000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** Main file for the SQLite library. The routines in this file 000013 ** implement the programmer interface to the library. Routines in 000014 ** other files are for internal use by SQLite and should not be 000015 ** accessed by users of the library. 000016 */ 000017 #include "sqliteInt.h" 000018 000019 #ifdef SQLITE_ENABLE_FTS3 000020 # include "fts3.h" 000021 #endif 000022 #ifdef SQLITE_ENABLE_RTREE 000023 # include "rtree.h" 000024 #endif 000025 #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) 000026 # include "sqliteicu.h" 000027 #endif 000028 000029 /* 000030 ** This is an extension initializer that is a no-op and always 000031 ** succeeds, except that it fails if the fault-simulation is set 000032 ** to 500. 000033 */ 000034 static int sqlite3TestExtInit(sqlite3 *db){ 000035 (void)db; 000036 return sqlite3FaultSim(500); 000037 } 000038 000039 000040 /* 000041 ** Forward declarations of external module initializer functions 000042 ** for modules that need them. 000043 */ 000044 #ifdef SQLITE_ENABLE_FTS5 000045 int sqlite3Fts5Init(sqlite3*); 000046 #endif 000047 #ifdef SQLITE_ENABLE_STMTVTAB 000048 int sqlite3StmtVtabInit(sqlite3*); 000049 #endif 000050 #ifdef SQLITE_EXTRA_AUTOEXT 000051 int SQLITE_EXTRA_AUTOEXT(sqlite3*); 000052 #endif 000053 /* 000054 ** An array of pointers to extension initializer functions for 000055 ** built-in extensions. 000056 */ 000057 static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = { 000058 #ifdef SQLITE_ENABLE_FTS3 000059 sqlite3Fts3Init, 000060 #endif 000061 #ifdef SQLITE_ENABLE_FTS5 000062 sqlite3Fts5Init, 000063 #endif 000064 #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) 000065 sqlite3IcuInit, 000066 #endif 000067 #ifdef SQLITE_ENABLE_RTREE 000068 sqlite3RtreeInit, 000069 #endif 000070 #ifdef SQLITE_ENABLE_DBPAGE_VTAB 000071 sqlite3DbpageRegister, 000072 #endif 000073 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 000074 sqlite3DbstatRegister, 000075 #endif 000076 sqlite3TestExtInit, 000077 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) 000078 sqlite3JsonTableFunctions, 000079 #endif 000080 #ifdef SQLITE_ENABLE_STMTVTAB 000081 sqlite3StmtVtabInit, 000082 #endif 000083 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 000084 sqlite3VdbeBytecodeVtabInit, 000085 #endif 000086 #ifdef SQLITE_EXTRA_AUTOEXT 000087 SQLITE_EXTRA_AUTOEXT, 000088 #endif 000089 }; 000090 000091 #ifndef SQLITE_AMALGAMATION 000092 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 000093 ** contains the text of SQLITE_VERSION macro. 000094 */ 000095 const char sqlite3_version[] = SQLITE_VERSION; 000096 #endif 000097 000098 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 000099 ** a pointer to the to the sqlite3_version[] string constant. 000100 */ 000101 const char *sqlite3_libversion(void){ return sqlite3_version; } 000102 000103 /* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a 000104 ** pointer to a string constant whose value is the same as the 000105 ** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using 000106 ** an edited copy of the amalgamation, then the last four characters of 000107 ** the hash might be different from SQLITE_SOURCE_ID. 000108 */ 000109 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 000110 000111 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 000112 ** returns an integer equal to SQLITE_VERSION_NUMBER. 000113 */ 000114 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 000115 000116 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 000117 ** zero if and only if SQLite was compiled with mutexing code omitted due to 000118 ** the SQLITE_THREADSAFE compile-time option being set to 0. 000119 */ 000120 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 000121 000122 /* 000123 ** When compiling the test fixture or with debugging enabled (on Win32), 000124 ** this variable being set to non-zero will cause OSTRACE macros to emit 000125 ** extra diagnostic information. 000126 */ 000127 #ifdef SQLITE_HAVE_OS_TRACE 000128 # ifndef SQLITE_DEBUG_OS_TRACE 000129 # define SQLITE_DEBUG_OS_TRACE 0 000130 # endif 000131 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 000132 #endif 000133 000134 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 000135 /* 000136 ** If the following function pointer is not NULL and if 000137 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 000138 ** I/O active are written using this function. These messages 000139 ** are intended for debugging activity only. 000140 */ 000141 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 000142 #endif 000143 000144 /* 000145 ** If the following global variable points to a string which is the 000146 ** name of a directory, then that directory will be used to store 000147 ** temporary files. 000148 ** 000149 ** See also the "PRAGMA temp_store_directory" SQL command. 000150 */ 000151 char *sqlite3_temp_directory = 0; 000152 000153 /* 000154 ** If the following global variable points to a string which is the 000155 ** name of a directory, then that directory will be used to store 000156 ** all database files specified with a relative pathname. 000157 ** 000158 ** See also the "PRAGMA data_store_directory" SQL command. 000159 */ 000160 char *sqlite3_data_directory = 0; 000161 000162 /* 000163 ** Initialize SQLite. 000164 ** 000165 ** This routine must be called to initialize the memory allocation, 000166 ** VFS, and mutex subsystems prior to doing any serious work with 000167 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 000168 ** this routine will be called automatically by key routines such as 000169 ** sqlite3_open(). 000170 ** 000171 ** This routine is a no-op except on its very first call for the process, 000172 ** or for the first call after a call to sqlite3_shutdown. 000173 ** 000174 ** The first thread to call this routine runs the initialization to 000175 ** completion. If subsequent threads call this routine before the first 000176 ** thread has finished the initialization process, then the subsequent 000177 ** threads must block until the first thread finishes with the initialization. 000178 ** 000179 ** The first thread might call this routine recursively. Recursive 000180 ** calls to this routine should not block, of course. Otherwise the 000181 ** initialization process would never complete. 000182 ** 000183 ** Let X be the first thread to enter this routine. Let Y be some other 000184 ** thread. Then while the initial invocation of this routine by X is 000185 ** incomplete, it is required that: 000186 ** 000187 ** * Calls to this routine from Y must block until the outer-most 000188 ** call by X completes. 000189 ** 000190 ** * Recursive calls to this routine from thread X return immediately 000191 ** without blocking. 000192 */ 000193 int sqlite3_initialize(void){ 000194 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */ 000195 int rc; /* Result code */ 000196 #ifdef SQLITE_EXTRA_INIT 000197 int bRunExtraInit = 0; /* Extra initialization needed */ 000198 #endif 000199 000200 #ifdef SQLITE_OMIT_WSD 000201 rc = sqlite3_wsd_init(4096, 24); 000202 if( rc!=SQLITE_OK ){ 000203 return rc; 000204 } 000205 #endif 000206 000207 /* If the following assert() fails on some obscure processor/compiler 000208 ** combination, the work-around is to set the correct pointer 000209 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 000210 assert( SQLITE_PTRSIZE==sizeof(char*) ); 000211 000212 /* If SQLite is already completely initialized, then this call 000213 ** to sqlite3_initialize() should be a no-op. But the initialization 000214 ** must be complete. So isInit must not be set until the very end 000215 ** of this routine. 000216 */ 000217 if( sqlite3GlobalConfig.isInit ){ 000218 sqlite3MemoryBarrier(); 000219 return SQLITE_OK; 000220 } 000221 000222 /* Make sure the mutex subsystem is initialized. If unable to 000223 ** initialize the mutex subsystem, return early with the error. 000224 ** If the system is so sick that we are unable to allocate a mutex, 000225 ** there is not much SQLite is going to be able to do. 000226 ** 000227 ** The mutex subsystem must take care of serializing its own 000228 ** initialization. 000229 */ 000230 rc = sqlite3MutexInit(); 000231 if( rc ) return rc; 000232 000233 /* Initialize the malloc() system and the recursive pInitMutex mutex. 000234 ** This operation is protected by the STATIC_MAIN mutex. Note that 000235 ** MutexAlloc() is called for a static mutex prior to initializing the 000236 ** malloc subsystem - this implies that the allocation of a static 000237 ** mutex must not require support from the malloc subsystem. 000238 */ 000239 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 000240 sqlite3_mutex_enter(pMainMtx); 000241 sqlite3GlobalConfig.isMutexInit = 1; 000242 if( !sqlite3GlobalConfig.isMallocInit ){ 000243 rc = sqlite3MallocInit(); 000244 } 000245 if( rc==SQLITE_OK ){ 000246 sqlite3GlobalConfig.isMallocInit = 1; 000247 if( !sqlite3GlobalConfig.pInitMutex ){ 000248 sqlite3GlobalConfig.pInitMutex = 000249 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 000250 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 000251 rc = SQLITE_NOMEM_BKPT; 000252 } 000253 } 000254 } 000255 if( rc==SQLITE_OK ){ 000256 sqlite3GlobalConfig.nRefInitMutex++; 000257 } 000258 sqlite3_mutex_leave(pMainMtx); 000259 000260 /* If rc is not SQLITE_OK at this point, then either the malloc 000261 ** subsystem could not be initialized or the system failed to allocate 000262 ** the pInitMutex mutex. Return an error in either case. */ 000263 if( rc!=SQLITE_OK ){ 000264 return rc; 000265 } 000266 000267 /* Do the rest of the initialization under the recursive mutex so 000268 ** that we will be able to handle recursive calls into 000269 ** sqlite3_initialize(). The recursive calls normally come through 000270 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 000271 ** recursive calls might also be possible. 000272 ** 000273 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 000274 ** to the xInit method, so the xInit method need not be threadsafe. 000275 ** 000276 ** The following mutex is what serializes access to the appdef pcache xInit 000277 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 000278 ** call to sqlite3PcacheInitialize(). 000279 */ 000280 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 000281 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 000282 sqlite3GlobalConfig.inProgress = 1; 000283 #ifdef SQLITE_ENABLE_SQLLOG 000284 { 000285 extern void sqlite3_init_sqllog(void); 000286 sqlite3_init_sqllog(); 000287 } 000288 #endif 000289 memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); 000290 sqlite3RegisterBuiltinFunctions(); 000291 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 000292 rc = sqlite3PcacheInitialize(); 000293 } 000294 if( rc==SQLITE_OK ){ 000295 sqlite3GlobalConfig.isPCacheInit = 1; 000296 rc = sqlite3OsInit(); 000297 } 000298 #ifndef SQLITE_OMIT_DESERIALIZE 000299 if( rc==SQLITE_OK ){ 000300 rc = sqlite3MemdbInit(); 000301 } 000302 #endif 000303 if( rc==SQLITE_OK ){ 000304 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 000305 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 000306 sqlite3MemoryBarrier(); 000307 sqlite3GlobalConfig.isInit = 1; 000308 #ifdef SQLITE_EXTRA_INIT 000309 bRunExtraInit = 1; 000310 #endif 000311 } 000312 sqlite3GlobalConfig.inProgress = 0; 000313 } 000314 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 000315 000316 /* Go back under the static mutex and clean up the recursive 000317 ** mutex to prevent a resource leak. 000318 */ 000319 sqlite3_mutex_enter(pMainMtx); 000320 sqlite3GlobalConfig.nRefInitMutex--; 000321 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 000322 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 000323 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 000324 sqlite3GlobalConfig.pInitMutex = 0; 000325 } 000326 sqlite3_mutex_leave(pMainMtx); 000327 000328 /* The following is just a sanity check to make sure SQLite has 000329 ** been compiled correctly. It is important to run this code, but 000330 ** we don't want to run it too often and soak up CPU cycles for no 000331 ** reason. So we run it once during initialization. 000332 */ 000333 #ifndef NDEBUG 000334 #ifndef SQLITE_OMIT_FLOATING_POINT 000335 /* This section of code's only "output" is via assert() statements. */ 000336 if( rc==SQLITE_OK ){ 000337 u64 x = (((u64)1)<<63)-1; 000338 double y; 000339 assert(sizeof(x)==8); 000340 assert(sizeof(x)==sizeof(y)); 000341 memcpy(&y, &x, 8); 000342 assert( sqlite3IsNaN(y) ); 000343 } 000344 #endif 000345 #endif 000346 000347 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 000348 ** compile-time option. 000349 */ 000350 #ifdef SQLITE_EXTRA_INIT 000351 if( bRunExtraInit ){ 000352 int SQLITE_EXTRA_INIT(const char*); 000353 rc = SQLITE_EXTRA_INIT(0); 000354 } 000355 #endif 000356 return rc; 000357 } 000358 000359 /* 000360 ** Undo the effects of sqlite3_initialize(). Must not be called while 000361 ** there are outstanding database connections or memory allocations or 000362 ** while any part of SQLite is otherwise in use in any thread. This 000363 ** routine is not threadsafe. But it is safe to invoke this routine 000364 ** on when SQLite is already shut down. If SQLite is already shut down 000365 ** when this routine is invoked, then this routine is a harmless no-op. 000366 */ 000367 int sqlite3_shutdown(void){ 000368 #ifdef SQLITE_OMIT_WSD 000369 int rc = sqlite3_wsd_init(4096, 24); 000370 if( rc!=SQLITE_OK ){ 000371 return rc; 000372 } 000373 #endif 000374 000375 if( sqlite3GlobalConfig.isInit ){ 000376 #ifdef SQLITE_EXTRA_SHUTDOWN 000377 void SQLITE_EXTRA_SHUTDOWN(void); 000378 SQLITE_EXTRA_SHUTDOWN(); 000379 #endif 000380 sqlite3_os_end(); 000381 sqlite3_reset_auto_extension(); 000382 sqlite3GlobalConfig.isInit = 0; 000383 } 000384 if( sqlite3GlobalConfig.isPCacheInit ){ 000385 sqlite3PcacheShutdown(); 000386 sqlite3GlobalConfig.isPCacheInit = 0; 000387 } 000388 if( sqlite3GlobalConfig.isMallocInit ){ 000389 sqlite3MallocEnd(); 000390 sqlite3GlobalConfig.isMallocInit = 0; 000391 000392 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 000393 /* The heap subsystem has now been shutdown and these values are supposed 000394 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 000395 ** which would rely on that heap subsystem; therefore, make sure these 000396 ** values cannot refer to heap memory that was just invalidated when the 000397 ** heap subsystem was shutdown. This is only done if the current call to 000398 ** this function resulted in the heap subsystem actually being shutdown. 000399 */ 000400 sqlite3_data_directory = 0; 000401 sqlite3_temp_directory = 0; 000402 #endif 000403 } 000404 if( sqlite3GlobalConfig.isMutexInit ){ 000405 sqlite3MutexEnd(); 000406 sqlite3GlobalConfig.isMutexInit = 0; 000407 } 000408 000409 return SQLITE_OK; 000410 } 000411 000412 /* 000413 ** This API allows applications to modify the global configuration of 000414 ** the SQLite library at run-time. 000415 ** 000416 ** This routine should only be called when there are no outstanding 000417 ** database connections or memory allocations. This routine is not 000418 ** threadsafe. Failure to heed these warnings can lead to unpredictable 000419 ** behavior. 000420 */ 000421 int sqlite3_config(int op, ...){ 000422 va_list ap; 000423 int rc = SQLITE_OK; 000424 000425 /* sqlite3_config() normally returns SQLITE_MISUSE if it is invoked while 000426 ** the SQLite library is in use. Except, a few selected opcodes 000427 ** are allowed. 000428 */ 000429 if( sqlite3GlobalConfig.isInit ){ 000430 static const u64 mAnytimeConfigOption = 0 000431 | MASKBIT64( SQLITE_CONFIG_LOG ) 000432 | MASKBIT64( SQLITE_CONFIG_PCACHE_HDRSZ ) 000433 ; 000434 if( op<0 || op>63 || (MASKBIT64(op) & mAnytimeConfigOption)==0 ){ 000435 return SQLITE_MISUSE_BKPT; 000436 } 000437 testcase( op==SQLITE_CONFIG_LOG ); 000438 testcase( op==SQLITE_CONFIG_PCACHE_HDRSZ ); 000439 } 000440 000441 va_start(ap, op); 000442 switch( op ){ 000443 000444 /* Mutex configuration options are only available in a threadsafe 000445 ** compile. 000446 */ 000447 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 000448 case SQLITE_CONFIG_SINGLETHREAD: { 000449 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 000450 ** Single-thread. */ 000451 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 000452 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 000453 break; 000454 } 000455 #endif 000456 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 000457 case SQLITE_CONFIG_MULTITHREAD: { 000458 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 000459 ** Multi-thread. */ 000460 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 000461 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 000462 break; 000463 } 000464 #endif 000465 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 000466 case SQLITE_CONFIG_SERIALIZED: { 000467 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 000468 ** Serialized. */ 000469 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 000470 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 000471 break; 000472 } 000473 #endif 000474 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 000475 case SQLITE_CONFIG_MUTEX: { 000476 /* Specify an alternative mutex implementation */ 000477 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 000478 break; 000479 } 000480 #endif 000481 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 000482 case SQLITE_CONFIG_GETMUTEX: { 000483 /* Retrieve the current mutex implementation */ 000484 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 000485 break; 000486 } 000487 #endif 000488 000489 case SQLITE_CONFIG_MALLOC: { 000490 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 000491 ** single argument which is a pointer to an instance of the 000492 ** sqlite3_mem_methods structure. The argument specifies alternative 000493 ** low-level memory allocation routines to be used in place of the memory 000494 ** allocation routines built into SQLite. */ 000495 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 000496 break; 000497 } 000498 case SQLITE_CONFIG_GETMALLOC: { 000499 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 000500 ** single argument which is a pointer to an instance of the 000501 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 000502 ** filled with the currently defined memory allocation routines. */ 000503 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 000504 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 000505 break; 000506 } 000507 case SQLITE_CONFIG_MEMSTATUS: { 000508 assert( !sqlite3GlobalConfig.isInit ); /* Cannot change at runtime */ 000509 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 000510 ** single argument of type int, interpreted as a boolean, which enables 000511 ** or disables the collection of memory allocation statistics. */ 000512 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 000513 break; 000514 } 000515 case SQLITE_CONFIG_SMALL_MALLOC: { 000516 sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int); 000517 break; 000518 } 000519 case SQLITE_CONFIG_PAGECACHE: { 000520 /* EVIDENCE-OF: R-18761-36601 There are three arguments to 000521 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), 000522 ** the size of each page cache line (sz), and the number of cache lines 000523 ** (N). */ 000524 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 000525 sqlite3GlobalConfig.szPage = va_arg(ap, int); 000526 sqlite3GlobalConfig.nPage = va_arg(ap, int); 000527 break; 000528 } 000529 case SQLITE_CONFIG_PCACHE_HDRSZ: { 000530 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 000531 ** a single parameter which is a pointer to an integer and writes into 000532 ** that integer the number of extra bytes per page required for each page 000533 ** in SQLITE_CONFIG_PAGECACHE. */ 000534 *va_arg(ap, int*) = 000535 sqlite3HeaderSizeBtree() + 000536 sqlite3HeaderSizePcache() + 000537 sqlite3HeaderSizePcache1(); 000538 break; 000539 } 000540 000541 case SQLITE_CONFIG_PCACHE: { 000542 /* no-op */ 000543 break; 000544 } 000545 case SQLITE_CONFIG_GETPCACHE: { 000546 /* now an error */ 000547 rc = SQLITE_ERROR; 000548 break; 000549 } 000550 000551 case SQLITE_CONFIG_PCACHE2: { 000552 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 000553 ** single argument which is a pointer to an sqlite3_pcache_methods2 000554 ** object. This object specifies the interface to a custom page cache 000555 ** implementation. */ 000556 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 000557 break; 000558 } 000559 case SQLITE_CONFIG_GETPCACHE2: { 000560 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 000561 ** single argument which is a pointer to an sqlite3_pcache_methods2 000562 ** object. SQLite copies of the current page cache implementation into 000563 ** that object. */ 000564 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 000565 sqlite3PCacheSetDefault(); 000566 } 000567 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 000568 break; 000569 } 000570 000571 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 000572 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 000573 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 000574 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 000575 case SQLITE_CONFIG_HEAP: { 000576 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 000577 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 000578 ** number of bytes in the memory buffer, and the minimum allocation size. 000579 */ 000580 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 000581 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 000582 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 000583 000584 if( sqlite3GlobalConfig.mnReq<1 ){ 000585 sqlite3GlobalConfig.mnReq = 1; 000586 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 000587 /* cap min request size at 2^12 */ 000588 sqlite3GlobalConfig.mnReq = (1<<12); 000589 } 000590 000591 if( sqlite3GlobalConfig.pHeap==0 ){ 000592 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 000593 ** is NULL, then SQLite reverts to using its default memory allocator 000594 ** (the system malloc() implementation), undoing any prior invocation of 000595 ** SQLITE_CONFIG_MALLOC. 