* If no test above fails then the indices must be compatible */ 002987 return 1; 002988 } 002989 002990 /* 002991 ** Attempt the transfer optimization on INSERTs of the form 002992 ** 002993 ** INSERT INTO tab1 SELECT * FROM tab2; 002994 ** 002995 ** The xfer optimization transfers raw records from tab2 over to tab1. 002996 ** Columns are not decoded and reassembled, which greatly improves 002997 ** performance. Raw index records are transferred in the same way. 002998 ** 002999 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 003000 ** There are lots of rules for determining compatibility - see comments 003001 ** embedded in the code for details. 003002 ** 003003 ** This routine returns TRUE if the optimization is guaranteed to be used. 003004 ** Sometimes the xfer optimization will only work if the destination table 003005 ** is empty - a factor that can only be determined at run-time. In that 003006 ** case, this routine generates code for the xfer optimization but also 003007 ** does a test to see if the destination table is empty and jumps over the 003008 ** xfer optimization code if the test fails. In that case, this routine 003009 ** returns FALSE so that the caller will know to go ahead and generate 003010 ** an unoptimized transfer. This routine also returns FALSE if there 003011 ** is no chance that the xfer optimization can be applied. 003012 ** 003013 ** This optimization is particularly useful at making VACUUM run faster. 003014 */ 003015 static int xferOptimization( 003016 Parse *pParse, /* Parser context */ 003017 Table *pDest, /* The table we are inserting into */ 003018 Select *pSelect, /* A SELECT statement to use as the data source */ 003019 int onError, /* How to handle constraint errors */ 003020 int iDbDest /* The database of pDest */ 003021 ){ 003022 sqlite3 *db = pParse->db; 003023 ExprList *pEList; /* The result set of the SELECT */ 003024 Table *pSrc; /* The table in the FROM clause of SELECT */ 003025 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 003026 SrcItem *pItem; /* An element of pSelect->pSrc */ 003027 int i; /* Loop counter */ 003028 int iDbSrc; /* The database of pSrc */ 003029 int iSrc, iDest; /* Cursors from source and destination */ 003030 int addr1, addr2; /* Loop addresses */ 003031 int emptyDestTest = 0; /* Address of test for empty pDest */ 003032 int emptySrcTest = 0; /* Address of test for empty pSrc */ 003033 Vdbe *v; /* The VDBE we are building */ 003034 int regAutoinc; /* Memory register used by AUTOINC */ 003035 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 003036 int regData, regRowid; /* Registers holding data and rowid */ 003037 003038 assert( pSelect!=0 ); 003039 if( pParse->pWith || pSelect->pWith ){ 003040 /* Do not attempt to process this query if there are an WITH clauses 003041 ** attached to it. Proceeding may generate a false "no such table: xxx" 003042 ** error if pSelect reads from a CTE named "xxx". */ 003043 return 0; 003044 } 003045 #ifndef SQLITE_OMIT_VIRTUALTABLE 003046 if( IsVirtual(pDest) ){ 003047 return 0; /* tab1 must not be a virtual table */ 003048 } 003049 #endif 003050 if( onError==OE_Default ){ 003051 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 003052 if( onError==OE_Default ) onError = OE_Abort; 003053 } 003054 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 003055 if( pSelect->pSrc->nSrc!=1 ){ 003056 return 0; /* FROM clause must have exactly one term */ 003057 } 003058 if( pSelect->pSrc->a[0].fg.isSubquery ){ 003059 return 0; /* FROM clause cannot contain a subquery */ 003060 } 003061 if( pSelect->pWhere ){ 003062 return 0; /* SELECT may not have a WHERE clause */ 003063 } 003064 if( pSelect->pOrderBy ){ 003065 return 0; /* SELECT may not have an ORDER BY clause */ 003066 } 003067 /* Do not need to test for a HAVING clause. If HAVING is present but 003068 ** there is no ORDER BY, we will get an error. */ 003069 if( pSelect->pGroupBy ){ 003070 return 0; /* SELECT may not have a GROUP BY clause */ 003071 } 003072 if( pSelect->pLimit ){ 003073 return 0; /* SELECT may not have a LIMIT clause */ 003074 } 003075 if( pSelect->pPrior ){ 003076 return 0; /* SELECT may not be a compound query */ 003077 } 003078 if( pSelect->selFlags & SF_Distinct ){ 003079 return 0; /* SELECT may not be DISTINCT */ 003080 } 003081 pEList = pSelect->pEList; 003082 assert( pEList!=0 ); 003083 if( pEList->nExpr!=1 ){ 003084 return 0; /* The result set must have exactly one column */ 003085 } 003086 assert( pEList->a[0].pExpr ); 003087 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 003088 return 0; /* The result set must be the special operator "*" */ 003089 } 003090 003091 /* At this point we have established that the statement is of the 003092 ** correct syntactic form to participate in this optimization. Now 003093 ** we have to check the semantics. 003094 */ 003095 pItem = pSelect->pSrc->a; 003096 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 003097 if( pSrc==0 ){ 003098 return 0; /* FROM clause does not contain a real table */ 003099 } 003100 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 003101 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 003102 return 0; /* tab1 and tab2 may not be the same table */ 003103 } 003104 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 003105 return 0; /* source and destination must both be WITHOUT ROWID or not */ 003106 } 003107 if( !IsOrdinaryTable(pSrc) ){ 003108 return 0; /* tab2 may not be a view or virtual table */ 003109 } 003110 if( pDest->nCol!=pSrc->nCol ){ 003111 return 0; /* Number of columns must be the same in tab1 and tab2 */ 003112 } 003113 if( pDest->iPKey!