000596 ** 000597 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 000598 ** revert to its default implementation when sqlite3_initialize() is run 000599 */ 000600 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 000601 }else{ 000602 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 000603 ** alternative memory allocator is engaged to handle all of SQLites 000604 ** memory allocation needs. */ 000605 #ifdef SQLITE_ENABLE_MEMSYS3 000606 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 000607 #endif 000608 #ifdef SQLITE_ENABLE_MEMSYS5 000609 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 000610 #endif 000611 } 000612 break; 000613 } 000614 #endif 000615 000616 case SQLITE_CONFIG_LOOKASIDE: { 000617 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 000618 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 000619 break; 000620 } 000621 000622 /* Record a pointer to the logger function and its first argument. 000623 ** The default is NULL. Logging is disabled if the function pointer is 000624 ** NULL. 000625 */ 000626 case SQLITE_CONFIG_LOG: { 000627 /* MSVC is picky about pulling func ptrs from va lists. 000628 ** http://support.microsoft.com/kb/47961 000629 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 000630 */ 000631 typedef void(*LOGFUNC_t)(void*,int,const char*); 000632 LOGFUNC_t xLog = va_arg(ap, LOGFUNC_t); 000633 void *pLogArg = va_arg(ap, void*); 000634 AtomicStore(&sqlite3GlobalConfig.xLog, xLog); 000635 AtomicStore(&sqlite3GlobalConfig.pLogArg, pLogArg); 000636 break; 000637 } 000638 000639 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 000640 ** can be changed at start-time using the 000641 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 000642 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 000643 */ 000644 case SQLITE_CONFIG_URI: { 000645 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 000646 ** argument of type int. If non-zero, then URI handling is globally 000647 ** enabled. If the parameter is zero, then URI handling is globally 000648 ** disabled. */ 000649 int bOpenUri = va_arg(ap, int); 000650 AtomicStore(&sqlite3GlobalConfig.bOpenUri, bOpenUri); 000651 break; 000652 } 000653 000654 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 000655 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 000656 ** option takes a single integer argument which is interpreted as a 000657 ** boolean in order to enable or disable the use of covering indices for 000658 ** full table scans in the query optimizer. */ 000659 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 000660 break; 000661 } 000662 000663 #ifdef SQLITE_ENABLE_SQLLOG 000664 case SQLITE_CONFIG_SQLLOG: { 000665 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 000666 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 000667 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 000668 break; 000669 } 000670 #endif 000671 000672 case SQLITE_CONFIG_MMAP_SIZE: { 000673 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 000674 ** integer (sqlite3_int64) values that are the default mmap size limit 000675 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 000676 ** mmap size limit. */ 000677 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 000678 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 000679 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 000680 ** negative, then that argument is changed to its compile-time default. 000681 ** 000682 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 000683 ** silently truncated if necessary so that it does not exceed the 000684 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 000685 ** compile-time option. 000686 */ 000687 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 000688 mxMmap = SQLITE_MAX_MMAP_SIZE; 000689 } 000690 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 000691 if( szMmap>mxMmap) szMmap = mxMmap; 000692 sqlite3GlobalConfig.mxMmap = mxMmap; 000693 sqlite3GlobalConfig.szMmap = szMmap; 000694 break; 000695 } 000696 000697 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 000698 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 000699 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 000700 ** unsigned integer value that specifies the maximum size of the created 000701 ** heap. */ 000702 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 000703 break; 000704 } 000705 #endif 000706 000707 case SQLITE_CONFIG_PMASZ: { 000708 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 000709 break; 000710 } 000711 000712 case SQLITE_CONFIG_STMTJRNL_SPILL: { 000713 sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); 000714 break; 000715 } 000716 000717 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 000718 case SQLITE_CONFIG_SORTERREF_SIZE: { 000719 int iVal = va_arg(ap, int); 000720 if( iVal<0 ){ 000721 iVal = SQLITE_DEFAULT_SORTERREF_SIZE; 000722 } 000723 sqlite3GlobalConfig.szSorterRef = (u32)iVal; 000724 break; 000725 } 000726 #endif /* SQLITE_ENABLE_SORTER_REFERENCES */ 000727 000728 #ifndef SQLITE_OMIT_DESERIALIZE 000729 case SQLITE_CONFIG_MEMDB_MAXSIZE: { 000730 sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64); 000731 break; 000732 } 000733 #endif /* SQLITE_OMIT_DESERIALIZE */ 000734 000735 case SQLITE_CONFIG_ROWID_IN_VIEW: { 000736 int *pVal = va_arg(ap,int*); 000737 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 000738 if( 0==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = TF_NoVisibleRowid; 000739 if( 1==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = 0; 000740 *pVal = (sqlite3GlobalConfig.mNoVisibleRowid==0); 000741 #else 000742 *pVal = 0; 000743 #endif 000744 break; 000745 } 000746 000747 default: { 000748 rc = SQLITE_ERROR; 000749 break; 000750 } 000751 } 000752 va_end(ap); 000753 return rc; 000754 } 000755 000756 /* 000757 ** Set up the lookaside buffers for a database connection. 000758 ** Return SQLITE_OK on success. 000759 ** If lookaside is already active, return SQLITE_BUSY. 000760 ** 000761 ** The sz parameter is the number of bytes in each lookaside slot. 000762 ** The cnt parameter is the number of slots. If pStart is NULL the 000763 ** space for the lookaside memory is obtained from sqlite3_malloc(). 000764 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 000765 ** the lookaside memory. 000766 */ 000767 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 000768 #ifndef SQLITE_OMIT_LOOKASIDE 000769 void *pStart; 000770 sqlite3_int64 szAlloc; 000771 int nBig; /* Number of full-size slots */ 000772 int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */ 000773 000774 if( sqlite3LookasideUsed(db,0)>0 ){ 000775 return SQLITE_BUSY; 000776 } 000777 /* Free any existing lookaside buffer for this handle before 000778 ** allocating a new one so we don't have to have space for 000779 ** both at the same time. 000780 */ 000781 if( db->lookaside.bMalloced ){ 000782 sqlite3_free(db->lookaside.pStart); 000783 } 000784 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 000785 ** than a pointer to be useful. 000786 */ 000787 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 000788 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 000789 if( sz>65528 ) sz = 65528; 000790 if( cnt<0 ) cnt = 0; 000791 szAlloc = (i64)sz*(i64)cnt; 000792 if( sz==0 || cnt==0 ){ 000793 sz = 0; 000794 pStart = 0; 000795 }else if( pBuf==0 ){ 000796 sqlite3BeginBenignMalloc(); 000797 pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */ 000798 sqlite3EndBenignMalloc(); 000799 if( pStart ) szAlloc = sqlite3MallocSize(pStart); 000800 }else{ 000801 pStart = pBuf; 000802 } 000803 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000804 if( sz>=LOOKASIDE_SMALL*3 ){ 000805 nBig = szAlloc/(3*LOOKASIDE_SMALL+sz); 000806 nSm = (szAlloc - (i64)sz*(i64)nBig)/LOOKASIDE_SMALL; 000807 }else if( sz>=LOOKASIDE_SMALL*2 ){ 000808 nBig = szAlloc/(LOOKASIDE_SMALL+sz); 000809 nSm = (szAlloc - (i64)sz*(i64)nBig)/LOOKASIDE_SMALL; 000810 }else 000811 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000812 if( sz>0 ){ 000813 nBig = szAlloc/sz; 000814 nSm = 0; 000815 }else{ 000816 nBig = nSm = 0; 000817 } 000818 db->lookaside.pStart = pStart; 000819 db->lookaside.pInit = 0; 000820 db->lookaside.pFree = 0; 000821 db->lookaside.sz = (u16)sz; 000822 db->lookaside.szTrue = (u16)sz; 000823 if( pStart ){ 000824 int i; 000825 LookasideSlot *p; 000826 assert( sz > (int)sizeof(LookasideSlot*) ); 000827 p = (LookasideSlot*)pStart; 000828 for(i=0; i<nBig; i++){ 000829 p->pNext = db->lookaside.pInit; 000830 db->lookaside.pInit = p; 000831 p = (LookasideSlot*)&((u8*)p)[sz]; 000832 } 000833 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000834 db->lookaside.pSmallInit = 0; 000835 db->lookaside.pSmallFree = 0; 000836 db->lookaside.pMiddle = p; 000837 for(i=0; i<nSm; i++){ 000838 p->pNext = db->lookaside.pSmallInit; 000839 db->lookaside.pSmallInit = p; 000840 p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL]; 000841 } 000842 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000843 assert( ((uptr)p)<=szAlloc + (uptr)pStart ); 000844 db->lookaside.pEnd = p; 000845 db->lookaside.bDisable = 0; 000846 db->lookaside.bMalloced = pBuf==0 ?1:0; 000847 db->lookaside.nSlot = nBig+nSm; 000848 }else{ 000849 db->lookaside.pStart = 0; 000850 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000851 db->lookaside.pSmallInit = 0; 000852 db->lookaside.pSmallFree = 0; 000853 db->lookaside.pMiddle = 0; 000854 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000855 db->lookaside.pEnd = 0; 000856 db->lookaside.bDisable = 1; 000857 db->lookaside.sz = 0; 000858 db->lookaside.bMalloced = 0; 000859 db->lookaside.nSlot = 0; 000860 } 000861 db->lookaside.pTrueEnd = db->lookaside.pEnd; 000862 assert( sqlite3LookasideUsed(db,0)==0 ); 000863 #endif /* SQLITE_OMIT_LOOKASIDE */ 000864 return SQLITE_OK; 000865 } 000866 000867 /* 000868 ** Return the mutex associated with a database connection. 000869 */ 000870 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 000871 #ifdef SQLITE_ENABLE_API_ARMOR 000872 if( !sqlite3SafetyCheckOk(db) ){ 000873 (void)SQLITE_MISUSE_BKPT; 000874 return 0; 000875 } 000876 #endif 000877 return db->mutex; 000878 } 000879 000880 /* 000881 ** Free up as much memory as we can from the given database 000882 ** connection. 000883 */ 000884 int sqlite3_db_release_memory(sqlite3 *db){ 000885 int i; 000886 000887 #ifdef SQLITE_ENABLE_API_ARMOR 000888 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000889 #endif 000890 sqlite3_mutex_enter(db->mutex); 000891 sqlite3BtreeEnterAll(db); 000892 for(i=0; i<db->nDb; i++){ 000893 Btree *pBt = db->aDb[i].pBt; 000894 if( pBt ){ 000895 Pager *pPager = sqlite3BtreePager(pBt); 000896 sqlite3PagerShrink(pPager); 000897 } 000898 } 000899 sqlite3BtreeLeaveAll(db); 000900 sqlite3_mutex_leave(db->mutex); 000901 return SQLITE_OK; 000902 } 000903 000904 /* 000905 ** Flush any dirty pages in the pager-cache for any attached database 000906 ** to disk. 000907 */ 000908 int sqlite3_db_cacheflush(sqlite3 *db){ 000909 int i; 000910 int rc = SQLITE_OK; 000911 int bSeenBusy = 0; 000912 000913 #ifdef SQLITE_ENABLE_API_ARMOR 000914 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000915 #endif 000916 sqlite3_mutex_enter(db->mutex); 000917 sqlite3BtreeEnterAll(db); 000918 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 000919 Btree *pBt = db->aDb[i].pBt; 000920 if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 000921 Pager *pPager = sqlite3BtreePager(pBt); 000922 rc = sqlite3PagerFlush(pPager); 000923 if( rc==SQLITE_BUSY ){ 000924 bSeenBusy = 1; 000925 rc = SQLITE_OK; 000926 } 000927 } 000928 } 000929 sqlite3BtreeLeaveAll(db); 000930 sqlite3_mutex_leave(db->mutex); 000931 return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); 000932 } 000933 000934 /* 000935 ** Configuration settings for an individual database connection 000936 */ 000937 int sqlite3_db_config(sqlite3 *db, int op, ...){ 000938 va_list ap; 000939 int rc; 000940 000941 #ifdef SQLITE_ENABLE_API_ARMOR 000942 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000943 #endif 000944 sqlite3_mutex_enter(db->mutex); 000945 va_start(ap, op); 000946 switch( op ){ 000947 case SQLITE_DBCONFIG_MAINDBNAME: { 000948 /* IMP: R-06824-28531 */ 000949 /* IMP: R-36257-52125 */ 000950 db->aDb[0].zDbSName = va_arg(ap,char*); 000951 rc = SQLITE_OK; 000952 break; 000953 } 000954 case SQLITE_DBCONFIG_LOOKASIDE: { 000955 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 000956 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 000957 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 000958 rc = setupLookaside(db, pBuf, sz, cnt); 000959 break; 000960 } 000961 default: { 000962 static const struct { 000963 int op; /* The opcode */ 000964 u64 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 000965 } aFlagOp[] = { 000966 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 000967 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 000968 { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView }, 000969 { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, 000970 { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, 000971 { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, 000972 { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, 000973 { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, 000974 { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, 000975 { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive }, 000976 { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema| 000977 SQLITE_NoSchemaError }, 000978 { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter }, 000979 { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL }, 000980 { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML }, 000981 { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt }, 000982 { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema }, 000983 { SQLITE_DBCONFIG_STMT_SCANSTATUS, SQLITE_StmtScanStatus }, 000984 { SQLITE_DBCONFIG_REVERSE_SCANORDER, SQLITE_ReverseOrder }, 000985 { SQLITE_DBCONFIG_ENABLE_ATTACH_CREATE, SQLITE_AttachCreate }, 000986 { SQLITE_DBCONFIG_ENABLE_ATTACH_WRITE, SQLITE_AttachWrite }, 000987 { SQLITE_DBCONFIG_ENABLE_COMMENTS, SQLITE_Comments }, 000988 }; 000989 unsigned int i; 000990 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 000991 for(i=0; i<ArraySize(aFlagOp); i++){ 000992 if( aFlagOp[i].op==op ){ 000993 int onoff = va_arg(ap, int); 000994 int *pRes = va_arg(ap, int*); 000995 u64 oldFlags = db->flags; 000996 if( onoff>0 ){ 000997 db->flags |= aFlagOp[i].mask; 000998 }else if( onoff==0 ){ 000999 db->flags &= ~(u64)aFlagOp[i].mask; 001000 } 001001 if( oldFlags!=db->flags ){ 001002 sqlite3ExpirePreparedStatements(db, 0); 001003 } 001004 if( pRes ){ 001005 *pRes = (db->flags & aFlagOp[i].mask)!=0; 001006 } 001007 rc = SQLITE_OK; 001008 break; 001009 } 001010 } 001011 break; 001012 } 001013 } 001014 va_end(ap); 001015 sqlite3_mutex_leave(db->mutex); 001016 return rc; 001017 } 001018 001019 /* 001020 ** This is the default collating function named "BINARY" which is always 001021 ** available. 001022 */ 001023 static int binCollFunc( 001024 void *NotUsed, 001025 int nKey1, const void *pKey1, 001026 int nKey2, const void *pKey2 001027 ){ 001028 int rc, n; 001029 UNUSED_PARAMETER(NotUsed); 001030 n = nKey1<nKey2 ? nKey1 : nKey2; 001031 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 001032 ** strings byte by byte using the memcmp() function from the standard C 001033 ** library. */ 001034 assert( pKey1 && pKey2 ); 001035 rc = memcmp(pKey1, pKey2, n); 001036 if( rc==0 ){ 001037 rc = nKey1 - nKey2; 001038 } 001039 return rc; 001040 } 001041 001042 /* 001043 ** This is the collating function named "RTRIM" which is always 001044 ** available. Ignore trailing spaces. 001045 */ 001046 static int rtrimCollFunc( 001047 void *pUser, 001048 int nKey1, const void *pKey1, 001049 int nKey2, const void *pKey2 001050 ){ 001051 const u8 *pK1 = (const u8*)pKey1; 001052 const u8 *pK2 = (const u8*)pKey2; 001053 while( nKey1 && pK1[nKey1-1]==' ' ) nKey1--; 001054 while( nKey2 && pK2[nKey2-1]==' ' ) nKey2--; 001055 return binCollFunc(pUser, nKey1, pKey1, nKey2, pKey2); 001056 } 001057 001058 /* 001059 ** Return true if CollSeq is the default built-in BINARY. 001060 */ 001061 int sqlite3IsBinary(const CollSeq *p){ 001062 assert( p==0 || p->xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 ); 001063 return p==0 || p->xCmp==binCollFunc; 001064 } 001065 001066 /* 001067 ** Another built-in collating sequence: NOCASE. 001068 ** 001069 ** This collating sequence is intended to be used for "case independent 001070 ** comparison". SQLite's knowledge of upper and lower case equivalents 001071 ** extends only to the 26 characters used in the English language. 001072 ** 001073 ** At the moment there is only a UTF-8 implementation. 001074 */ 001075 static int nocaseCollatingFunc( 001076 void *NotUsed, 001077 int nKey1, const void *pKey1, 001078 int nKey2, const void *pKey2 001079 ){ 001080 int r = sqlite3StrNICmp( 001081 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 001082 UNUSED_PARAMETER(NotUsed); 001083 if( 0==r ){ 001084 r = nKey1-nKey2; 001085 } 001086 return r; 001087 } 001088 001089 /* 001090 ** Return the ROWID of the most recent insert 001091 */ 001092 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 001093 #ifdef SQLITE_ENABLE_API_ARMOR 001094 if( !sqlite3SafetyCheckOk(db) ){ 001095 (void)SQLITE_MISUSE_BKPT; 001096 return 0; 001097 } 001098 #endif 001099 return db->lastRowid; 001100 } 001101 001102 /* 001103 ** Set the value returned by the sqlite3_last_insert_rowid() API function. 001104 */ 001105 void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){ 001106 #ifdef SQLITE_ENABLE_API_ARMOR 001107 if( !sqlite3SafetyCheckOk(db) ){ 001108 (void)SQLITE_MISUSE_BKPT; 001109 return; 001110 } 001111 #endif 001112 sqlite3_mutex_enter(db->mutex); 001113 db->lastRowid = iRowid; 001114 sqlite3_mutex_leave(db->mutex); 001115 } 001116 001117 /* 001118 ** Return the number of changes in the most recent call to sqlite3_exec(). 001119 */ 001120 sqlite3_int64 sqlite3_changes64(sqlite3 *db){ 001121 #ifdef SQLITE_ENABLE_API_ARMOR 001122 if( !sqlite3SafetyCheckOk(db) ){ 001123 (void)SQLITE_MISUSE_BKPT; 001124 return 0; 001125 } 001126 #endif 001127 return db->nChange; 001128 } 001129 int sqlite3_changes(sqlite3 *db){ 001130 return (int)sqlite3_changes64(db); 001131 } 001132 001133 /* 001134 ** Return the number of changes since the database handle was opened. 001135 */ 001136 sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){ 001137 #ifdef SQLITE_ENABLE_API_ARMOR 001138 if( !sqlite3SafetyCheckOk(db) ){ 001139 (void)SQLITE_MISUSE_BKPT; 001140 return 0; 001141 } 001142 #endif 001143 return db->nTotalChange; 001144 } 001145 int sqlite3_total_changes(sqlite3 *db){ 001146 return (int)sqlite3_total_changes64(db); 001147 } 001148 001149 /* 001150 ** Close all open savepoints. This function only manipulates fields of the 001151 ** database handle object, it does not close any savepoints that may be open 001152 ** at the b-tree/pager level. 001153 */ 001154 void sqlite3CloseSavepoints(sqlite3 *db){ 001155 while( db->pSavepoint ){ 001156 Savepoint *pTmp = db->pSavepoint; 001157 db->pSavepoint = pTmp->pNext; 001158 sqlite3DbFree(db, pTmp); 001159 } 001160 db->nSavepoint = 0; 001161 db->nStatement = 0; 001162 db->isTransactionSavepoint = 0; 001163 } 001164 001165 /* 001166 ** Invoke the destructor function associated with FuncDef p, if any. Except, 001167 ** if this is not the last copy of the function, do not invoke it. Multiple 001168 ** copies of a single function are created when create_function() is called 001169 ** with SQLITE_ANY as the encoding. 001170 */ 001171 static void functionDestroy(sqlite3 *db, FuncDef *p){ 001172 FuncDestructor *pDestructor; 001173 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); 001174 pDestructor = p->u.pDestructor; 001175 if( pDestructor ){ 001176 pDestructor->nRef--; 001177 if( pDestructor->nRef==0 ){ 001178 pDestructor->xDestroy(pDestructor->pUserData); 001179 sqlite3DbFree(db, pDestructor); 001180 } 001181 } 001182 } 001183 001184 /* 001185 ** Disconnect all sqlite3_vtab objects that belong to database connection 001186 ** db. This is called when db is being closed. 