=pSrc->iPKey ){ 003114 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 003115 } 003116 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 003117 return 0; /* Cannot feed from a non-strict into a strict table */ 003118 } 003119 for(i=0; i<pDest->nCol; i++){ 003120 Column *pDestCol = &pDest->aCol[i]; 003121 Column *pSrcCol = &pSrc->aCol[i]; 003122 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 003123 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003124 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 003125 ){ 003126 return 0; /* Neither table may have __hidden__ columns */ 003127 } 003128 #endif 003129 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 003130 /* Even if tables t1 and t2 have identical schemas, if they contain 003131 ** generated columns, then this statement is semantically incorrect: 003132 ** 003133 ** INSERT INTO t2 SELECT * FROM t1; 003134 ** 003135 ** The reason is that generated column values are returned by the 003136 ** the SELECT statement on the right but the INSERT statement on the 003137 ** left wants them to be omitted. 003138 ** 003139 ** Nevertheless, this is a useful notational shorthand to tell SQLite 003140 ** to do a bulk transfer all of the content from t1 over to t2. 003141 ** 003142 ** We could, in theory, disable this (except for internal use by the 003143 ** VACUUM command where it is actually needed). But why do that? It 003144 ** seems harmless enough, and provides a useful service. 003145 */ 003146 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 003147 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 003148 return 0; /* Both columns have the same generated-column type */ 003149 } 003150 /* But the transfer is only allowed if both the source and destination 003151 ** tables have the exact same expressions for generated columns. 003152 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 003153 */ 003154 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 003155 if( sqlite3ExprCompare(0, 003156 sqlite3ColumnExpr(pSrc, pSrcCol), 003157 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 003158 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 003159 testcase( pDestCol->colFlags & COLFLAG_STORED ); 003160 return 0; /* Different generator expressions */ 003161 } 003162 } 003163 #endif 003164 if( pDestCol->affinity!=pSrcCol->affinity ){ 003165 return 0; /* Affinity must be the same on all columns */ 003166 } 003167 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 003168 sqlite3ColumnColl(pSrcCol))!=0 ){ 003169 return 0; /* Collating sequence must be the same on all columns */ 003170 } 003171 if( pDestCol->notNull && !pSrcCol->notNull ){ 003172 return 0; /* tab2 must be NOT NULL if tab1 is */ 003173 } 003174 /* Default values for second and subsequent columns need to match. */ 003175 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 003176 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 003177 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 003178 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 003179 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 003180 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 003181 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 003182 if( (pDestExpr==0)!=(pSrcExpr==0) 003183 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 003184 pSrcExpr->u.zToken)!=0) 003185 ){ 003186 return 0; /* Default values must be the same for all columns */ 003187 } 003188 } 003189 } 003190 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003191 if( IsUniqueIndex(pDestIdx) ){ 003192 destHasUniqueIdx = 1; 003193 } 003194 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 003195 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003196 } 003197 if( pSrcIdx==0 ){ 003198 return 0; /* pDestIdx has no corresponding index in pSrc */ 003199 } 003200 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 003201 && sqlite3FaultSim(411)==SQLITE_OK ){ 003202 /* The sqlite3FaultSim() call allows this corruption test to be 003203 ** bypassed during testing, in order to exercise other corruption tests 003204 ** further downstream. */ 003205 return 0; /* Corrupt schema - two indexes on the same btree */ 003206 } 003207 } 003208 #ifndef SQLITE_OMIT_CHECK 003209 if( pDest->pCheck 003210 && (db->mDbFlags & DBFLAG_Vacuum)==0 003211 && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) 003212 ){ 003213 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 003214 } 003215 #endif 003216 #ifndef SQLITE_OMIT_FOREIGN_KEY 003217 /* Disallow the transfer optimization if the destination table contains 003218 ** any foreign key constraints. This is more restrictive than necessary. 003219 ** But the main beneficiary of the transfer optimization is the VACUUM 003220 ** command, and the VACUUM command disables foreign key constraints. So 003221 ** the extra complication to make this rule less restrictive is probably 003222 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 003223 */ 003224 assert( IsOrdinaryTable(pDest) ); 003225 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 003226 return 0; 003227 } 003228 #endif 003229 if( (db->flags & SQLITE_CountRows)!=0 ){ 003230 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 003231 } 003232 003233 /* If we get this far, it means that the xfer optimization is at 003234 ** least a possibility, though it might only work if the destination 003235 ** table (tab1) is initially empty. 003236 */ 003237 #ifdef SQLITE_TEST 003238 sqlite3_xferopt_count++; 003239 #endif 003240 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 003241 v = sqlite3GetVdbe(pParse); 003242 sqlite3CodeVerifySchema(pParse, iDbSrc); 003243 iSrc = pParse->nTab++; 003244 iDest = pParse->nTab++; 003245 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 003246 regData = sqlite3GetTempReg(pParse); 003247 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 003248 regRowid = sqlite3GetTempReg(pParse); 003249 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 003250 assert( HasRowid(pDest) || destHasUniqueIdx ); 003251 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 003252 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 003253 || destHasUniqueIdx /* (2) */ 003254 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 003255 )){ 003256 /* In some circumstances, we are able to run the xfer optimization 003257 ** only if the destination table is initially empty. Unless the 003258 ** DBFLAG_Vacuum flag is set, this block generates code to make 003259 ** that determination. If DBFLAG_Vacuum is set, then the destination 003260 ** table is always empty. 