001187 */ 001188 static void disconnectAllVtab(sqlite3 *db){ 001189 #ifndef SQLITE_OMIT_VIRTUALTABLE 001190 int i; 001191 HashElem *p; 001192 sqlite3BtreeEnterAll(db); 001193 for(i=0; i<db->nDb; i++){ 001194 Schema *pSchema = db->aDb[i].pSchema; 001195 if( pSchema ){ 001196 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 001197 Table *pTab = (Table *)sqliteHashData(p); 001198 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 001199 } 001200 } 001201 } 001202 for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ 001203 Module *pMod = (Module *)sqliteHashData(p); 001204 if( pMod->pEpoTab ){ 001205 sqlite3VtabDisconnect(db, pMod->pEpoTab); 001206 } 001207 } 001208 sqlite3VtabUnlockList(db); 001209 sqlite3BtreeLeaveAll(db); 001210 #else 001211 UNUSED_PARAMETER(db); 001212 #endif 001213 } 001214 001215 /* 001216 ** Return TRUE if database connection db has unfinalized prepared 001217 ** statements or unfinished sqlite3_backup objects. 001218 */ 001219 static int connectionIsBusy(sqlite3 *db){ 001220 int j; 001221 assert( sqlite3_mutex_held(db->mutex) ); 001222 if( db->pVdbe ) return 1; 001223 for(j=0; j<db->nDb; j++){ 001224 Btree *pBt = db->aDb[j].pBt; 001225 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 001226 } 001227 return 0; 001228 } 001229 001230 /* 001231 ** Close an existing SQLite database 001232 */ 001233 static int sqlite3Close(sqlite3 *db, int forceZombie){ 001234 if( !db ){ 001235 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 001236 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 001237 return SQLITE_OK; 001238 } 001239 if( !sqlite3SafetyCheckSickOrOk(db) ){ 001240 return SQLITE_MISUSE_BKPT; 001241 } 001242 sqlite3_mutex_enter(db->mutex); 001243 if( db->mTrace & SQLITE_TRACE_CLOSE ){ 001244 db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); 001245 } 001246 001247 /* Force xDisconnect calls on all virtual tables */ 001248 disconnectAllVtab(db); 001249 001250 /* If a transaction is open, the disconnectAllVtab() call above 001251 ** will not have called the xDisconnect() method on any virtual 001252 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 001253 ** call will do so. We need to do this before the check for active 001254 ** SQL statements below, as the v-table implementation may be storing 001255 ** some prepared statements internally. 001256 */ 001257 sqlite3VtabRollback(db); 001258 001259 /* Legacy behavior (sqlite3_close() behavior) is to return 001260 ** SQLITE_BUSY if the connection can not be closed immediately. 001261 */ 001262 if( !forceZombie && connectionIsBusy(db) ){ 001263 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 001264 "statements or unfinished backups"); 001265 sqlite3_mutex_leave(db->mutex); 001266 return SQLITE_BUSY; 001267 } 001268 001269 #ifdef SQLITE_ENABLE_SQLLOG 001270 if( sqlite3GlobalConfig.xSqllog ){ 001271 /* Closing the handle. Fourth parameter is passed the value 2. */ 001272 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 001273 } 001274 #endif 001275 001276 while( db->pDbData ){ 001277 DbClientData *p = db->pDbData; 001278 db->pDbData = p->pNext; 001279 assert( p->pData!=0 ); 001280 if( p->xDestructor ) p->xDestructor(p->pData); 001281 sqlite3_free(p); 001282 } 001283 001284 /* Convert the connection into a zombie and then close it. 001285 */ 001286 db->eOpenState = SQLITE_STATE_ZOMBIE; 001287 sqlite3LeaveMutexAndCloseZombie(db); 001288 return SQLITE_OK; 001289 } 001290 001291 /* 001292 ** Return the transaction state for a single databse, or the maximum 001293 ** transaction state over all attached databases if zSchema is null. 001294 */ 001295 int sqlite3_txn_state(sqlite3 *db, const char *zSchema){ 001296 int iDb, nDb; 001297 int iTxn = -1; 001298 #ifdef SQLITE_ENABLE_API_ARMOR 001299 if( !sqlite3SafetyCheckOk(db) ){ 001300 (void)SQLITE_MISUSE_BKPT; 001301 return -1; 001302 } 001303 #endif 001304 sqlite3_mutex_enter(db->mutex); 001305 if( zSchema ){ 001306 nDb = iDb = sqlite3FindDbName(db, zSchema); 001307 if( iDb<0 ) nDb--; 001308 }else{ 001309 iDb = 0; 001310 nDb = db->nDb-1; 001311 } 001312 for(; iDb<=nDb; iDb++){ 001313 Btree *pBt = db->aDb[iDb].pBt; 001314 int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE; 001315 if( x>iTxn ) iTxn = x; 001316 } 001317 sqlite3_mutex_leave(db->mutex); 001318 return iTxn; 001319 } 001320 001321 /* 001322 ** Two variations on the public interface for closing a database 001323 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 001324 ** leaves the connection open if there are unfinalized prepared 001325 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 001326 ** version forces the connection to become a zombie if there are 001327 ** unclosed resources, and arranges for deallocation when the last 001328 ** prepare statement or sqlite3_backup closes. 001329 */ 001330 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 001331 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 001332 001333 001334 /* 001335 ** Close the mutex on database connection db. 001336 ** 001337 ** Furthermore, if database connection db is a zombie (meaning that there 001338 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 001339 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 001340 ** finished, then free all resources. 001341 */ 001342 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 001343 HashElem *i; /* Hash table iterator */ 001344 int j; 001345 001346 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 001347 ** or if the connection has not yet been closed by sqlite3_close_v2(), 001348 ** then just leave the mutex and return. 001349 */ 001350 if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){ 001351 sqlite3_mutex_leave(db->mutex); 001352 return; 001353 } 001354 001355 /* If we reach this point, it means that the database connection has 001356 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 001357 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 001358 ** go ahead and free all resources. 001359 */ 001360 001361 /* If a transaction is open, roll it back. This also ensures that if 001362 ** any database schemas have been modified by an uncommitted transaction 001363 ** they are reset. And that the required b-tree mutex is held to make 001364 ** the pager rollback and schema reset an atomic operation. */ 001365 sqlite3RollbackAll(db, SQLITE_OK); 001366 001367 /* Free any outstanding Savepoint structures. */ 001368 sqlite3CloseSavepoints(db); 001369 001370 /* Close all database connections */ 001371 for(j=0; j<db->nDb; j++){ 001372 struct Db *pDb = &db->aDb[j]; 001373 if( pDb->pBt ){ 001374 sqlite3BtreeClose(pDb->pBt); 001375 pDb->pBt = 0; 001376 if( j!=1 ){ 001377 pDb->pSchema = 0; 001378 } 001379 } 001380 } 001381 /* Clear the TEMP schema separately and last */ 001382 if( db->aDb[1].pSchema ){ 001383 sqlite3SchemaClear(db->aDb[1].pSchema); 001384 } 001385 sqlite3VtabUnlockList(db); 001386 001387 /* Free up the array of auxiliary databases */ 001388 sqlite3CollapseDatabaseArray(db); 001389 assert( db->nDb<=2 ); 001390 assert( db->aDb==db->aDbStatic ); 001391 001392 /* Tell the code in notify.c that the connection no longer holds any 001393 ** locks and does not require any further unlock-notify callbacks. 001394 */ 001395 sqlite3ConnectionClosed(db); 001396 001397 for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ 001398 FuncDef *pNext, *p; 001399 p = sqliteHashData(i); 001400 do{ 001401 functionDestroy(db, p); 001402 pNext = p->pNext; 001403 sqlite3DbFree(db, p); 001404 p = pNext; 001405 }while( p ); 001406 } 001407 sqlite3HashClear(&db->aFunc); 001408 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 001409 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 001410 /* Invoke any destructors registered for collation sequence user data. */ 001411 for(j=0; j<3; j++){ 001412 if( pColl[j].xDel ){ 001413 pColl[j].xDel(pColl[j].pUser); 001414 } 001415 } 001416 sqlite3DbFree(db, pColl); 001417 } 001418 sqlite3HashClear(&db->aCollSeq); 001419 #ifndef SQLITE_OMIT_VIRTUALTABLE 001420 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 001421 Module *pMod = (Module *)sqliteHashData(i); 001422 sqlite3VtabEponymousTableClear(db, pMod); 001423 sqlite3VtabModuleUnref(db, pMod); 001424 } 001425 sqlite3HashClear(&db->aModule); 001426 #endif 001427 001428 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 001429 sqlite3ValueFree(db->pErr); 001430 sqlite3CloseExtensions(db); 001431 001432 db->eOpenState = SQLITE_STATE_ERROR; 001433 001434 /* The temp-database schema is allocated differently from the other schema 001435 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 001436 ** So it needs to be freed here. Todo: Why not roll the temp schema into 001437 ** the same sqliteMalloc() as the one that allocates the database 001438 ** structure? 001439 */ 001440 sqlite3DbFree(db, db->aDb[1].pSchema); 001441 if( db->xAutovacDestr ){ 001442 db->xAutovacDestr(db->pAutovacPagesArg); 001443 } 001444 sqlite3_mutex_leave(db->mutex); 001445 db->eOpenState = SQLITE_STATE_CLOSED; 001446 sqlite3_mutex_free(db->mutex); 001447 assert( sqlite3LookasideUsed(db,0)==0 ); 001448 if( db->lookaside.bMalloced ){ 001449 sqlite3_free(db->lookaside.pStart); 001450 } 001451 sqlite3_free(db); 001452 } 001453 001454 /* 001455 ** Rollback all database files. If tripCode is not SQLITE_OK, then 001456 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 001457 ** breaker") and made to return tripCode if there are any further 001458 ** attempts to use that cursor. Read cursors remain open and valid 001459 ** but are "saved" in case the table pages are moved around. 001460 */ 001461 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 001462 int i; 001463 int inTrans = 0; 001464 int schemaChange; 001465 assert( sqlite3_mutex_held(db->mutex) ); 001466 sqlite3BeginBenignMalloc(); 001467 001468 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 001469 ** This is important in case the transaction being rolled back has 001470 ** modified the database schema. If the b-tree mutexes are not taken 001471 ** here, then another shared-cache connection might sneak in between 001472 ** the database rollback and schema reset, which can cause false 001473 ** corruption reports in some cases. */ 001474 sqlite3BtreeEnterAll(db); 001475 schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0; 001476 001477 for(i=0; i<db->nDb; i++){ 001478 Btree *p = db->aDb[i].pBt; 001479 if( p ){ 001480 if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){ 001481 inTrans = 1; 001482 } 001483 sqlite3BtreeRollback(p, tripCode, !schemaChange); 001484 } 001485 } 001486 sqlite3VtabRollback(db); 001487 sqlite3EndBenignMalloc(); 001488 001489 if( schemaChange ){ 001490 sqlite3ExpirePreparedStatements(db, 0); 001491 sqlite3ResetAllSchemasOfConnection(db); 001492 } 001493 sqlite3BtreeLeaveAll(db); 001494 001495 /* Any deferred constraint violations have now been resolved. */ 001496 db->nDeferredCons = 0; 001497 db->nDeferredImmCons = 0; 001498 db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly); 001499 001500 /* If one has been configured, invoke the rollback-hook callback */ 001501 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 001502 db->xRollbackCallback(db->pRollbackArg); 001503 } 001504 } 001505 001506 /* 001507 ** Return a static string containing the name corresponding to the error code 001508 ** specified in the argument. 001509 */ 001510 #if defined(SQLITE_NEED_ERR_NAME) 001511 const char *sqlite3ErrName(int rc){ 001512 const char *zName = 0; 001513 int i, origRc = rc; 001514 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 001515 switch( rc ){ 001516 case SQLITE_OK: zName = "SQLITE_OK"; break; 001517 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 001518 case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break; 001519 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 001520 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 001521 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 001522 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 001523 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 001524 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 001525 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 001526 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 001527 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 001528 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 001529 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 001530 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 001531 case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break; 001532 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 001533 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 001534 case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break; 001535 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 001536 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 001537 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 001538 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 001539 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 001540 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 001541 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 001542 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 001543 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 001544 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 001545 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 001546 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 001547 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 001548 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 001549 case SQLITE_IOERR_CHECKRESERVEDLOCK: 001550 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 001551 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 001552 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 001553 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 001554 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 001555 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 001556 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 001557 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 001558 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 001559 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 001560 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 001561 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 001562 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 001563 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 001564 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 001565 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 001566 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 001567 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 001568 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 001569 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 001570 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 001571 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 001572 case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break; 001573 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 001574 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 001575 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 001576 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 001577 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 001578 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 001579 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 001580 case SQLITE_CONSTRAINT_FOREIGNKEY: 001581 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 001582 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 001583 case SQLITE_CONSTRAINT_PRIMARYKEY: 001584 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 001585 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 001586 case SQLITE_CONSTRAINT_COMMITHOOK: 001587 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 001588 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 001589 case SQLITE_CONSTRAINT_FUNCTION: 001590 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 001591 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 001592 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 001593 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 001594 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 001595 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 001596 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 001597 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 001598 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 001599 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 001600 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 001601 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 001602 case SQLITE_NOTICE_RECOVER_ROLLBACK: 001603 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 001604 case SQLITE_NOTICE_RBU: zName = "SQLITE_NOTICE_RBU"; break; 001605 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 001606 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 001607 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 001608 } 001609 } 001610 if( zName==0 ){ 001611 static char zBuf[50]; 001612 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 001613 zName = zBuf; 001614 } 001615 return zName; 001616 } 001617 #endif 001618 001619 /* 001620 ** Return a static string that describes the kind of error specified in the 001621 ** argument. 001622 */ 001623 const char *sqlite3ErrStr(int rc){ 001624 static const char* const aMsg[] = { 001625 /* SQLITE_OK */ "not an error", 001626 /* SQLITE_ERROR */ "SQL logic error", 001627 /* SQLITE_INTERNAL */ 0, 001628 /* SQLITE_PERM */ "access permission denied", 001629 /* SQLITE_ABORT */ "query aborted", 001630 /* SQLITE_BUSY */ "database is locked", 001631 /* SQLITE_LOCKED */ "database table is locked", 001632 /* SQLITE_NOMEM */ "out of memory", 001633 /* SQLITE_READONLY */ "attempt to write a readonly database", 001634 /* SQLITE_INTERRUPT */ "interrupted", 001635 /* SQLITE_IOERR */ "disk I/O error", 001636 /* SQLITE_CORRUPT */ "database disk image is malformed", 001637 /* SQLITE_NOTFOUND */ "unknown operation", 001638 /* SQLITE_FULL */ "database or disk is full", 001639 /* SQLITE_CANTOPEN */ "unable to open database file", 001640 /* SQLITE_PROTOCOL */ "locking protocol", 001641 /* SQLITE_EMPTY */ 0, 001642 /* SQLITE_SCHEMA */ "database schema has changed", 001643 /* SQLITE_TOOBIG */ "string or blob too big", 001644 /* SQLITE_CONSTRAINT */ "constraint failed", 001645 /* SQLITE_MISMATCH */ "datatype mismatch", 001646 /* SQLITE_MISUSE */ "bad parameter or other API misuse", 001647 #ifdef SQLITE_DISABLE_LFS 001648 /* SQLITE_NOLFS */ "large file support is disabled", 001649 #else 001650 /* SQLITE_NOLFS */ 0, 001651 #endif 001652 /* SQLITE_AUTH */ "authorization denied", 001653 /* SQLITE_FORMAT */ 0, 001654 /* SQLITE_RANGE */ "column index out of range", 001655 /* SQLITE_NOTADB */ "file is not a database", 001656 /* SQLITE_NOTICE */ "notification message", 001657 /* SQLITE_WARNING */ "warning message", 001658 }; 001659 const char *zErr = "unknown error"; 001660 switch( rc ){ 001661 case SQLITE_ABORT_ROLLBACK: { 001662 zErr = "abort due to ROLLBACK"; 001663 break; 001664 } 001665 case SQLITE_ROW: { 001666 zErr = "another row available"; 001667 break; 001668 } 001669 case SQLITE_DONE: { 001670 zErr = "no more rows available"; 001671 break; 001672 } 001673 default: { 001674 rc &= 0xff; 001675 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 001676 zErr = aMsg[rc]; 001677 } 001678 break; 001679 } 001680 } 001681 return zErr; 001682 } 001683 001684 /* 001685 ** This routine implements a busy callback that sleeps and tries 001686 ** again until a timeout value is reached. The timeout value is 001687 ** an integer number of milliseconds passed in as the first 001688 ** argument. 001689 ** 001690 ** Return non-zero to retry the lock. Return zero to stop trying 001691 ** and cause SQLite to return SQLITE_BUSY. 001692 */ 001693 static int sqliteDefaultBusyCallback( 001694 void *ptr, /* Database connection */ 001695 int count /* Number of times table has been busy */ 001696 ){ 001697 #if SQLITE_OS_WIN || !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP 001698 /* This case is for systems that have support for sleeping for fractions of 001699 ** a second. Examples: All windows systems, unix systems with nanosleep() */ 001700 static const u8 delays[] = 001701 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 001702 static const u8 totals[] = 001703 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 001704 # define NDELAY ArraySize(delays) 001705 sqlite3 *db = (sqlite3 *)ptr; 001706 int tmout = db->busyTimeout; 001707 int delay, prior; 001708 001709 assert( count>=0 ); 001710 if( count < NDELAY ){ 001711 delay = delays[count]; 001712 prior = totals[count]; 001713 }else{ 001714 delay = delays[NDELAY-1]; 001715 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 001716 } 001717 if( prior + delay > tmout ){ 001718 delay = tmout - prior; 001719 if( delay<=0 ) return 0; 001720 } 001721 sqlite3OsSleep(db->pVfs, delay*1000); 001722 return 1; 001723 #else 001724 /* This case for unix systems that lack usleep() support. Sleeping 001725 ** must be done in increments of whole seconds */ 001726 sqlite3 *db = (sqlite3 *)ptr; 001727 int tmout = ((sqlite3 *)ptr)->busyTimeout; 001728 if( (count+1)*1000 > tmout ){ 001729 return 0; 001730 } 001731 sqlite3OsSleep(db->pVfs, 1000000); 001732 return 1; 001733 #endif 001734 } 001735 001736 /* 001737 ** Invoke the given busy handler. 001738 ** 001739 ** This routine is called when an operation failed to acquire a 001740 ** lock on VFS file pFile. 001741 ** 001742 ** If this routine returns non-zero, the lock is retried. If it 001743 ** returns 0, the operation aborts with an SQLITE_BUSY error. 001744 */ 001745 int sqlite3InvokeBusyHandler(BusyHandler *p){ 001746 int rc; 001747 if( p->xBusyHandler==0 || p->nBusy<0 ) return 0; 001748 rc = p->xBusyHandler(p->pBusyArg, p->nBusy); 001749 if( rc==0 ){ 001750 p->nBusy = -1; 001751 }else{ 001752 p->nBusy++; 001753 } 001754 return rc; 001755 } 001756 001757 /* 001758 ** This routine sets the busy callback for an Sqlite database to the 001759 ** given callback function with the given argument. 001760 */ 001761 int sqlite3_busy_handler( 001762 sqlite3 *db, 001763 int (*xBusy)(void*,int), 001764 void *pArg 001765 ){ 001766 #ifdef SQLITE_ENABLE_API_ARMOR 001767 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 001768 #endif 001769 sqlite3_mutex_enter(db->mutex); 001770 db->busyHandler.xBusyHandler = xBusy; 001771 db->busyHandler.pBusyArg = pArg; 001772 db->busyHandler.nBusy = 0; 001773 db->busyTimeout = 0; 001774 sqlite3_mutex_leave(db->mutex); 001775 return SQLITE_OK; 001776 } 001777 001778 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001779 /* 001780 ** This routine sets the progress callback for an Sqlite database to the 001781 ** given callback function with the given argument. The progress callback will 001782 ** be invoked every nOps opcodes. 001783 */ 001784 void sqlite3_progress_handler( 001785 sqlite3 *db, 001786 int nOps, 001787 int (*xProgress)(void*), 001788 void *pArg 001789 ){ 001790 #ifdef SQLITE_ENABLE_API_ARMOR 001791 if( !sqlite3SafetyCheckOk(db) ){ 001792 (void)SQLITE_MISUSE_BKPT; 001793 return; 001794 } 001795 #endif 001796 sqlite3_mutex_enter(db->mutex); 001797 if( nOps>0 ){ 001798 db->xProgress = xProgress; 001799 db->nProgressOps = (unsigned)nOps; 001800 db->pProgressArg = pArg; 001801 }else{ 001802 db->xProgress = 0; 001803 db->nProgressOps = 0; 001804 db->pProgressArg = 0; 001805 } 001806 sqlite3_mutex_leave(db->mutex); 001807 } 001808 #endif 001809 001810 001811 /* 001812 ** This routine installs a default busy handler that waits for the 001813 ** specified number of milliseconds before returning 0. 001814 */ 001815 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 001816 #ifdef SQLITE_ENABLE_API_ARMOR 001817 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 001818 #endif 001819 if( ms>0 ){ 001820 sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback, 001821 (void*)db); 001822 db->busyTimeout = ms; 001823 }else{ 001824 sqlite3_busy_handler(db, 0, 0); 001825 } 001826 return SQLITE_OK; 001827 } 001828 001829 /* 001830 ** Cause any pending operation to stop at its earliest opportunity. 001831 */ 001832 void sqlite3_interrupt(sqlite3 *db){ 001833 #ifdef SQLITE_ENABLE_API_ARMOR 001834 if( !sqlite3SafetyCheckOk(db) 001835 && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) 001836 ){ 001837 (void)SQLITE_MISUSE_BKPT; 001838 return; 001839 } 001840 #endif 001841 AtomicStore(&db->u1.isInterrupted, 1); 001842 } 001843 001844 /* 001845 ** Return true or false depending on whether or not an interrupt is 001846 ** pending on connection db. 001847 */ 001848 int sqlite3_is_interrupted(sqlite3 *db){ 001849 #ifdef SQLITE_ENABLE_API_ARMOR 001850 if( !sqlite3SafetyCheckOk(db) 001851 && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) 001852 ){ 001853 (void)SQLITE_MISUSE_BKPT; 001854 return 0; 001855 } 001856 #endif 001857 return AtomicLoad(&db->u1.isInterrupted)!=0; 001858 } 001859 001860 /* 001861 ** This function is exactly the same as sqlite3_create_function(), except 001862 ** that it is designed to be called by internal code. The difference is 001863 ** that if a malloc() fails in sqlite3_create_function(), an error code 001864 ** is returned and the mallocFailed flag cleared. 001865 */ 001866 int sqlite3CreateFunc( 001867 sqlite3 *db, 001868 const char *zFunctionName, 001869 int nArg, 001870 int enc, 001871 void *pUserData, 001872 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 001873 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 001874 void (*xFinal)(sqlite3_context*), 001875 void (*xValue)(sqlite3_context*), 001876 void (*xInverse)(sqlite3_context*,int,sqlite3_value **), 001877 FuncDestructor *pDestructor 001878 ){ 001879 FuncDef *p; 001880 int extraFlags; 001881 001882 assert( sqlite3_mutex_held(db->mutex) ); 001883 assert( xValue==0 || xSFunc==0 ); 001884 if( zFunctionName==0 /* Must have a valid name */ 001885 || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */ 001886 || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */ 001887 || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */ 001888 || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) 001889 || (255<sqlite3Strlen30(zFunctionName)) 001890 ){ 001891 return SQLITE_MISUSE_BKPT; 001892 } 001893 001894 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 001895 assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY ); 001896 extraFlags = enc & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY| 001897 SQLITE_SUBTYPE|SQLITE_INNOCUOUS| 001898 SQLITE_RESULT_SUBTYPE|SQLITE_SELFORDER1); 001899 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 001900 001901 /* The SQLITE_INNOCUOUS flag is the same bit as SQLITE_FUNC_UNSAFE. But 001902 ** the meaning is inverted. So flip the bit. */ 001903 assert( SQLITE_FUNC_UNSAFE==SQLITE_INNOCUOUS ); 001904 extraFlags ^= SQLITE_FUNC_UNSAFE; /* tag-20230109-1 */ 001905 001906 001907 #ifndef SQLITE_OMIT_UTF16 001908 /* If SQLITE_UTF16 is specified as the encoding type, transform this 001909 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 001910 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 001911 ** 001912 ** If SQLITE_ANY is specified, add three versions of the function 001913 ** to the hash table. 001914 */ 001915 switch( enc ){ 001916 case SQLITE_UTF16: 001917 enc = SQLITE_UTF16NATIVE; 001918 break; 001919 case SQLITE_ANY: { 001920 int rc; 001921 rc = sqlite3CreateFunc(db, zFunctionName, nArg, 001922 (SQLITE_UTF8|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1 */ 001923 pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor); 001924 if( rc==SQLITE_OK ){ 001925 rc = sqlite3CreateFunc(db, zFunctionName, nArg, 001926 (SQLITE_UTF16LE|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1*/ 001927 pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor); 001928 } 001929 if( rc!=SQLITE_OK ){ 001930 return rc; 001931 } 001932 enc = SQLITE_UTF16BE; 001933 break; 001934 } 001935 case SQLITE_UTF8: 001936 case SQLITE_UTF16LE: 001937 case SQLITE_UTF16BE: 001938 break; 001939 default: 001940 enc = SQLITE_UTF8; 001941 break; 001942 } 001943 #else 001944 enc = SQLITE_UTF8; 001945 #endif 001946 001947 /* Check if an existing function is being overridden or deleted. If so, 001948 ** and there are active VMs, then return SQLITE_BUSY. If a function 001949 ** is being overridden/deleted but there are no active VMs, allow the 001950 ** operation to continue but invalidate all precompiled statements. 001951 */ 001952 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0); 001953 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){ 001954 if( db->nVdbeActive ){ 001955 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 001956 "unable to delete/modify user-function due to active statements"); 001957 assert( !db->mallocFailed ); 001958 return SQLITE_BUSY; 001959 }else{ 001960 sqlite3ExpirePreparedStatements(db, 0); 001961 } 001962 }else if( xSFunc==0 && xFinal==0 ){ 001963 /* Trying to delete a function that does not exist. This is a no-op. 001964 ** https://sqlite.org/forum/forumpost/726219164b */ 001965 return SQLITE_OK; 001966 } 001967 001968 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); 001969 assert(p || db->mallocFailed); 001970 if( !p ){ 001971 return SQLITE_NOMEM_BKPT; 001972 } 001973 001974 /* If an older version of the function with a configured destructor is 001975 ** being replaced invoke the destructor function here. */ 001976 functionDestroy(db, p); 001977 001978 if( pDestructor ){ 001979 pDestructor->nRef++; 001980 } 001981 p->u.pDestructor = pDestructor; 001982 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 001983 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 001984 testcase( p->funcFlags & SQLITE_DIRECTONLY ); 001985 p->xSFunc = xSFunc ? xSFunc : xStep; 001986 p->xFinalize = xFinal; 001987 p->xValue = xValue; 001988 p->xInverse = xInverse; 001989 p->pUserData = pUserData; 001990 p->nArg = (u16)nArg; 001991 return SQLITE_OK; 001992 } 001993 001994 /* 001995 ** Worker function used by utf-8 APIs that create new functions: 001996 ** 001997 ** sqlite3_create_function() 001998 ** sqlite3_create_function_v2() 001999 ** sqlite3_create_window_function() 002000 */ 002001 static int createFunctionApi( 002002 sqlite3 *db, 002003 const char *zFunc, 002004 int nArg, 002005 int enc, 002006 void *p, 002007 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 002008 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 002009 void (*xFinal)(sqlite3_context*), 002010 void (*xValue)(sqlite3_context*), 002011 void (*xInverse)(sqlite3_context*,int,sqlite3_value**), 002012 void(*xDestroy)(void*) 002013 ){ 002014 int rc = SQLITE_ERROR; 002015 FuncDestructor *pArg = 0; 002016 002017 #ifdef SQLITE_ENABLE_API_ARMOR 002018 if( !sqlite3SafetyCheckOk(db) ){ 002019 return SQLITE_MISUSE_BKPT; 002020 } 002021 #endif 002022 sqlite3_mutex_enter(db->mutex); 002023 if( xDestroy ){ 002024 pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor)); 002025 if( !pArg ){ 002026 sqlite3OomFault(db); 002027 xDestroy(p); 002028 goto out; 002029 } 002030 pArg->nRef = 0; 002031 pArg->xDestroy = xDestroy; 002032 pArg->pUserData = p; 002033 } 002034 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, 002035 xSFunc, xStep, xFinal, xValue, xInverse, pArg 002036 ); 002037 if( pArg && pArg->nRef==0 ){ 002038 assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) ); 002039 xDestroy(p); 002040 sqlite3_free(pArg); 002041 } 002042 002043 out: 002044 rc = sqlite3ApiExit(db, rc); 002045 sqlite3_mutex_leave(db->mutex); 002046 return rc; 002047 } 002048 002049 /* 002050 ** Create new user functions. 002051 */ 002052 int sqlite3_create_function( 002053 sqlite3 *db, 002054 const char *zFunc, 002055 int nArg, 002056 int enc, 002057 void *p, 002058 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 002059 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 002060 void (*xFinal)(sqlite3_context*) 002061 ){ 002062 return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, 002063 xFinal, 0, 0, 0); 002064 } 002065 int sqlite3_create_function_v2( 002066 sqlite3 *db, 002067 const char *zFunc, 002068 int nArg, 002069 int enc, 002070 void *p, 002071 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 002072 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 002073 void (*xFinal)(sqlite3_context*), 002074 void (*xDestroy)(void *) 002075 ){ 002076 return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, 002077 xFinal, 0, 0, xDestroy); 002078 } 002079 int sqlite3_create_window_function( 002080 sqlite3 *db, 002081 const char *zFunc, 002082 int nArg, 002083 int enc, 002084 void *p, 002085 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 002086 void (*xFinal)(sqlite3_context*), 002087 void (*xValue)(sqlite3_context*), 002088 void (*xInverse)(sqlite3_context*,int,sqlite3_value **), 002089 void (*xDestroy)(void *) 002090 ){ 002091 return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep, 002092 xFinal, xValue, xInverse, xDestroy); 002093 } 002094 002095 #ifndef SQLITE_OMIT_UTF16 002096 int sqlite3_create_function16( 002097 sqlite3 *db, 002098 const void *zFunctionName, 002099 int nArg, 002100 int eTextRep, 002101 void *p, 002102 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 002103 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 002104 void (*xFinal)(sqlite3_context*) 002105 ){ 002106 int rc; 002107 char *zFunc8; 002108 002109 #ifdef SQLITE_ENABLE_API_ARMOR 002110 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 002111 #endif 002112 sqlite3_mutex_enter(db->mutex); 002113 assert( !db->mallocFailed ); 002114 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 002115 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0); 002116 sqlite3DbFree(db, zFunc8); 002117 rc = sqlite3ApiExit(db, rc); 002118 sqlite3_mutex_leave(db->mutex); 002119 return rc; 002120 } 002121 #endif 002122 002123 002124 /* 002125 ** The following is the implementation of an SQL function that always 002126 ** fails with an error message stating that the function is used in the 002127 ** wrong context. The sqlite3_overload_function() API might construct 002128 ** SQL function that use this routine so that the functions will exist 002129 ** for name resolution but are actually overloaded by the xFindFunction 002130 ** method of virtual tables. 002131 */ 002132 static void sqlite3InvalidFunction( 002133 sqlite3_context *context, /* The function calling context */ 002134 int NotUsed, /* Number of arguments to the function */ 002135 sqlite3_value **NotUsed2 /* Value of each argument */ 002136 ){ 002137 const char *zName = (const char*)sqlite3_user_data(context); 002138 char *zErr; 002139 UNUSED_PARAMETER2(NotUsed, NotUsed2); 002140 zErr = sqlite3_mprintf( 002141 "unable to use function %s in the requested context", zName); 002142 sqlite3_result_error(context, zErr, -1); 002143 sqlite3_free(zErr); 002144 } 002145 002146 /* 002147 ** Declare that a function has been overloaded by a virtual table. 002148 ** 002149 ** If the function already exists as a regular global function, then 002150 ** this routine is a no-op. If the function does not exist, then create 002151 ** a new one that always throws a run-time error. 002152 ** 002153 ** When virtual tables intend to provide an overloaded function, they 002154 ** should call this routine to make sure the global function exists. 002155 ** A global function must exist in order for name resolution to work 002156 ** properly. 002157 */ 002158 int sqlite3_overload_function( 002159 sqlite3 *db, 002160 const char *zName, 002161 int nArg 002162 ){ 002163 int rc; 002164 char *zCopy; 002165 002166 #ifdef SQLITE_ENABLE_API_ARMOR 002167 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 002168 return SQLITE_MISUSE_BKPT; 002169 } 002170 #endif 002171 sqlite3_mutex_enter(db->mutex); 002172 rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0; 002173 sqlite3_mutex_leave(db->mutex); 002174 if( rc ) return SQLITE_OK; 002175 zCopy = sqlite3_mprintf("%s", zName); 002176 if( zCopy==0 ) return SQLITE_NOMEM; 002177 return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8, 002178 zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free); 002179 } 002180 002181 #ifndef SQLITE_OMIT_TRACE 002182 /* 002183 ** Register a trace function. The pArg from the previously registered trace 002184 ** is returned. 002185 ** 002186 ** A NULL trace function means that no tracing is executes. A non-NULL 002187 ** trace is a pointer to a function that is invoked at the start of each 002188 ** SQL statement. 002189 */ 002190 #ifndef SQLITE_OMIT_DEPRECATED 002191 void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ 002192 void *pOld; 002193 002194 #ifdef SQLITE_ENABLE_API_ARMOR 002195 if( !sqlite3SafetyCheckOk(db) ){ 002196 (void)SQLITE_MISUSE_BKPT; 002197 return 0; 002198 } 002199 #endif 002200 sqlite3_mutex_enter(db->mutex); 002201 pOld = db->pTraceArg; 002202 db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; 002203 db->trace.xLegacy = xTrace; 002204 db->pTraceArg = pArg; 002205 sqlite3_mutex_leave(db->mutex); 002206 return pOld; 002207 } 002208 #endif /* SQLITE_OMIT_DEPRECATED */ 002209 002210 /* Register a trace callback using the version-2 interface. 002211 */ 002212 int sqlite3_trace_v2( 002213 sqlite3 *db, /* Trace this connection */ 002214 unsigned mTrace, /* Mask of events to be traced */ 002215 int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ 002216 void *pArg /* Context */ 002217 ){ 002218 #ifdef SQLITE_ENABLE_API_ARMOR 002219 if( !sqlite3SafetyCheckOk(db) ){ 002220 return SQLITE_MISUSE_BKPT; 002221 } 002222 #endif 002223 sqlite3_mutex_enter(db->mutex); 002224 if( mTrace==0 ) xTrace = 0; 002225 if( xTrace==0 ) mTrace = 0; 002226 db->mTrace = mTrace; 002227 db->trace.xV2 = xTrace; 002228 db->pTraceArg = pArg; 002229 sqlite3_mutex_leave(db->mutex); 002230 return SQLITE_OK; 002231 } 002232 002233 #ifndef SQLITE_OMIT_DEPRECATED 002234 /* 002235 ** Register a profile function. The pArg from the previously registered 002236 ** profile function is returned. 002237 ** 002238 ** A NULL profile function means that no profiling is executes. A non-NULL 002239 ** profile is a pointer to a function that is invoked at the conclusion of 002240 ** each SQL statement that is run. 002241 */ 002242 void *sqlite3_profile( 002243 sqlite3 *db, 002244 void (*xProfile)(void*,const char*,sqlite_uint64), 002245 void *pArg 002246 ){ 002247 void *pOld; 002248 002249 #ifdef SQLITE_ENABLE_API_ARMOR 002250 if( !sqlite3SafetyCheckOk(db) ){ 002251 (void)SQLITE_MISUSE_BKPT; 002252 return 0; 002253 } 002254 #endif 002255 sqlite3_mutex_enter(db->mutex); 002256 pOld = db->pProfileArg; 002257 db->xProfile = xProfile; 002258 db->pProfileArg = pArg; 002259 db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK; 002260 if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE; 002261 sqlite3_mutex_leave(db->mutex); 002262 return pOld; 002263 } 002264 #endif /* SQLITE_OMIT_DEPRECATED */ 002265 #endif /* SQLITE_OMIT_TRACE */ 002266 002267 /* 002268 ** Register a function to be invoked when a transaction commits. 002269 ** If the invoked function returns non-zero, then the commit becomes a 002270 ** rollback. 002271 */ 002272 void *sqlite3_commit_hook( 002273 sqlite3 *db, /* Attach the hook to this database */ 002274 int (*xCallback)(void*), /* Function to invoke on each commit */ 002275 void *pArg /* Argument to the function */ 002276 ){ 002277 void *pOld; 002278 002279 #ifdef SQLITE_ENABLE_API_ARMOR 002280 if( !sqlite3SafetyCheckOk(db) ){ 002281 (void)SQLITE_MISUSE_BKPT; 002282 return 0; 002283 } 002284 #endif 002285 sqlite3_mutex_enter(db->mutex); 002286 pOld = db->pCommitArg; 002287 db->xCommitCallback = xCallback; 002288 db->pCommitArg = pArg; 002289 sqlite3_mutex_leave(db->mutex); 002290 return pOld; 002291 } 002292 002293 /* 002294 ** Register a callback to be invoked each time a row is updated, 002295 ** inserted or deleted using this database connection. 002296 */ 002297 void *sqlite3_update_hook( 002298 sqlite3 *db, /* Attach the hook to this database */ 002299 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 002300 void *pArg /* Argument to the function */ 002301 ){ 002302 void *pRet; 002303 002304 #ifdef SQLITE_ENABLE_API_ARMOR 002305 if( !sqlite3SafetyCheckOk(db) ){ 002306 (void)SQLITE_MISUSE_BKPT; 002307 return 0; 002308 } 002309 #endif 002310 sqlite3_mutex_enter(db->mutex); 002311 pRet = db->pUpdateArg; 002312 db->xUpdateCallback = xCallback; 002313 db->pUpdateArg = pArg; 002314 sqlite3_mutex_leave(db->mutex); 002315 return pRet; 002316 } 002317 002318 /* 002319 ** Register a callback to be invoked each time a transaction is rolled 002320 ** back by this database connection. 002321 */ 002322 void *sqlite3_rollback_hook( 002323 sqlite3 *db, /* Attach the hook to this database */ 002324 void (*xCallback)(void*), /* Callback function */ 002325 void *pArg /* Argument to the function */ 002326 ){ 002327 void *pRet; 002328 002329 #ifdef SQLITE_ENABLE_API_ARMOR 002330 if( !sqlite3SafetyCheckOk(db) ){ 002331 (void)SQLITE_MISUSE_BKPT; 002332 return 0; 002333 } 002334 #endif 002335 sqlite3_mutex_enter(db->mutex); 002336 pRet = db->pRollbackArg; 002337 db->xRollbackCallback = xCallback; 002338 db->pRollbackArg = pArg; 002339 sqlite3_mutex_leave(db->mutex); 002340 return pRet; 002341 } 002342 002343 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002344 /* 002345 ** Register a callback to be invoked each time a row is updated, 002346 ** inserted or deleted using this database connection. 002347 */ 002348 void *sqlite3_preupdate_hook( 002349 sqlite3 *db, /* Attach the hook to this database */ 002350 void(*xCallback)( /* Callback function */ 002351 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), 002352 void *pArg /* First callback argument */ 002353 ){ 002354 void *pRet; 002355 002356 #ifdef SQLITE_ENABLE_API_ARMOR 002357 if( db==0 ){ 002358 return 0; 002359 } 002360 #endif 002361 sqlite3_mutex_enter(db->mutex); 002362 pRet = db->pPreUpdateArg; 002363 db->xPreUpdateCallback = xCallback; 002364 db->pPreUpdateArg = pArg; 002365 sqlite3_mutex_leave(db->mutex); 002366 return pRet; 002367 } 002368 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002369 002370 /* 002371 ** Register a function to be invoked prior to each autovacuum that 002372 ** determines the number of pages to vacuum. 