003261 ** 003262 ** Conditions under which the destination must be empty: 003263 ** 003264 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 003265 ** (If the destination is not initially empty, the rowid fields 003266 ** of index entries might need to change.) 003267 ** 003268 ** (2) The destination has a unique index. (The xfer optimization 003269 ** is unable to test uniqueness.) 003270 ** 003271 ** (3) onError is something other than OE_Abort and OE_Rollback. 003272 */ 003273 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 003274 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 003275 sqlite3VdbeJumpHere(v, addr1); 003276 } 003277 if( HasRowid(pSrc) ){ 003278 u8 insFlags; 003279 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 003280 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003281 if( pDest->iPKey>=0 ){ 003282 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003283 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003284 sqlite3VdbeVerifyAbortable(v, onError); 003285 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 003286 VdbeCoverage(v); 003287 sqlite3RowidConstraint(pParse, onError, pDest); 003288 sqlite3VdbeJumpHere(v, addr2); 003289 } 003290 autoIncStep(pParse, regAutoinc, regRowid); 003291 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 003292 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 003293 }else{ 003294 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003295 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 003296 } 003297 003298 if( db->mDbFlags & DBFLAG_Vacuum ){ 003299 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003300 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003301 }else{ 003302 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 003303 } 003304 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 003305 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003306 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003307 insFlags &= ~OPFLAG_PREFORMAT; 003308 }else 003309 #endif 003310 { 003311 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 003312 } 003313 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 003314 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003315 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 003316 } 003317 sqlite3VdbeChangeP5(v, insFlags); 003318 003319 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 003320 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003321 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003322 }else{ 003323 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 003324 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 003325 } 003326 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003327 u8 idxInsFlags = 0; 003328 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 003329 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003330 } 003331 assert( pSrcIdx ); 003332 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 003333 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 003334 VdbeComment((v, "%s", pSrcIdx->zName)); 003335 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 003336 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 003337 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 003338 VdbeComment((v, "%s", pDestIdx->zName)); 003339 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003340 if( db->mDbFlags & DBFLAG_Vacuum ){ 003341 /* This INSERT command is part of a VACUUM operation, which guarantees 003342 ** that the destination table is empty. If all indexed columns use 003343 ** collation sequence BINARY, then it can also be assumed that the 003344 ** index will be populated by inserting keys in strictly sorted 003345 ** order. In this case, instead of seeking within the b-tree as part 003346 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 003347 ** OP_IdxInsert to seek to the point within the b-tree where each key 003348 ** should be inserted. This is faster. 003349 ** 003350 ** If any of the indexed columns use a collation sequence other than 003351 ** BINARY, this optimization is disabled. This is because the user 003352 ** might change the definition of a collation sequence and then run 003353 ** a VACUUM command. In that case keys may not be written in strictly 003354 ** sorted order. */ 003355 for(i=0; i<pSrcIdx->nColumn; i++){ 003356 const char *zColl = pSrcIdx->azColl[i]; 003357 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 003358 } 003359 if( i==pSrcIdx->nColumn ){ 003360 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003361 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003362 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 003363 } 003364 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 003365 idxInsFlags |= OPFLAG_NCHANGE; 003366 } 003367 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 003368 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003369 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003370 && !HasRowid(pDest) 003371 && IsPrimaryKeyIndex(pDestIdx) 003372 ){ 003373 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 003374 } 003375 } 003376 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 003377 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 003378 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 003379 sqlite3VdbeJumpHere(v, addr1); 003380 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003381 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003382 } 003383 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 003384 sqlite3ReleaseTempReg(pParse, regRowid); 003385 sqlite3ReleaseTempReg(pParse, regData); 003386 if( emptyDestTest ){ 003387 sqlite3AutoincrementEnd(pParse); 003388 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 003389 sqlite3VdbeJumpHere(v, emptyDestTest); 003390 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003391 return 0; 003392 }else{ 003393 return 1; 003394 } 003395 } 003396 #endif /* SQLITE_OMIT_XFER_OPT */