002373 */ 002374 int sqlite3_autovacuum_pages( 002375 sqlite3 *db, /* Attach the hook to this database */ 002376 unsigned int (*xCallback)(void*,const char*,u32,u32,u32), 002377 void *pArg, /* Argument to the function */ 002378 void (*xDestructor)(void*) /* Destructor for pArg */ 002379 ){ 002380 #ifdef SQLITE_ENABLE_API_ARMOR 002381 if( !sqlite3SafetyCheckOk(db) ){ 002382 if( xDestructor ) xDestructor(pArg); 002383 return SQLITE_MISUSE_BKPT; 002384 } 002385 #endif 002386 sqlite3_mutex_enter(db->mutex); 002387 if( db->xAutovacDestr ){ 002388 db->xAutovacDestr(db->pAutovacPagesArg); 002389 } 002390 db->xAutovacPages = xCallback; 002391 db->pAutovacPagesArg = pArg; 002392 db->xAutovacDestr = xDestructor; 002393 sqlite3_mutex_leave(db->mutex); 002394 return SQLITE_OK; 002395 } 002396 002397 002398 #ifndef SQLITE_OMIT_WAL 002399 /* 002400 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 002401 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 002402 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 002403 ** wal_autocheckpoint()). 002404 */ 002405 int sqlite3WalDefaultHook( 002406 void *pClientData, /* Argument */ 002407 sqlite3 *db, /* Connection */ 002408 const char *zDb, /* Database */ 002409 int nFrame /* Size of WAL */ 002410 ){ 002411 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 002412 sqlite3BeginBenignMalloc(); 002413 sqlite3_wal_checkpoint(db, zDb); 002414 sqlite3EndBenignMalloc(); 002415 } 002416 return SQLITE_OK; 002417 } 002418 #endif /* SQLITE_OMIT_WAL */ 002419 002420 /* 002421 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 002422 ** a database after committing a transaction if there are nFrame or 002423 ** more frames in the log file. Passing zero or a negative value as the 002424 ** nFrame parameter disables automatic checkpoints entirely. 002425 ** 002426 ** The callback registered by this function replaces any existing callback 002427 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 002428 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 002429 ** configured by this function. 002430 */ 002431 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 002432 #ifdef SQLITE_OMIT_WAL 002433 UNUSED_PARAMETER(db); 002434 UNUSED_PARAMETER(nFrame); 002435 #else 002436 #ifdef SQLITE_ENABLE_API_ARMOR 002437 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 002438 #endif 002439 if( nFrame>0 ){ 002440 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 002441 }else{ 002442 sqlite3_wal_hook(db, 0, 0); 002443 } 002444 #endif 002445 return SQLITE_OK; 002446 } 002447 002448 /* 002449 ** Register a callback to be invoked each time a transaction is written 002450 ** into the write-ahead-log by this database connection. 002451 */ 002452 void *sqlite3_wal_hook( 002453 sqlite3 *db, /* Attach the hook to this db handle */ 002454 int(*xCallback)(void *, sqlite3*, const char*, int), 002455 void *pArg /* First argument passed to xCallback() */ 002456 ){ 002457 #ifndef SQLITE_OMIT_WAL 002458 void *pRet; 002459 #ifdef SQLITE_ENABLE_API_ARMOR 002460 if( !sqlite3SafetyCheckOk(db) ){ 002461 (void)SQLITE_MISUSE_BKPT; 002462 return 0; 002463 } 002464 #endif 002465 sqlite3_mutex_enter(db->mutex); 002466 pRet = db->pWalArg; 002467 db->xWalCallback = xCallback; 002468 db->pWalArg = pArg; 002469 sqlite3_mutex_leave(db->mutex); 002470 return pRet; 002471 #else 002472 return 0; 002473 #endif 002474 } 002475 002476 /* 002477 ** Checkpoint database zDb. 002478 */ 002479 int sqlite3_wal_checkpoint_v2( 002480 sqlite3 *db, /* Database handle */ 002481 const char *zDb, /* Name of attached database (or NULL) */ 002482 int eMode, /* SQLITE_CHECKPOINT_* value */ 002483 int *pnLog, /* OUT: Size of WAL log in frames */ 002484 int *pnCkpt /* OUT: Total number of frames checkpointed */ 002485 ){ 002486 #ifdef SQLITE_OMIT_WAL 002487 return SQLITE_OK; 002488 #else 002489 int rc; /* Return code */ 002490 int iDb; /* Schema to checkpoint */ 002491 002492 #ifdef SQLITE_ENABLE_API_ARMOR 002493 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 002494 #endif 002495 002496 /* Initialize the output variables to -1 in case an error occurs. */ 002497 if( pnLog ) *pnLog = -1; 002498 if( pnCkpt ) *pnCkpt = -1; 002499 002500 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 002501 assert( SQLITE_CHECKPOINT_FULL==1 ); 002502 assert( SQLITE_CHECKPOINT_RESTART==2 ); 002503 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 002504 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 002505 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 002506 ** mode: */ 002507 return SQLITE_MISUSE_BKPT; 002508 } 002509 002510 sqlite3_mutex_enter(db->mutex); 002511 if( zDb && zDb[0] ){ 002512 iDb = sqlite3FindDbName(db, zDb); 002513 }else{ 002514 iDb = SQLITE_MAX_DB; /* This means process all schemas */ 002515 } 002516 if( iDb<0 ){ 002517 rc = SQLITE_ERROR; 002518 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 002519 }else{ 002520 db->busyHandler.nBusy = 0; 002521 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 002522 sqlite3Error(db, rc); 002523 } 002524 rc = sqlite3ApiExit(db, rc); 002525 002526 /* If there are no active statements, clear the interrupt flag at this 002527 ** point. */ 002528 if( db->nVdbeActive==0 ){ 002529 AtomicStore(&db->u1.isInterrupted, 0); 002530 } 002531 002532 sqlite3_mutex_leave(db->mutex); 002533 return rc; 002534 #endif 002535 } 002536 002537 002538 /* 002539 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 002540 ** to contains a zero-length string, all attached databases are 002541 ** checkpointed. 002542 */ 002543 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 002544 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 002545 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 002546 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 002547 } 002548 002549 #ifndef SQLITE_OMIT_WAL 002550 /* 002551 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 002552 ** not currently open in WAL mode. 002553 ** 002554 ** If a transaction is open on the database being checkpointed, this 002555 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 002556 ** an error occurs while running the checkpoint, an SQLite error code is 002557 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 002558 ** 002559 ** The mutex on database handle db should be held by the caller. The mutex 002560 ** associated with the specific b-tree being checkpointed is taken by 002561 ** this function while the checkpoint is running. 002562 ** 002563 ** If iDb is passed SQLITE_MAX_DB then all attached databases are 002564 ** checkpointed. If an error is encountered it is returned immediately - 002565 ** no attempt is made to checkpoint any remaining databases. 002566 ** 002567 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART 002568 ** or TRUNCATE. 002569 */ 002570 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 002571 int rc = SQLITE_OK; /* Return code */ 002572 int i; /* Used to iterate through attached dbs */ 002573 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 002574 002575 assert( sqlite3_mutex_held(db->mutex) ); 002576 assert( !pnLog || *pnLog==-1 ); 002577 assert( !pnCkpt || *pnCkpt==-1 ); 002578 testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */ 002579 testcase( iDb==SQLITE_MAX_DB ); 002580 002581 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 002582 if( i==iDb || iDb==SQLITE_MAX_DB ){ 002583 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 002584 pnLog = 0; 002585 pnCkpt = 0; 002586 if( rc==SQLITE_BUSY ){ 002587 bBusy = 1; 002588 rc = SQLITE_OK; 002589 } 002590 } 002591 } 002592 002593 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 002594 } 002595 #endif /* SQLITE_OMIT_WAL */ 002596 002597 /* 002598 ** This function returns true if main-memory should be used instead of 002599 ** a temporary file for transient pager files and statement journals. 002600 ** The value returned depends on the value of db->temp_store (runtime 002601 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 002602 ** following table describes the relationship between these two values 002603 ** and this functions return value. 002604 ** 002605 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 002606 ** ----------------- -------------- ------------------------------ 002607 ** 0 any file (return 0) 002608 ** 1 1 file (return 0) 002609 ** 1 2 memory (return 1) 002610 ** 1 0 file (return 0) 002611 ** 2 1 file (return 0) 002612 ** 2 2 memory (return 1) 002613 ** 2 0 memory (return 1) 002614 ** 3 any memory (return 1) 002615 */ 002616 int sqlite3TempInMemory(const sqlite3 *db){ 002617 #if SQLITE_TEMP_STORE==1 002618 return ( db->temp_store==2 ); 002619 #endif 002620 #if SQLITE_TEMP_STORE==2 002621 return ( db->temp_store!=1 ); 002622 #endif 002623 #if SQLITE_TEMP_STORE==3 002624 UNUSED_PARAMETER(db); 002625 return 1; 002626 #endif 002627 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 002628 UNUSED_PARAMETER(db); 002629 return 0; 002630 #endif 002631 } 002632 002633 /* 002634 ** Return UTF-8 encoded English language explanation of the most recent 002635 ** error. 002636 */ 002637 const char *sqlite3_errmsg(sqlite3 *db){ 002638 const char *z; 002639 if( !db ){ 002640 return sqlite3ErrStr(SQLITE_NOMEM_BKPT); 002641 } 002642 if( !sqlite3SafetyCheckSickOrOk(db) ){ 002643 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 002644 } 002645 sqlite3_mutex_enter(db->mutex); 002646 if( db->mallocFailed ){ 002647 z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); 002648 }else{ 002649 testcase( db->pErr==0 ); 002650 z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0; 002651 assert( !db->mallocFailed ); 002652 if( z==0 ){ 002653 z = sqlite3ErrStr(db->errCode); 002654 } 002655 } 002656 sqlite3_mutex_leave(db->mutex); 002657 return z; 002658 } 002659 002660 /* 002661 ** Return the byte offset of the most recent error 002662 */ 002663 int sqlite3_error_offset(sqlite3 *db){ 002664 int iOffset = -1; 002665 if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){ 002666 sqlite3_mutex_enter(db->mutex); 002667 iOffset = db->errByteOffset; 002668 sqlite3_mutex_leave(db->mutex); 002669 } 002670 return iOffset; 002671 } 002672 002673 #ifndef SQLITE_OMIT_UTF16 002674 /* 002675 ** Return UTF-16 encoded English language explanation of the most recent 002676 ** error. 002677 */ 002678 const void *sqlite3_errmsg16(sqlite3 *db){ 002679 static const u16 outOfMem[] = { 002680 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 002681 }; 002682 static const u16 misuse[] = { 002683 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ', 002684 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ', 002685 'm', 'i', 's', 'u', 's', 'e', 0 002686 }; 002687 002688 const void *z; 002689 if( !db ){ 002690 return (void *)outOfMem; 002691 } 002692 if( !sqlite3SafetyCheckSickOrOk(db) ){ 002693 return (void *)misuse; 002694 } 002695 sqlite3_mutex_enter(db->mutex); 002696 if( db->mallocFailed ){ 002697 z = (void *)outOfMem; 002698 }else{ 002699 z = sqlite3_value_text16(db->pErr); 002700 if( z==0 ){ 002701 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 002702 z = sqlite3_value_text16(db->pErr); 002703 } 002704 /* A malloc() may have failed within the call to sqlite3_value_text16() 002705 ** above. If this is the case, then the db->mallocFailed flag needs to 002706 ** be cleared before returning. Do this directly, instead of via 002707 ** sqlite3ApiExit(), to avoid setting the database handle error message. 002708 */ 002709 sqlite3OomClear(db); 002710 } 002711 sqlite3_mutex_leave(db->mutex); 002712 return z; 002713 } 002714 #endif /* SQLITE_OMIT_UTF16 */ 002715 002716 /* 002717 ** Return the most recent error code generated by an SQLite routine. If NULL is 002718 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 002719 */ 002720 int sqlite3_errcode(sqlite3 *db){ 002721 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 002722 return SQLITE_MISUSE_BKPT; 002723 } 002724 if( !db || db->mallocFailed ){ 002725 return SQLITE_NOMEM_BKPT; 002726 } 002727 return db->errCode & db->errMask; 002728 } 002729 int sqlite3_extended_errcode(sqlite3 *db){ 002730 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 002731 return SQLITE_MISUSE_BKPT; 002732 } 002733 if( !db || db->mallocFailed ){ 002734 return SQLITE_NOMEM_BKPT; 002735 } 002736 return db->errCode; 002737 } 002738 int sqlite3_system_errno(sqlite3 *db){ 002739 return db ? db->iSysErrno : 0; 002740 } 002741 002742 /* 002743 ** Return a string that describes the kind of error specified in the 002744 ** argument. For now, this simply calls the internal sqlite3ErrStr() 002745 ** function. 002746 */ 002747 const char *sqlite3_errstr(int rc){ 002748 return sqlite3ErrStr(rc); 002749 } 002750 002751 /* 002752 ** Create a new collating function for database "db". The name is zName 002753 ** and the encoding is enc. 002754 */ 002755 static int createCollation( 002756 sqlite3* db, 002757 const char *zName, 002758 u8 enc, 002759 void* pCtx, 002760 int(*xCompare)(void*,int,const void*,int,const void*), 002761 void(*xDel)(void*) 002762 ){ 002763 CollSeq *pColl; 002764 int enc2; 002765 002766 assert( sqlite3_mutex_held(db->mutex) ); 002767 002768 /* If SQLITE_UTF16 is specified as the encoding type, transform this 002769 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 002770 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 002771 */ 002772 enc2 = enc; 002773 testcase( enc2==SQLITE_UTF16 ); 002774 testcase( enc2==SQLITE_UTF16_ALIGNED ); 002775 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 002776 enc2 = SQLITE_UTF16NATIVE; 002777 } 002778 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 002779 return SQLITE_MISUSE_BKPT; 002780 } 002781 002782 /* Check if this call is removing or replacing an existing collation 002783 ** sequence. If so, and there are active VMs, return busy. If there 002784 ** are no active VMs, invalidate any pre-compiled statements. 002785 */ 002786 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 002787 if( pColl && pColl->xCmp ){ 002788 if( db->nVdbeActive ){ 002789 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 002790 "unable to delete/modify collation sequence due to active statements"); 002791 return SQLITE_BUSY; 002792 } 002793 sqlite3ExpirePreparedStatements(db, 0); 002794 002795 /* If collation sequence pColl was created directly by a call to 002796 ** sqlite3_create_collation, and not generated by synthCollSeq(), 002797 ** then any copies made by synthCollSeq() need to be invalidated. 002798 ** Also, collation destructor - CollSeq.xDel() - function may need 002799 ** to be called. 002800 */ 002801 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 002802 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 002803 int j; 002804 for(j=0; j<3; j++){ 002805 CollSeq *p = &aColl[j]; 002806 if( p->enc==pColl->enc ){ 002807 if( p->xDel ){ 002808 p->xDel(p->pUser); 002809 } 002810 p->xCmp = 0; 002811 } 002812 } 002813 } 002814 } 002815 002816 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 002817 if( pColl==0 ) return SQLITE_NOMEM_BKPT; 002818 pColl->xCmp = xCompare; 002819 pColl->pUser = pCtx; 002820 pColl->xDel = xDel; 002821 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 002822 sqlite3Error(db, SQLITE_OK); 002823 return SQLITE_OK; 002824 } 002825 002826 002827 /* 002828 ** This array defines hard upper bounds on limit values. The 002829 ** initializer must be kept in sync with the SQLITE_LIMIT_* 002830 ** #defines in sqlite3.h. 002831 */ 002832 static const int aHardLimit[] = { 002833 SQLITE_MAX_LENGTH, 002834 SQLITE_MAX_SQL_LENGTH, 002835 SQLITE_MAX_COLUMN, 002836 SQLITE_MAX_EXPR_DEPTH, 002837 SQLITE_MAX_COMPOUND_SELECT, 002838 SQLITE_MAX_VDBE_OP, 002839 SQLITE_MAX_FUNCTION_ARG, 002840 SQLITE_MAX_ATTACHED, 002841 SQLITE_MAX_LIKE_PATTERN_LENGTH, 002842 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 002843 SQLITE_MAX_TRIGGER_DEPTH, 002844 SQLITE_MAX_WORKER_THREADS, 002845 }; 002846 002847 /* 002848 ** Make sure the hard limits are set to reasonable values 002849 */ 002850 #if SQLITE_MAX_LENGTH<100 002851 # error SQLITE_MAX_LENGTH must be at least 100 002852 #endif 002853 #if SQLITE_MAX_SQL_LENGTH<100 002854 # error SQLITE_MAX_SQL_LENGTH must be at least 100 002855 #endif 002856 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 002857 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 002858 #endif 002859 #if SQLITE_MAX_COMPOUND_SELECT<2 002860 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 002861 #endif 002862 #if SQLITE_MAX_VDBE_OP<40 002863 # error SQLITE_MAX_VDBE_OP must be at least 40 002864 #endif 002865 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>32767 002866 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 32767 002867 #endif 002868 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 002869 # error SQLITE_MAX_ATTACHED must be between 0 and 125 002870 #endif 002871 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 002872 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 002873 #endif 002874 #if SQLITE_MAX_COLUMN>32767 002875 # error SQLITE_MAX_COLUMN must not exceed 32767 002876 #endif 002877 #if SQLITE_MAX_TRIGGER_DEPTH<1 002878 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 002879 #endif 002880 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 002881 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 002882 #endif 002883 002884 002885 /* 002886 ** Change the value of a limit. Report the old value. 002887 ** If an invalid limit index is supplied, report -1. 002888 ** Make no changes but still report the old value if the 002889 ** new limit is negative. 002890 ** 002891 ** A new lower limit does not shrink existing constructs. 002892 ** It merely prevents new constructs that exceed the limit 002893 ** from forming. 002894 */ 002895 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 002896 int oldLimit; 002897 002898 #ifdef SQLITE_ENABLE_API_ARMOR 002899 if( !sqlite3SafetyCheckOk(db) ){ 002900 (void)SQLITE_MISUSE_BKPT; 002901 return -1; 002902 } 002903 #endif 002904 002905 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 002906 ** there is a hard upper bound set at compile-time by a C preprocessor 002907 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 002908 ** "_MAX_".) 002909 */ 002910 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 002911 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 002912 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 002913 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 002914 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 002915 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 002916 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 002917 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 002918 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 002919 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 002920 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 002921 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 002922 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 002923 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 002924 002925 002926 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 002927 return -1; 002928 } 002929 oldLimit = db->aLimit[limitId]; 002930 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 002931 if( newLimit>aHardLimit[limitId] ){ 002932 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 002933 }else if( newLimit<SQLITE_MIN_LENGTH && limitId==SQLITE_LIMIT_LENGTH ){ 002934 newLimit = SQLITE_MIN_LENGTH; 002935 } 002936 db->aLimit[limitId] = newLimit; 002937 } 002938 return oldLimit; /* IMP: R-53341-35419 */ 002939 } 002940 002941 /* 002942 ** This function is used to parse both URIs and non-URI filenames passed by the 002943 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 002944 ** URIs specified as part of ATTACH statements. 002945 ** 002946 ** The first argument to this function is the name of the VFS to use (or 002947 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 002948 ** query parameter. The second argument contains the URI (or non-URI filename) 002949 ** itself. When this function is called the *pFlags variable should contain 002950 ** the default flags to open the database handle with. The value stored in 002951 ** *pFlags may be updated before returning if the URI filename contains 002952 ** "cache=xxx" or "mode=xxx" query parameters. 002953 ** 002954 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 002955 ** the VFS that should be used to open the database file. *pzFile is set to 002956 ** point to a buffer containing the name of the file to open. The value 002957 ** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter() 002958 ** and is in the same format as names created using sqlite3_create_filename(). 002959 ** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on 002960 ** the value returned in *pzFile to avoid a memory leak. 002961 ** 002962 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 002963 ** may be set to point to a buffer containing an English language error 002964 ** message. It is the responsibility of the caller to eventually release 002965 ** this buffer by calling sqlite3_free(). 002966 */ 002967 int sqlite3ParseUri( 002968 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 002969 const char *zUri, /* Nul-terminated URI to parse */ 002970 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 002971 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 002972 char **pzFile, /* OUT: Filename component of URI */ 002973 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 002974 ){ 002975 int rc = SQLITE_OK; 002976 unsigned int flags = *pFlags; 002977 const char *zVfs = zDefaultVfs; 002978 char *zFile; 002979 char c; 002980 int nUri = sqlite3Strlen30(zUri); 002981 002982 assert( *pzErrMsg==0 ); 002983 002984 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 002985 || AtomicLoad(&sqlite3GlobalConfig.bOpenUri)) /* IMP: R-51689-46548 */ 002986 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 002987 ){ 002988 char *zOpt; 002989 int eState; /* Parser state when parsing URI */ 002990 int iIn; /* Input character index */ 002991 int iOut = 0; /* Output character index */ 002992 u64 nByte = nUri+8; /* Bytes of space to allocate */ 002993 002994 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 002995 ** method that there may be extra parameters following the file-name. */ 002996 flags |= SQLITE_OPEN_URI; 002997 002998 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 002999 zFile = sqlite3_malloc64(nByte); 003000 if( !zFile ) return SQLITE_NOMEM_BKPT; 003001 003002 memset(zFile, 0, 4); /* 4-byte of 0x00 is the start of DB name marker */ 003003 zFile += 4; 003004 003005 iIn = 5; 003006 #ifdef SQLITE_ALLOW_URI_AUTHORITY 003007 if( strncmp(zUri+5, "///", 3)==0 ){ 003008 iIn = 7; 003009 /* The following condition causes URIs with five leading / characters 003010 ** like file://///host/path to be converted into UNCs like //host/path. 003011 ** The correct URI for that UNC has only two or four leading / characters 003012 ** file://host/path or file:////host/path. But 5 leading slashes is a 003013 ** common error, we are told, so we handle it as a special case. */ 003014 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 003015 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 003016 iIn = 16; 003017 } 003018 #else 003019 /* Discard the scheme and authority segments of the URI. */ 003020 if( zUri[5]=='/' && zUri[6]=='/' ){ 003021 iIn = 7; 003022 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 003023 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 003024 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 003025 iIn-7, &zUri[7]); 003026 rc = SQLITE_ERROR; 003027 goto parse_uri_out; 003028 } 003029 } 003030 #endif 003031 003032 /* Copy the filename and any query parameters into the zFile buffer. 003033 ** Decode %HH escape codes along the way. 003034 ** 003035 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 003036 ** on the parsing context. As follows: 003037 ** 003038 ** 0: Parsing file-name. 003039 ** 1: Parsing name section of a name=value query parameter. 003040 ** 2: Parsing value section of a name=value query parameter. 003041 */ 003042 eState = 0; 003043 while( (c = zUri[iIn])!=0 && c!='#' ){ 003044 iIn++; 003045 if( c=='%' 003046 && sqlite3Isxdigit(zUri[iIn]) 003047 && sqlite3Isxdigit(zUri[iIn+1]) 003048 ){ 003049 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 003050 octet += sqlite3HexToInt(zUri[iIn++]); 003051 003052 assert( octet>=0 && octet<256 ); 003053 if( octet==0 ){ 003054 #ifndef SQLITE_ENABLE_URI_00_ERROR 003055 /* This branch is taken when "%00" appears within the URI. In this 003056 ** case we ignore all text in the remainder of the path, name or 003057 ** value currently being parsed. So ignore the current character 003058 ** and skip to the next "?", "=" or "&", as appropriate. */ 003059 while( (c = zUri[iIn])!=0 && c!='#' 003060 && (eState!=0 || c!='?') 003061 && (eState!=1 || (c!='=' && c!='&')) 003062 && (eState!=2 || c!='&') 003063 ){ 003064 iIn++; 003065 } 003066 continue; 003067 #else 003068 /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ 003069 *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); 003070 rc = SQLITE_ERROR; 003071 goto parse_uri_out; 003072 #endif 003073 } 003074 c = octet; 003075 }else if( eState==1 && (c=='&' || c=='=') ){ 003076 if( zFile[iOut-1]==0 ){ 003077 /* An empty option name. Ignore this option altogether. */ 003078 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 003079 continue; 003080 } 003081 if( c=='&' ){ 003082 zFile[iOut++] = '\0'; 003083 }else{ 003084 eState = 2; 003085 } 003086 c = 0; 003087 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 003088 c = 0; 003089 eState = 1; 003090 } 003091 zFile[iOut++] = c; 003092 } 003093 if( eState==1 ) zFile[iOut++] = '\0'; 003094 memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */ 003095 003096 /* Check if there were any options specified that should be interpreted 003097 ** here. Options that are interpreted here include "vfs" and those that 003098 ** correspond to flags that may be passed to the sqlite3_open_v2() 003099 ** method. */ 003100 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 003101 while( zOpt[0] ){ 003102 int nOpt = sqlite3Strlen30(zOpt); 003103 char *zVal = &zOpt[nOpt+1]; 003104 int nVal = sqlite3Strlen30(zVal); 003105 003106 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 003107 zVfs = zVal; 003108 }else{ 003109 struct OpenMode { 003110 const char *z; 003111 int mode; 003112 } *aMode = 0; 003113 char *zModeType = 0; 003114 int mask = 0; 003115 int limit = 0; 003116 003117 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 003118 static struct OpenMode aCacheMode[] = { 003119 { "shared", SQLITE_OPEN_SHAREDCACHE }, 003120 { "private", SQLITE_OPEN_PRIVATECACHE }, 003121 { 0, 0 } 003122 }; 003123 003124 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 003125 aMode = aCacheMode; 003126 limit = mask; 003127 zModeType = "cache"; 003128 } 003129 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 003130 static struct OpenMode aOpenMode[] = { 003131 { "ro", SQLITE_OPEN_READONLY }, 003132 { "rw", SQLITE_OPEN_READWRITE }, 003133 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 003134 { "memory", SQLITE_OPEN_MEMORY }, 003135 { 0, 0 } 003136 }; 003137 003138 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 003139 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 003140 aMode = aOpenMode; 003141 limit = mask & flags; 003142 zModeType = "access"; 003143 } 003144 003145 if( aMode ){ 003146 int i; 003147 int mode = 0; 003148 for(i=0; aMode[i].z; i++){ 003149 const char *z = aMode[i].z; 003150 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 003151 mode = aMode[i].mode; 003152 break; 003153 } 003154 } 003155 if( mode==0 ){ 003156 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 003157 rc = SQLITE_ERROR; 003158 goto parse_uri_out; 003159 } 003160 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 003161 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 003162 zModeType, zVal); 003163 rc = SQLITE_PERM; 003164 goto parse_uri_out; 003165 } 003166 flags = (flags & ~mask) | mode; 003167 } 003168 } 003169 003170 zOpt = &zVal[nVal+1]; 003171 } 003172 003173 }else{ 003174 zFile = sqlite3_malloc64(nUri+8); 003175 if( !zFile ) return SQLITE_NOMEM_BKPT; 003176 memset(zFile, 0, 4); 003177 zFile += 4; 003178 if( nUri ){ 003179 memcpy(zFile, zUri, nUri); 003180 } 003181 memset(zFile+nUri, 0, 4); 003182 flags &= ~SQLITE_OPEN_URI; 003183 } 003184 003185 *ppVfs = sqlite3_vfs_find(zVfs); 003186 if( *ppVfs==0 ){ 003187 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 003188 rc = SQLITE_ERROR; 003189 } 003190 parse_uri_out: 003191 if( rc!=SQLITE_OK ){ 003192 sqlite3_free_filename(zFile); 003193 zFile = 0; 003194 } 003195 *pFlags = flags; 003196 *pzFile = zFile; 003197 return rc; 003198 } 003199 003200 /* 003201 ** This routine does the core work of extracting URI parameters from a 003202 ** database filename for the sqlite3_uri_parameter() interface. 003203 */ 003204 static const char *uriParameter(const char *zFilename, const char *zParam){ 003205 zFilename += sqlite3Strlen30(zFilename) + 1; 003206 while( ALWAYS(zFilename!=0) && zFilename[0] ){ 003207 int x = strcmp(zFilename, zParam); 003208 zFilename += sqlite3Strlen30(zFilename) + 1; 003209 if( x==0 ) return zFilename; 003210 zFilename += sqlite3Strlen30(zFilename) + 1; 003211 } 003212 return 0; 003213 } 003214 003215 003216 003217 /* 003218 ** This routine does the work of opening a database on behalf of 003219 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 003220 ** is UTF-8 encoded. 003221 */ 003222 static int openDatabase( 003223 const char *zFilename, /* Database filename UTF-8 encoded */ 003224 sqlite3 **ppDb, /* OUT: Returned database handle */ 003225 unsigned int flags, /* Operational flags */ 003226 const char *zVfs /* Name of the VFS to use */ 003227 ){ 003228 sqlite3 *db; /* Store allocated handle here */ 003229 int rc; /* Return code */ 003230 int isThreadsafe; /* True for threadsafe connections */ 003231 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 003232 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 003233 int i; /* Loop counter */ 003234 003235 #ifdef SQLITE_ENABLE_API_ARMOR 003236 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 003237 #endif 003238 *ppDb = 0; 003239 #ifndef SQLITE_OMIT_AUTOINIT 003240 rc = sqlite3_initialize(); 003241 if( rc ) return rc; 003242 #endif 003243 003244 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 003245 isThreadsafe = 0; 003246 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 003247 isThreadsafe = 0; 003248 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 003249 isThreadsafe = 1; 003250 }else{ 003251 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 003252 } 003253 003254 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 003255 flags &= ~SQLITE_OPEN_SHAREDCACHE; 003256 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 003257 flags |= SQLITE_OPEN_SHAREDCACHE; 003258 } 003259 003260 /* Remove harmful bits from the flags parameter 003261 ** 003262 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 003263 ** dealt with in the previous code block. Besides these, the only 003264 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 003265 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 003266 ** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved 003267 ** bits. Silently mask off all other flags. 003268 */ 003269 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 003270 SQLITE_OPEN_EXCLUSIVE | 003271 SQLITE_OPEN_MAIN_DB | 003272 SQLITE_OPEN_TEMP_DB | 003273 SQLITE_OPEN_TRANSIENT_DB | 003274 SQLITE_OPEN_MAIN_JOURNAL | 003275 SQLITE_OPEN_TEMP_JOURNAL | 003276 SQLITE_OPEN_SUBJOURNAL | 003277 SQLITE_OPEN_SUPER_JOURNAL | 003278 SQLITE_OPEN_NOMUTEX | 003279 SQLITE_OPEN_FULLMUTEX | 003280 SQLITE_OPEN_WAL 003281 ); 003282 003283 /* Allocate the sqlite data structure */ 003284 db = sqlite3MallocZero( sizeof(sqlite3) ); 003285 if( db==0 ) goto opendb_out; 003286 if( isThreadsafe 003287 #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS 003288 || sqlite3GlobalConfig.bCoreMutex 003289 #endif 003290 ){ 003291 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 003292 if( db->mutex==0 ){ 003293 sqlite3_free(db); 003294 db = 0; 003295 goto opendb_out; 003296 } 003297 if( isThreadsafe==0 ){ 003298 sqlite3MutexWarnOnContention(db->mutex); 003299 } 003300 } 003301 sqlite3_mutex_enter(db->mutex); 003302 db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff; 003303 db->nDb = 2; 003304 db->eOpenState = SQLITE_STATE_BUSY; 003305 db->aDb = db->aDbStatic; 003306 db->lookaside.bDisable = 1; 003307 db->lookaside.sz = 0; 003308 003309 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 003310 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 003311 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 003312 db->autoCommit = 1; 003313 db->nextAutovac = -1; 003314 db->szMmap = sqlite3GlobalConfig.szMmap; 003315 db->nextPagesize = 0; 003316 db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ 003317 #ifdef SQLITE_ENABLE_SORTER_MMAP 003318 /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map 003319 ** the temporary files used to do external sorts (see code in vdbesort.c) 003320 ** is disabled. It can still be used either by defining 003321 ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the 003322 ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */ 003323 db->nMaxSorterMmap = 0x7FFFFFFF; 003324 #endif 003325 db->flags |= SQLITE_ShortColNames 003326 | SQLITE_EnableTrigger 003327 | SQLITE_EnableView 003328 | SQLITE_CacheSpill 003329 | SQLITE_AttachCreate 003330 | SQLITE_AttachWrite 003331 | SQLITE_Comments 003332 #if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0 003333 | SQLITE_TrustedSchema 003334 #endif 003335 /* The SQLITE_DQS compile-time option determines the default settings 003336 ** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML. 003337 ** 003338 ** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML 003339 ** ---------- ----------------------- ----------------------- 003340 ** undefined on on 003341 ** 3 on on 003342 ** 2 on off 003343 ** 1 off on 003344 ** 0 off off 003345 ** 003346 ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) 003347 ** and so that is the default. But developers are encouraged to use 003348 ** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible. 003349 */ 003350 #if !defined(SQLITE_DQS) 003351 # define SQLITE_DQS 3 003352 #endif 003353 #if (SQLITE_DQS&1)==1 003354 | SQLITE_DqsDML 003355 #endif 003356 #if (SQLITE_DQS&2)==2 003357 | SQLITE_DqsDDL 003358 #endif 003359 003360 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 003361 | SQLITE_AutoIndex 003362 #endif 003363 #if SQLITE_DEFAULT_CKPTFULLFSYNC 003364 | SQLITE_CkptFullFSync 003365 #endif 003366 #if SQLITE_DEFAULT_FILE_FORMAT<4 003367 | SQLITE_LegacyFileFmt 003368 #endif 003369 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 003370 | SQLITE_LoadExtension 003371 #endif 003372 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 003373 | SQLITE_RecTriggers 003374 #endif 003375 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 003376 | SQLITE_ForeignKeys 003377 #endif 003378 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 003379 | SQLITE_ReverseOrder 003380 #endif 003381 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 003382 | SQLITE_CellSizeCk 003383 #endif 003384 #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) 003385 | SQLITE_Fts3Tokenizer 003386 #endif 003387 #if defined(SQLITE_ENABLE_QPSG) 003388 | SQLITE_EnableQPSG 003389 #endif 003390 #if defined(SQLITE_DEFAULT_DEFENSIVE) 003391 | SQLITE_Defensive 003392 #endif 003393 #if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE) 003394 | SQLITE_LegacyAlter 003395 #endif 003396 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 003397 | SQLITE_StmtScanStatus 003398 #endif 003399 ; 003400 sqlite3HashInit(&db->aCollSeq); 003401 #ifndef SQLITE_OMIT_VIRTUALTABLE 003402 sqlite3HashInit(&db->aModule); 003403 #endif 003404 003405 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 003406 ** and UTF-16, so add a version for each to avoid any unnecessary 003407 ** conversions. The only error that can occur here is a malloc() failure. 003408 ** 003409 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 003410 ** functions: 003411 */ 003412 createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); 003413 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); 003414 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); 003415 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 003416 createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0); 003417 if( db->mallocFailed ){ 003418 goto opendb_out; 003419 } 003420 003421 #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) 003422 /* Process magic filenames ":localStorage:" and ":sessionStorage:" */ 003423 if( zFilename && zFilename[0]==':' ){ 003424 if( strcmp(zFilename, ":localStorage:")==0 ){ 003425 zFilename = "file:local?vfs=kvvfs"; 003426 flags |= SQLITE_OPEN_URI; 003427 }else if( strcmp(zFilename, ":sessionStorage:")==0 ){ 003428 zFilename = "file:session?vfs=kvvfs"; 003429 flags |= SQLITE_OPEN_URI; 003430 } 003431 } 003432 #endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */ 003433 003434 /* Parse the filename/URI argument 003435 ** 003436 ** Only allow sensible combinations of bits in the flags argument. 003437 ** Throw an error if any non-sense combination is used. If we 003438 ** do not block illegal combinations here, it could trigger 003439 ** assert() statements in deeper layers. Sensible combinations 003440 ** are: 003441 ** 003442 ** 1: SQLITE_OPEN_READONLY 003443 ** 2: SQLITE_OPEN_READWRITE 003444 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 003445 */ 003446 db->openFlags = flags; 003447 assert( SQLITE_OPEN_READONLY == 0x01 ); 003448 assert( SQLITE_OPEN_READWRITE == 0x02 ); 003449 assert( SQLITE_OPEN_CREATE == 0x04 ); 003450 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 003451 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 003452 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 003453 if( ((1<<(flags&7)) & 0x46)==0 ){ 003454 rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */ 003455 }else{ 003456 if( zFilename==0 ) zFilename = ":memory:"; 003457 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 003458 } 003459 if( rc!=SQLITE_OK ){ 003460 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 003461 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 003462 sqlite3_free(zErrMsg); 003463 goto opendb_out; 003464 } 003465 assert( db->pVfs!=0 ); 003466 #if SQLITE_OS_KV || defined(SQLITE_OS_KV_OPTIONAL) 003467 if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){ 003468 db->temp_store = 2; 003469 } 003470 #endif 003471 003472 /* Open the backend database driver */ 003473 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 003474 flags | SQLITE_OPEN_MAIN_DB); 003475 if( rc!=SQLITE_OK ){ 003476 if( rc==SQLITE_IOERR_NOMEM ){ 003477 rc = SQLITE_NOMEM_BKPT; 003478 } 003479 sqlite3Error(db, rc); 003480 goto opendb_out; 003481 } 003482 sqlite3BtreeEnter(db->aDb[0].pBt); 003483 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 003484 if( !db->mallocFailed ){ 003485 sqlite3SetTextEncoding(db, SCHEMA_ENC(db)); 003486 } 003487 sqlite3BtreeLeave(db->aDb[0].pBt); 003488 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 003489 003490 /* The default safety_level for the main database is FULL; for the temp 003491 ** database it is OFF. This matches the pager layer defaults. 003492 */ 003493 db->aDb[0].zDbSName = "main"; 003494 db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; 003495 db->aDb[1].zDbSName = "temp"; 003496 db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; 003497 003498 db->eOpenState = SQLITE_STATE_OPEN; 003499 if( db->mallocFailed ){ 003500 goto opendb_out; 003501 } 003502 003503 /* Register all built-in functions, but do not attempt to read the 003504 ** database schema yet. This is delayed until the first time the database 003505 ** is accessed. 003506 */ 003507 sqlite3Error(db, SQLITE_OK); 003508 sqlite3RegisterPerConnectionBuiltinFunctions(db); 003509 rc = sqlite3_errcode(db); 003510 003511 003512 /* Load compiled-in extensions */ 003513 for(i=0; rc==SQLITE_OK && i<ArraySize(sqlite3BuiltinExtensions); i++){ 003514 rc = sqlite3BuiltinExtensions[i](db); 003515 } 003516 003517 /* Load automatic extensions - extensions that have been registered 003518 ** using the sqlite3_automatic_extension() API. 003519 */ 003520 if( rc==SQLITE_OK ){ 003521 sqlite3AutoLoadExtensions(db); 003522 rc = sqlite3_errcode(db); 003523 if( rc!=SQLITE_OK ){ 003524 goto opendb_out; 003525 } 003526 } 003527 003528 #ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS 003529 /* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time 003530 ** option gives access to internal functions by default. 003531 ** Testing use only!!! */ 003532 db->mDbFlags |= DBFLAG_InternalFunc; 003533 #endif 003534 003535 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 003536 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 003537 ** mode. Doing nothing at all also makes NORMAL the default. 003538 */ 003539 #ifdef SQLITE_DEFAULT_LOCKING_MODE 003540 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 003541 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 003542 SQLITE_DEFAULT_LOCKING_MODE); 003543 #endif 003544 003545 if( rc ) sqlite3Error(db, rc); 003546 003547 /* Enable the lookaside-malloc subsystem */ 003548 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 003549 sqlite3GlobalConfig.nLookaside); 003550 003551 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 003552 003553 opendb_out: 003554 if( db ){ 003555 assert( db->mutex!=0 || isThreadsafe==0 003556 || sqlite3GlobalConfig.bFullMutex==0 ); 003557 sqlite3_mutex_leave(db->mutex); 003558 } 003559 rc = sqlite3_errcode(db); 003560 assert( db!=0 || (rc&0xff)==SQLITE_NOMEM ); 003561 if( (rc&0xff)==SQLITE_NOMEM ){ 003562 sqlite3_close(db); 003563 db = 0; 003564 }else if( rc!=SQLITE_OK ){ 003565 db->eOpenState = SQLITE_STATE_SICK; 003566 } 003567 *ppDb = db; 003568 #ifdef SQLITE_ENABLE_SQLLOG 003569 if( sqlite3GlobalConfig.xSqllog ){ 003570 /* Opening a db handle. Fourth parameter is passed 0. */ 003571 void *pArg = sqlite3GlobalConfig.pSqllogArg; 003572 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 003573 } 003574 #endif 003575 sqlite3_free_filename(zOpen); 003576 return rc; 003577 } 003578 003579 003580 /* 003581 ** Open a new database handle. 003582 */ 003583 int sqlite3_open( 003584 const char *zFilename, 003585 sqlite3 **ppDb 003586 ){ 003587 return openDatabase(zFilename, ppDb, 003588 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 003589 } 003590 int sqlite3_open_v2( 003591 const char *filename, /* Database filename (UTF-8) */ 003592 sqlite3 **ppDb, /* OUT: SQLite db handle */ 003593 int flags, /* Flags */ 003594 const char *zVfs /* Name of VFS module to use */ 003595 ){ 003596 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 003597 } 003598 003599 #ifndef SQLITE_OMIT_UTF16 003600 /* 003601 ** Open a new database handle. 003602 */ 003603 int sqlite3_open16( 003604 const void *zFilename, 003605 sqlite3 **ppDb 003606 ){ 003607 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 003608 sqlite3_value *pVal; 003609 int rc; 003610 003611 #ifdef SQLITE_ENABLE_API_ARMOR 003612 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 003613 #endif 003614 *ppDb = 0; 003615 #ifndef SQLITE_OMIT_AUTOINIT 003616 rc = sqlite3_initialize(); 003617 if( rc ) return rc; 003618 #endif 003619 if( zFilename==0 ) zFilename = "\000\000"; 003620 pVal = sqlite3ValueNew(0); 003621 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 003622 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 003623 if( zFilename8 ){ 003624 rc = openDatabase(zFilename8, ppDb, 003625 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 003626 assert( *ppDb || rc==SQLITE_NOMEM ); 003627 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 003628 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 003629 } 003630 }else{ 003631 rc = SQLITE_NOMEM_BKPT; 003632 } 003633 sqlite3ValueFree(pVal); 003634 003635 return rc & 0xff; 003636 } 003637 #endif /* SQLITE_OMIT_UTF16 */ 003638 003639 /* 003640 ** Register a new collation sequence with the database handle db. 003641 */ 003642 int sqlite3_create_collation( 003643 sqlite3* db, 003644 const char *zName, 003645 int enc, 003646 void* pCtx, 003647 int(*xCompare)(void*,int,const void*,int,const void*) 003648 ){ 003649 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 003650 } 003651 003652 /* 003653 ** Register a new collation sequence with the database handle db. 003654 */ 003655 int sqlite3_create_collation_v2( 003656 sqlite3* db, 003657 const char *zName, 003658 int enc, 003659 void* pCtx, 003660 int(*xCompare)(void*,int,const void*,int,const void*), 003661 void(*xDel)(void*) 003662 ){ 003663 int rc; 003664 003665 #ifdef SQLITE_ENABLE_API_ARMOR 003666 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 003667 #endif 003668 sqlite3_mutex_enter(db->mutex); 003669 assert( !db->mallocFailed ); 003670 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 003671 rc = sqlite3ApiExit(db, rc); 003672 sqlite3_mutex_leave(db->mutex); 003673 return rc; 003674 } 003675 003676 #ifndef SQLITE_OMIT_UTF16 003677 /* 003678 ** Register a new collation sequence with the database handle db. 003679 */ 003680 int sqlite3_create_collation16( 003681 sqlite3* db, 003682 const void *zName, 003683 int enc, 003684 void* pCtx, 003685 int(*xCompare)(void*,int,const void*,int,const void*) 003686 ){ 003687 int rc = SQLITE_OK; 003688 char *zName8; 003689 003690 #ifdef SQLITE_ENABLE_API_ARMOR 003691 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 003692 #endif 003693 sqlite3_mutex_enter(db->mutex); 003694 assert( !db->mallocFailed ); 003695 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 003696 if( zName8 ){ 003697 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 003698 sqlite3DbFree(db, zName8); 003699 } 003700 rc = sqlite3ApiExit(db, rc); 003701 sqlite3_mutex_leave(db->mutex); 003702 return rc; 003703 } 003704 #endif /* SQLITE_OMIT_UTF16 */ 003705 003706 /* 003707 ** Register a collation sequence factory callback with the database handle 003708 ** db. Replace any previously installed collation sequence factory. 003709 */ 003710 int sqlite3_collation_needed( 003711 sqlite3 *db, 003712 void *pCollNeededArg, 003713 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 003714 ){ 003715 #ifdef SQLITE_ENABLE_API_ARMOR 003716 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003717 #endif 003718 sqlite3_mutex_enter(db->mutex); 003719 db->xCollNeeded = xCollNeeded; 003720 db->xCollNeeded16 = 0; 003721 db->pCollNeededArg = pCollNeededArg; 003722 sqlite3_mutex_leave(db->mutex); 003723 return SQLITE_OK; 003724 } 003725 003726 #ifndef SQLITE_OMIT_UTF16 003727 /* 003728 ** Register a collation sequence factory callback with the database handle 003729 ** db. Replace any previously installed collation sequence factory. 003730 */ 003731 int sqlite3_collation_needed16( 003732 sqlite3 *db, 003733 void *pCollNeededArg, 003734 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 003735 ){ 003736 #ifdef SQLITE_ENABLE_API_ARMOR 003737 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003738 #endif 003739 sqlite3_mutex_enter(db->mutex); 003740 db->xCollNeeded = 0; 003741 db->xCollNeeded16 = xCollNeeded16; 003742 db->pCollNeededArg = pCollNeededArg; 003743 sqlite3_mutex_leave(db->mutex); 003744 return SQLITE_OK; 003745 } 003746 #endif /* SQLITE_OMIT_UTF16 */ 003747 003748 /* 003749 ** Find existing client data. 003750 */ 003751 void *sqlite3_get_clientdata(sqlite3 *db, const char *zName){ 003752 DbClientData *p; 003753 sqlite3_mutex_enter(db->mutex); 003754 for(p=db->pDbData; p; p=p->pNext){ 003755 if( strcmp(p->zName, zName)==0 ){ 003756 void *pResult = p->pData; 003757 sqlite3_mutex_leave(db->mutex); 003758 return pResult; 003759 } 003760 } 003761 sqlite3_mutex_leave(db->mutex); 003762 return 0; 003763 } 003764 003765 /* 003766 ** Add new client data to a database connection. 003767 */ 003768 int sqlite3_set_clientdata( 003769 sqlite3 *db, /* Attach client data to this connection */ 003770 const char *zName, /* Name of the client data */ 003771 void *pData, /* The client data itself */ 003772 void (*xDestructor)(void*) /* Destructor */ 003773 ){ 003774 DbClientData *p, **pp; 003775 sqlite3_mutex_enter(db->mutex); 003776 pp = &db->pDbData; 003777 for(p=db->pDbData; p && strcmp(p->zName,zName); p=p->pNext){ 003778 pp = &p->pNext; 003779 } 003780 if( p ){ 003781 assert( p->pData!=0 ); 003782 if( p->xDestructor ) p->xDestructor(p->pData); 003783 if( pData==0 ){ 003784 *pp = p->pNext; 003785 sqlite3_free(p); 003786 sqlite3_mutex_leave(db->mutex); 003787 return SQLITE_OK; 003788 } 003789 }else if( pData==0 ){ 003790 sqlite3_mutex_leave(db->mutex); 003791 return SQLITE_OK; 003792 }else{ 003793 size_t n = strlen(zName); 003794 p = sqlite3_malloc64( sizeof(DbClientData)+n+1 ); 003795 if( p==0 ){ 003796 if( xDestructor ) xDestructor(pData); 003797 sqlite3_mutex_leave(db->mutex); 003798 return SQLITE_NOMEM; 003799 } 003800 memcpy(p->zName, zName, n+1); 003801 p->pNext = db->pDbData; 003802 db->pDbData = p; 003803 } 003804 p->pData = pData; 003805 p->xDestructor = xDestructor; 003806 sqlite3_mutex_leave(db->mutex); 003807 return SQLITE_OK; 003808 } 003809 003810 003811 #ifndef SQLITE_OMIT_DEPRECATED 003812 /* 003813 ** This function is now an anachronism. It used to be used to recover from a 003814 ** malloc() failure, but SQLite now does this automatically. 003815 */ 003816 int sqlite3_global_recover(void){ 003817 return SQLITE_OK; 003818 } 003819 #endif 003820 003821 /* 003822 ** Test to see whether or not the database connection is in autocommit 003823 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 003824 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 003825 ** by the next COMMIT or ROLLBACK. 003826 */ 003827 int sqlite3_get_autocommit(sqlite3 *db){ 003828 #ifdef SQLITE_ENABLE_API_ARMOR 003829 if( !sqlite3SafetyCheckOk(db) ){ 003830 (void)SQLITE_MISUSE_BKPT; 003831 return 0; 003832 } 003833 #endif 003834 return db->autoCommit; 003835 } 003836 003837 /* 003838 ** The following routines are substitutes for constants SQLITE_CORRUPT, 003839 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error 003840 ** constants. They serve two purposes: 003841 ** 003842 ** 1. Serve as a convenient place to set a breakpoint in a debugger 003843 ** to detect when version error conditions occurs. 003844 ** 003845 ** 2. Invoke sqlite3_log() to provide the source code location where 003846 ** a low-level error is first detected. 003847 */ 003848 int sqlite3ReportError(int iErr, int lineno, const char *zType){ 003849 sqlite3_log(iErr, "%s at line %d of [%.10s]", 003850 zType, lineno, 20+sqlite3_sourceid()); 003851 return iErr; 003852 } 003853 int sqlite3CorruptError(int lineno){ 003854 testcase( sqlite3GlobalConfig.xLog!=0 ); 003855 return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption"); 003856 } 003857 int sqlite3MisuseError(int lineno){ 003858 testcase( sqlite3GlobalConfig.xLog!=0 ); 003859 return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse"); 003860 } 003861 int sqlite3CantopenError(int lineno){ 003862 testcase( sqlite3GlobalConfig.xLog!=0 ); 003863 return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file"); 003864 } 003865 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) 003866 int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ 003867 char zMsg[100]; 003868 sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); 003869 testcase( sqlite3GlobalConfig.xLog!=0 ); 003870 return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 003871 } 003872 #endif 003873 #ifdef SQLITE_DEBUG 003874 int sqlite3NomemError(int lineno){ 003875 testcase( sqlite3GlobalConfig.xLog!=0 ); 003876 return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM"); 003877 } 003878 int sqlite3IoerrnomemError(int lineno){ 003879 testcase( sqlite3GlobalConfig.xLog!=0 ); 003880 return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); 003881 } 003882 #endif 003883 003884 #ifndef SQLITE_OMIT_DEPRECATED 003885 /* 003886 ** This is a convenience routine that makes sure that all thread-specific 003887 ** data for this thread has been deallocated. 003888 ** 003889 ** SQLite no longer uses thread-specific data so this routine is now a 003890 ** no-op. It is retained for historical compatibility. 003891 */ 003892 void sqlite3_thread_cleanup(void){ 003893 } 003894 #endif 003895 003896 /* 003897 ** Return meta information about a specific column of a database table. 003898 ** See comment in sqlite3.h (sqlite.h.in) for details. 003899 */ 003900 int sqlite3_table_column_metadata( 003901 sqlite3 *db, /* Connection handle */ 003902 const char *zDbName, /* Database name or NULL */ 003903 const char *zTableName, /* Table name */ 003904 const char *zColumnName, /* Column name */ 003905 char const **pzDataType, /* OUTPUT: Declared data type */ 003906 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 003907 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 003908 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 003909 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 003910 ){ 003911 int rc; 003912 char *zErrMsg = 0; 003913 Table *pTab = 0; 003914 Column *pCol = 0; 003915 int iCol = 0; 003916 char const *zDataType = 0; 003917 char const *zCollSeq = 0; 003918 int notnull = 0; 003919 int primarykey = 0; 003920 int autoinc = 0; 003921 003922 003923 #ifdef SQLITE_ENABLE_API_ARMOR 003924 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 003925 return SQLITE_MISUSE_BKPT; 003926 } 003927 #endif 003928 003929 /* Ensure the database schema has been loaded */ 003930 sqlite3_mutex_enter(db->mutex); 003931 sqlite3BtreeEnterAll(db); 003932 rc = sqlite3Init(db, &zErrMsg); 003933 if( SQLITE_OK!=rc ){ 003934 goto error_out; 003935 } 003936 003937 /* Locate the table in question */ 003938 pTab = sqlite3FindTable(db, zTableName, zDbName); 003939 if( !pTab || IsView(pTab) ){ 003940 pTab = 0; 003941 goto error_out; 003942 } 003943 003944 /* Find the column for which info is requested */ 003945 if( zColumnName==0 ){ 003946 /* Query for existence of table only */ 003947 }else{ 003948 for(iCol=0; iCol<pTab->nCol; iCol++){ 003949 pCol = &pTab->aCol[iCol]; 003950 if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){ 003951 break; 003952 } 003953 } 003954 if( iCol==pTab->nCol ){ 003955 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 003956 iCol = pTab->iPKey; 003957 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 003958 }else{ 003959 pTab = 0; 003960 goto error_out; 003961 } 003962 } 003963 } 003964 003965 /* The following block stores the meta information that will be returned 003966 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 003967 ** and autoinc. At this point there are two possibilities: 003968 ** 003969 ** 1. The specified column name was rowid", "oid" or "_rowid_" 003970 ** and there is no explicitly declared IPK column. 003971 ** 003972 ** 2. The table is not a view and the column name identified an 003973 ** explicitly declared column. Copy meta information from *pCol. 003974 */ 003975 if( pCol ){ 003976 zDataType = sqlite3ColumnType(pCol,0); 003977 zCollSeq = sqlite3ColumnColl(pCol); 003978 notnull = pCol->notNull!=0; 003979 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 003980 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 003981 }else{ 003982 zDataType = "INTEGER"; 003983 primarykey = 1; 003984 } 003985 if( !zCollSeq ){ 003986 zCollSeq = sqlite3StrBINARY; 003987 } 003988 003989 error_out: 003990 sqlite3BtreeLeaveAll(db); 003991 003992 /* Whether the function call succeeded or failed, set the output parameters 003993 ** to whatever their local counterparts contain. If an error did occur, 003994 ** this has the effect of zeroing all output parameters. 003995 */ 003996 if( pzDataType ) *pzDataType = zDataType; 003997 if( pzCollSeq ) *pzCollSeq = zCollSeq; 003998 if( pNotNull ) *pNotNull = notnull; 003999 if( pPrimaryKey ) *pPrimaryKey = primarykey; 004000 if( pAutoinc ) *pAutoinc = autoinc; 004001 004002 if( SQLITE_OK==rc && !pTab ){ 004003 sqlite3DbFree(db, zErrMsg); 004004 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 004005 zColumnName); 004006 rc = SQLITE_ERROR; 004007 } 004008 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 004009 sqlite3DbFree(db, zErrMsg); 004010 rc = sqlite3ApiExit(db, rc); 004011 sqlite3_mutex_leave(db->mutex); 004012 return rc; 004013 } 004014 004015 /* 004016 ** Sleep for a little while. Return the amount of time slept. 004017 */ 004018 int sqlite3_sleep(int ms){ 004019 sqlite3_vfs *pVfs; 004020 int rc; 004021 pVfs = sqlite3_vfs_find(0); 004022 if( pVfs==0 ) return 0; 004023 004024 /* This function works in milliseconds, but the underlying OsSleep() 004025 ** API uses microseconds. Hence the 1000's. 004026 */ 004027 rc = (sqlite3OsSleep(pVfs, ms<0 ? 0 : 1000*ms)/1000); 004028 return rc; 004029 } 004030 004031 /* 004032 ** Enable or disable the extended result codes. 004033 */ 004034 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 004035 #ifdef SQLITE_ENABLE_API_ARMOR 004036 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 004037 #endif 004038 sqlite3_mutex_enter(db->mutex); 004039 db->errMask = onoff ? 0xffffffff : 0xff; 004040 sqlite3_mutex_leave(db->mutex); 004041 return SQLITE_OK; 004042 } 004043 004044 /* 004045 ** Invoke the xFileControl method on a particular database. 004046 */ 004047 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 004048 int rc = SQLITE_ERROR; 004049 Btree *pBtree; 004050 004051 #ifdef SQLITE_ENABLE_API_ARMOR 004052 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 004053 #endif 004054 sqlite3_mutex_enter(db->mutex); 004055 pBtree = sqlite3DbNameToBtree(db, zDbName); 004056 if( pBtree ){ 004057 Pager *pPager; 004058 sqlite3_file *fd; 004059 sqlite3BtreeEnter(pBtree); 004060 pPager = sqlite3BtreePager(pBtree); 004061 assert( pPager!=0 ); 004062 fd = sqlite3PagerFile(pPager); 004063 assert( fd!=0 ); 004064 if( op==SQLITE_FCNTL_FILE_POINTER ){ 004065 *(sqlite3_file**)pArg = fd; 004066 rc = SQLITE_OK; 004067 }else if( op==SQLITE_FCNTL_VFS_POINTER ){ 004068 *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); 004069 rc = SQLITE_OK; 004070 }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ 004071 *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); 004072 rc = SQLITE_OK; 004073 }else if( op==SQLITE_FCNTL_DATA_VERSION ){ 004074 *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager); 004075 rc = SQLITE_OK; 004076 }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){ 004077 int iNew = *(int*)pArg; 004078 *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree); 004079 if( iNew>=0 && iNew<=255 ){ 004080 sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0); 004081 } 004082 rc = SQLITE_OK; 004083 }else if( op==SQLITE_FCNTL_RESET_CACHE ){ 004084 sqlite3BtreeClearCache(pBtree); 004085 rc = SQLITE_OK; 004086 }else{ 004087 int nSave = db->busyHandler.nBusy; 004088 rc = sqlite3OsFileControl(fd, op, pArg); 004089 db->busyHandler.nBusy = nSave; 004090 } 004091 sqlite3BtreeLeave(pBtree); 004092 } 004093 sqlite3_mutex_leave(db->mutex); 004094 return rc; 004095 } 004096 004097 /* 004098 ** Interface to the testing logic. 004099 */ 004100 int sqlite3_test_control(int op, ...){ 004101 int rc = 0; 004102 #ifdef SQLITE_UNTESTABLE 004103 UNUSED_PARAMETER(op); 004104 #else 004105 va_list ap; 004106 va_start(ap, op); 004107 switch( op ){ 004108 004109 /* 004110 ** Save the current state of the PRNG. 004111 */ 004112 case SQLITE_TESTCTRL_PRNG_SAVE: { 004113 sqlite3PrngSaveState(); 004114 break; 004115 } 004116 004117 /* 004118 ** Restore the state of the PRNG to the last state saved using 004119 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 004120 ** this verb acts like PRNG_RESET. 004121 */ 004122 case SQLITE_TESTCTRL_PRNG_RESTORE: { 004123 sqlite3PrngRestoreState(); 004124 break; 004125 } 004126 004127 /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db); 004128 ** 004129 ** Control the seed for the pseudo-random number generator (PRNG) that 004130 ** is built into SQLite. Cases: 004131 ** 004132 ** x!=0 && db!=0 Seed the PRNG to the current value of the 004133 ** schema cookie in the main database for db, or 004134 ** x if the schema cookie is zero. This case 004135 ** is convenient to use with database fuzzers 004136 ** as it allows the fuzzer some control over the 004137 ** the PRNG seed. 004138 ** 004139 ** x!=0 && db==0 Seed the PRNG to the value of x. 004140 ** 004141 ** x==0 && db==0 Revert to default behavior of using the 004142 ** xRandomness method on the primary VFS. 004143 ** 004144 ** This test-control also resets the PRNG so that the new seed will 004145 ** be used for the next call to sqlite3_randomness(). 004146 */ 004147 #ifndef SQLITE_OMIT_WSD 004148 case SQLITE_TESTCTRL_PRNG_SEED: { 004149 int x = va_arg(ap, int); 004150 int y; 004151 sqlite3 *db = va_arg(ap, sqlite3*); 004152 assert( db==0 || db->aDb[0].pSchema!=0 ); 004153 if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; } 004154 sqlite3Config.iPrngSeed = x; 004155 sqlite3_randomness(0,0); 004156 break; 004157 } 004158 #endif 004159 004160 /* sqlite3_test_control(SQLITE_TESTCTRL_FK_NO_ACTION, sqlite3 *db, int b); 004161 ** 004162 ** If b is true, then activate the SQLITE_FkNoAction setting. If b is 004163 ** false then clearn that setting. If the SQLITE_FkNoAction setting is 004164 ** abled, all foreign key ON DELETE and ON UPDATE actions behave as if 004165 ** they were NO ACTION, regardless of how they are defined. 004166 ** 004167 ** NB: One must usually run "PRAGMA writable_schema=RESET" after 004168 ** using this test-control, before it will take full effect. failing 004169 ** to reset the schema can result in some unexpected behavior. 004170 */ 004171 case SQLITE_TESTCTRL_FK_NO_ACTION: { 004172 sqlite3 *db = va_arg(ap, sqlite3*); 004173 int b = va_arg(ap, int); 004174 if( b ){ 004175 db->flags |= SQLITE_FkNoAction; 004176 }else{ 004177 db->flags &= ~SQLITE_FkNoAction; 004178 } 004179 break; 004180 } 004181 004182 /* 004183 ** sqlite3_test_control(BITVEC_TEST, size, program) 004184 ** 004185 ** Run a test against a Bitvec object of size. The program argument 004186 ** is an array of integers that defines the test. Return -1 on a 004187 ** memory allocation error, 0 on success, or non-zero for an error. 004188 ** See the sqlite3BitvecBuiltinTest() for additional information. 004189 */ 004190 case SQLITE_TESTCTRL_BITVEC_TEST: { 004191 int sz = va_arg(ap, int); 004192 int *aProg = va_arg(ap, int*); 004193 rc = sqlite3BitvecBuiltinTest(sz, aProg); 004194 break; 004195 } 004196 004197 /* 004198 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 004199 ** 004200 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 004201 ** if xCallback is not NULL. 004202 ** 004203 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 004204 ** is called immediately after installing the new callback and the return 004205 ** value from sqlite3FaultSim(0) becomes the return from 004206 ** sqlite3_test_control(). 004207 */ 004208 case SQLITE_TESTCTRL_FAULT_INSTALL: { 004209 /* A bug in MSVC prevents it from understanding pointers to functions 004210 ** types in the second argument to va_arg(). Work around the problem 004211 ** using a typedef. 004212 ** http://support.microsoft.com/kb/47961 <-- dead hyperlink 004213 ** Search at http://web.archive.org/ to find the 2015-03-16 archive 004214 ** of the link above to see the original text. 004215 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 004216 */ 004217 typedef int(*sqlite3FaultFuncType)(int); 004218 sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType); 004219 rc = sqlite3FaultSim(0); 004220 break; 004221 } 004222 004223 /* 004224 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 004225 ** 004226 ** Register hooks to call to indicate which malloc() failures 004227 ** are benign. 004228 */ 004229 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 004230 typedef void (*void_function)(void); 004231 void_function xBenignBegin; 004232 void_function xBenignEnd; 004233 xBenignBegin = va_arg(ap, void_function); 004234 xBenignEnd = va_arg(ap, void_function); 004235 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 004236 break; 004237 } 004238 004239 /* 004240 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 004241 ** 004242 ** Set the PENDING byte to the value in the argument, if X>0. 004243 ** Make no changes if X==0. Return the value of the pending byte 004244 ** as it existing before this routine was called. 004245 ** 004246 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 004247 ** an incompatible database file format. Changing the PENDING byte 004248 ** while any database connection is open results in undefined and 004249 ** deleterious behavior. 004250 */ 004251 case SQLITE_TESTCTRL_PENDING_BYTE: { 004252 rc = PENDING_BYTE; 004253 #ifndef SQLITE_OMIT_WSD 004254 { 004255 unsigned int newVal = va_arg(ap, unsigned int); 004256 if( newVal ) sqlite3PendingByte = newVal; 004257 } 004258 #endif 004259 break; 004260 } 004261 004262 /* 004263 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 004264 ** 004265 ** This action provides a run-time test to see whether or not 004266 ** assert() was enabled at compile-time. If X is true and assert() 004267 ** is enabled, then the return value is true. If X is true and 004268 ** assert() is disabled, then the return value is zero. If X is 004269 ** false and assert() is enabled, then the assertion fires and the 004270 ** process aborts. If X is false and assert() is disabled, then the 004271 ** return value is zero. 004272 */ 004273 case SQLITE_TESTCTRL_ASSERT: { 004274 volatile int x = 0; 004275 assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); 004276 rc = x; 004277 #if defined(SQLITE_DEBUG) 004278 /* Invoke these debugging routines so that the compiler does not 004279 ** issue "defined but not used" warnings. */ 004280 if( x==9999 ){ 004281 sqlite3ShowExpr(0); 004282 sqlite3ShowExprList(0); 004283 sqlite3ShowIdList(0); 004284 sqlite3ShowSrcList(0); 004285 sqlite3ShowWith(0); 004286 sqlite3ShowUpsert(0); 004287 #ifndef SQLITE_OMIT_TRIGGER 004288 sqlite3ShowTriggerStep(0); 004289 sqlite3ShowTriggerStepList(0); 004290 sqlite3ShowTrigger(0); 004291 sqlite3ShowTriggerList(0); 004292 #endif 004293 #ifndef SQLITE_OMIT_WINDOWFUNC 004294 sqlite3ShowWindow(0); 004295 sqlite3ShowWinFunc(0); 004296 #endif 004297 sqlite3ShowSelect(0); 004298 } 004299 #endif 004300 break; 004301 } 004302 004303 004304 /* 004305 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 004306 ** 004307 ** This action provides a run-time test to see how the ALWAYS and 004308 ** NEVER macros were defined at compile-time. 004309 ** 004310 ** The return value is ALWAYS(X) if X is true, or 0 if X is false. 004311 ** 004312 ** The recommended test is X==2. If the return value is 2, that means 004313 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 004314 ** default setting. If the return value is 1, then ALWAYS() is either 004315 ** hard-coded to true or else it asserts if its argument is false. 004316 ** The first behavior (hard-coded to true) is the case if 004317 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 004318 ** behavior (assert if the argument to ALWAYS() is false) is the case if 004319 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 004320 ** 004321 ** The run-time test procedure might look something like this: 004322 ** 004323 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 004324 ** // ALWAYS() and NEVER() are no-op pass-through macros 004325 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 004326 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 004327 ** }else{ 004328 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 004329 ** } 004330 */ 004331 case SQLITE_TESTCTRL_ALWAYS: { 004332 int x = va_arg(ap,int); 004333 rc = x ? ALWAYS(x) : 0; 004334 break; 004335 } 004336 004337 /* 004338 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 004339 ** 004340 ** The integer returned reveals the byte-order of the computer on which 004341 ** SQLite is running: 004342 ** 004343 ** 1 big-endian, determined at run-time 004344 ** 10 little-endian, determined at run-time 004345 ** 432101 big-endian, determined at compile-time 004346 ** 123410 little-endian, determined at compile-time 004347 */ 004348 case SQLITE_TESTCTRL_BYTEORDER: { 004349 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 004350 break; 004351 } 004352 004353 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 004354 ** 004355 ** Enable or disable various optimizations for testing purposes. The 004356 ** argument N is a bitmask of optimizations to be disabled. For normal 004357 ** operation N should be 0. The idea is that a test program (like the 004358 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 004359 ** with various optimizations disabled to verify that the same answer 004360 ** is obtained in every case. 004361 */ 004362 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 004363 sqlite3 *db = va_arg(ap, sqlite3*); 004364 db->dbOptFlags = va_arg(ap, u32); 004365 break; 004366 } 004367 004368 /* sqlite3_test_control(SQLITE_TESTCTRL_GETOPT, sqlite3 *db, int *N) 004369 ** 004370 ** Write the current optimization settings into *N. A zero bit means that 004371 ** the optimization is on, and a 1 bit means that the optimization is off. 004372 */ 004373 case SQLITE_TESTCTRL_GETOPT: { 004374 sqlite3 *db = va_arg(ap, sqlite3*); 004375 int *pN = va_arg(ap, int*); 004376 *pN = db->dbOptFlags; 004377 break; 004378 } 004379 004380 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt); 004381 ** 004382 ** If parameter onoff is 1, subsequent calls to localtime() fail. 004383 ** If 2, then invoke xAlt() instead of localtime(). If 0, normal 004384 ** processing. 004385 ** 004386 ** xAlt arguments are void pointers, but they really want to be: 004387 ** 004388 ** int xAlt(const time_t*, struct tm*); 004389 ** 004390 ** xAlt should write results in to struct tm object of its 2nd argument 004391 ** and return zero on success, or return non-zero on failure. 004392 */ 004393 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 004394 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 004395 if( sqlite3GlobalConfig.bLocaltimeFault==2 ){ 004396 typedef int(*sqlite3LocaltimeType)(const void*,void*); 004397 sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType); 004398 }else{ 004399 sqlite3GlobalConfig.xAltLocaltime = 0; 004400 } 004401 break; 004402 } 004403 004404 /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*); 004405 ** 004406 ** Toggle the ability to use internal functions on or off for 004407 ** the database connection given in the argument. 004408 */ 004409 case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: { 004410 sqlite3 *db = va_arg(ap, sqlite3*); 004411 db->mDbFlags ^= DBFLAG_InternalFunc; 004412 break; 004413 } 004414 004415 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 004416 ** 004417 ** Set or clear a flag that indicates that the database file is always well- 004418 ** formed and never corrupt. This flag is clear by default, indicating that 004419 ** database files might have arbitrary corruption. Setting the flag during 004420 ** testing causes certain assert() statements in the code to be activated 004421 ** that demonstrate invariants on well-formed database files. 004422 */ 004423 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 004424 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 004425 break; 004426 } 004427 004428 /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int); 004429 ** 004430 ** Set or clear a flag that causes SQLite to verify that type, name, 004431 ** and tbl_name fields of the sqlite_schema table. This is normally 004432 ** on, but it is sometimes useful to turn it off for testing. 004433 ** 004434 ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the 004435 ** verification of rootpage numbers when parsing the schema. This 004436 ** is useful to make it easier to reach strange internal error states 004437 ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled 004438 ** in production. 004439 */ 004440 case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: { 004441 sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int); 004442 break; 004443 } 004444 004445 /* Set the threshold at which OP_Once counters reset back to zero. 004446 ** By default this is 0x7ffffffe (over 2 billion), but that value is 004447 ** too big to test in a reasonable amount of time, so this control is 004448 ** provided to set a small and easily reachable reset value. 004449 */ 004450 case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { 004451 sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); 004452 break; 004453 } 004454 004455 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 004456 ** 004457 ** Set the VDBE coverage callback function to xCallback with context 004458 ** pointer ptr. 004459 */ 004460 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 004461 #ifdef SQLITE_VDBE_COVERAGE 004462 typedef void (*branch_callback)(void*,unsigned int, 004463 unsigned char,unsigned char); 004464 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 004465 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 004466 #endif 004467 break; 004468 } 004469 004470 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 004471 case SQLITE_TESTCTRL_SORTER_MMAP: { 004472 sqlite3 *db = va_arg(ap, sqlite3*); 004473 db->nMaxSorterMmap = va_arg(ap, int); 004474 break; 004475 } 004476 004477 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 004478 ** 004479 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 004480 ** not. 004481 */ 004482 case SQLITE_TESTCTRL_ISINIT: { 004483 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 004484 break; 004485 } 004486 004487 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 004488 ** 004489 ** This test control is used to create imposter tables. "db" is a pointer 004490 ** to the database connection. dbName is the database name (ex: "main" or 004491 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 004492 ** or off. "tnum" is the root page of the b-tree to which the imposter 004493 ** table should connect. 004494 ** 004495 ** Enable imposter mode only when the schema has already been parsed. Then 004496 ** run a single CREATE TABLE statement to construct the imposter table in 004497 ** the parsed schema. Then turn imposter mode back off again. 004498 ** 004499 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 004500 ** the schema to be reparsed the next time it is needed. This has the 004501 ** effect of erasing all imposter tables. 004502 */ 004503 case SQLITE_TESTCTRL_IMPOSTER: { 004504 sqlite3 *db = va_arg(ap, sqlite3*); 004505 int iDb; 004506 sqlite3_mutex_enter(db->mutex); 004507 iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 004508 if( iDb>=0 ){ 004509 db->init.iDb = iDb; 004510 db->init.busy = db->init.imposterTable = va_arg(ap,int); 004511 db->init.newTnum = va_arg(ap,int); 004512 if( db->init.busy==0 && db->init.newTnum>0 ){ 004513 sqlite3ResetAllSchemasOfConnection(db); 004514 } 004515 } 004516 sqlite3_mutex_leave(db->mutex); 004517 break; 004518 } 004519 004520 #if defined(YYCOVERAGE) 004521 /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out) 004522 ** 004523 ** This test control (only available when SQLite is compiled with 004524 ** -DYYCOVERAGE) writes a report onto "out" that shows all 004525 ** state/lookahead combinations in the parser state machine 004526 ** which are never exercised. If any state is missed, make the 004527 ** return code SQLITE_ERROR. 004528 */ 004529 case SQLITE_TESTCTRL_PARSER_COVERAGE: { 004530 FILE *out = va_arg(ap, FILE*); 004531 if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; 004532 break; 004533 } 004534 #endif /* defined(YYCOVERAGE) */ 004535 004536 /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*); 004537 ** 004538 ** This test-control causes the most recent sqlite3_result_int64() value 004539 ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally, 004540 ** MEM_IntReal values only arise during an INSERT operation of integer 004541 ** values into a REAL column, so they can be challenging to test. This 004542 ** test-control enables us to write an intreal() SQL function that can 004543 ** inject an intreal() value at arbitrary places in an SQL statement, 004544 ** for testing purposes. 004545 */ 004546 case SQLITE_TESTCTRL_RESULT_INTREAL: { 004547 sqlite3_context *pCtx = va_arg(ap, sqlite3_context*); 004548 sqlite3ResultIntReal(pCtx); 004549 break; 004550 } 004551 004552 /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT, 004553 ** sqlite3 *db, // Database connection 004554 ** u64 *pnSeek // Write seek count here 004555 ** ); 004556 ** 004557 ** This test-control queries the seek-counter on the "main" database 004558 ** file. The seek-counter is written into *pnSeek and is then reset. 004559 ** The seek-count is only available if compiled with SQLITE_DEBUG. 004560 */ 004561 case SQLITE_TESTCTRL_SEEK_COUNT: { 004562 sqlite3 *db = va_arg(ap, sqlite3*); 004563 u64 *pn = va_arg(ap, sqlite3_uint64*); 004564 *pn = sqlite3BtreeSeekCount(db->aDb->pBt); 004565 (void)db; /* Silence harmless unused variable warning */ 004566 break; 004567 } 004568 004569 /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) 004570 ** 004571 ** "ptr" is a pointer to a u32. 004572 ** 004573 ** op==0 Store the current sqlite3TreeTrace in *ptr 004574 ** op==1 Set sqlite3TreeTrace to the value *ptr 004575 ** op==2 Store the current sqlite3WhereTrace in *ptr 004576 ** op==3 Set sqlite3WhereTrace to the value *ptr 004577 */ 004578 case SQLITE_TESTCTRL_TRACEFLAGS: { 004579 int opTrace = va_arg(ap, int); 004580 u32 *ptr = va_arg(ap, u32*); 004581 switch( opTrace ){ 004582 case 0: *ptr = sqlite3TreeTrace; break; 004583 case 1: sqlite3TreeTrace = *ptr; break; 004584 case 2: *ptr = sqlite3WhereTrace; break; 004585 case 3: sqlite3WhereTrace = *ptr; break; 004586 } 004587 break; 004588 } 004589 004590 /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST, 004591 ** double fIn, // Input value 004592 ** int *pLogEst, // sqlite3LogEstFromDouble(fIn) 004593 ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst) 004594 ** int *pLogEst2 // sqlite3LogEst(*pInt) 004595 ** ); 004596 ** 004597 ** Test access for the LogEst conversion routines. 004598 */ 004599 case SQLITE_TESTCTRL_LOGEST: { 004600 double rIn = va_arg(ap, double); 004601 LogEst rLogEst = sqlite3LogEstFromDouble(rIn); 004602 int *pI1 = va_arg(ap,int*); 004603 u64 *pU64 = va_arg(ap,u64*); 004604 int *pI2 = va_arg(ap,int*); 004605 *pI1 = rLogEst; 004606 *pU64 = sqlite3LogEstToInt(rLogEst); 004607 *pI2 = sqlite3LogEst(*pU64); 004608 break; 004609 } 004610 004611 #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) 004612 /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) 004613 ** 004614 ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value 004615 ** of the id-th tuning parameter to *piValue. If "id" is between -1 004616 ** and -SQLITE_NTUNE, then write the current value of the (-id)-th 004617 ** tuning parameter into *piValue. 004618 ** 004619 ** Tuning parameters are for use during transient development builds, 004620 ** to help find the best values for constants in the query planner. 004621 ** Access tuning parameters using the Tuning(ID) macro. Set the 004622 ** parameters in the CLI using ".testctrl tune ID VALUE". 004623 ** 004624 ** Transient use only. Tuning parameters should not be used in 004625 ** checked-in code. 004626 */ 004627 case SQLITE_TESTCTRL_TUNE: { 004628 int id = va_arg(ap, int); 004629 int *piValue = va_arg(ap, int*); 004630 if( id>0 && id<=SQLITE_NTUNE ){ 004631 Tuning(id) = *piValue; 004632 }else if( id<0 && id>=-SQLITE_NTUNE ){ 004633 *piValue = Tuning(-id); 004634 }else{ 004635 rc = SQLITE_NOTFOUND; 004636 } 004637 break; 004638 } 004639 #endif 004640 004641 /* sqlite3_test_control(SQLITE_TESTCTRL_JSON_SELFCHECK, &onOff); 004642 ** 004643 ** Activate or deactivate validation of JSONB that is generated from 004644 ** text. Off by default, as the validation is slow. Validation is 004645 ** only available if compiled using SQLITE_DEBUG. 004646 ** 004647 ** If onOff is initially 1, then turn it on. If onOff is initially 004648 ** off, turn it off. If onOff is initially -1, then change onOff 004649 ** to be the current setting. 004650 */ 004651 case SQLITE_TESTCTRL_JSON_SELFCHECK: { 004652 #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) 004653 int *pOnOff = va_arg(ap, int*); 004654 if( *pOnOff<0 ){ 004655 *pOnOff = sqlite3Config.bJsonSelfcheck; 004656 }else{ 004657 sqlite3Config.bJsonSelfcheck = (u8)((*pOnOff)&0xff); 004658 } 004659 #endif 004660 break; 004661 } 004662 } 004663 va_end(ap); 004664 #endif /* SQLITE_UNTESTABLE */ 004665 return rc; 004666 } 004667 004668 /* 004669 ** The Pager stores the Database filename, Journal filename, and WAL filename 004670 ** consecutively in memory, in that order. The database filename is prefixed 004671 ** by four zero bytes. Locate the start of the database filename by searching 004672 ** backwards for the first byte following four consecutive zero bytes. 004673 ** 004674 ** This only works if the filename passed in was obtained from the Pager. 004675 */ 004676 static const char *databaseName(const char *zName){ 004677 while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ 004678 zName--; 004679 } 004680 return zName; 004681 } 004682 004683 /* 004684 ** Append text z[] to the end of p[]. Return a pointer to the first 004685 ** character after then zero terminator on the new text in p[]. 004686 */ 004687 static char *appendText(char *p, const char *z){ 004688 size_t n = strlen(z); 004689 memcpy(p, z, n+1); 004690 return p+n+1; 004691 } 004692 004693 /* 004694 ** Allocate memory to hold names for a database, journal file, WAL file, 004695 ** and query parameters. The pointer returned is valid for use by 004696 ** sqlite3_filename_database() and sqlite3_uri_parameter() and related 004697 ** functions. 004698 ** 004699 ** Memory layout must be compatible with that generated by the pager 004700 ** and expected by sqlite3_uri_parameter() and databaseName(). 004701 */ 004702 const char *sqlite3_create_filename( 004703 const char *zDatabase, 004704 const char *zJournal, 004705 const char *zWal, 004706 int nParam, 004707 const char **azParam 004708 ){ 004709 sqlite3_int64 nByte; 004710 int i; 004711 char *pResult, *p; 004712 nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10; 004713 for(i=0; i<nParam*2; i++){ 004714 nByte += strlen(azParam[i])+1; 004715 } 004716 pResult = p = sqlite3_malloc64( nByte ); 004717 if( p==0 ) return 0; 004718 memset(p, 0, 4); 004719 p += 4; 004720 p = appendText(p, zDatabase); 004721 for(i=0; i<nParam*2; i++){ 004722 p = appendText(p, azParam[i]); 004723 } 004724 *(p++) = 0; 004725 p = appendText(p, zJournal); 004726 p = appendText(p, zWal); 004727 *(p++) = 0; 004728 *(p++) = 0; 004729 assert( (sqlite3_int64)(p - pResult)==nByte ); 004730 return pResult + 4; 004731 } 004732 004733 /* 004734 ** Free memory obtained from sqlite3_create_filename(). It is a severe 004735 ** error to call this routine with any parameter other than a pointer 004736 ** previously obtained from sqlite3_create_filename() or a NULL pointer. 004737 */ 004738 void sqlite3_free_filename(const char *p){ 004739 if( p==0 ) return; 004740 p = databaseName(p); 004741 sqlite3_free((char*)p - 4); 004742 } 004743 004744 004745 /* 004746 ** This is a utility routine, useful to VFS implementations, that checks 004747 ** to see if a database file was a URI that contained a specific query 004748 ** parameter, and if so obtains the value of the query parameter. 004749 ** 004750 ** The zFilename argument is the filename pointer passed into the xOpen() 004751 ** method of a VFS implementation. The zParam argument is the name of the 004752 ** query parameter we seek. This routine returns the value of the zParam 004753 ** parameter if it exists. If the parameter does not exist, this routine 004754 ** returns a NULL pointer. 004755 */ 004756 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 004757 if( zFilename==0 || zParam==0 ) return 0; 004758 zFilename = databaseName(zFilename); 004759 return uriParameter(zFilename, zParam); 004760 } 004761 004762 /* 004763 ** Return a pointer to the name of Nth query parameter of the filename. 004764 */ 004765 const char *sqlite3_uri_key(const char *zFilename, int N){ 004766 if( zFilename==0 || N<0 ) return 0; 004767 zFilename = databaseName(zFilename); 004768 zFilename += sqlite3Strlen30(zFilename) + 1; 004769 while( ALWAYS(zFilename) && zFilename[0] && (N--)>0 ){ 004770 zFilename += sqlite3Strlen30(zFilename) + 1; 004771 zFilename += sqlite3Strlen30(zFilename) + 1; 004772 } 004773 return zFilename[0] ? zFilename : 0; 004774 } 004775 004776 /* 004777 ** Return a boolean value for a query parameter. 004778 */ 004779 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 004780 const char *z = sqlite3_uri_parameter(zFilename, zParam); 004781 bDflt = bDflt!=0; 004782 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 004783 } 004784 004785 /* 004786 ** Return a 64-bit integer value for a query parameter. 004787 */ 004788 sqlite3_int64 sqlite3_uri_int64( 004789 const char *zFilename, /* Filename as passed to xOpen */ 004790 const char *zParam, /* URI parameter sought */ 004791 sqlite3_int64 bDflt /* return if parameter is missing */ 004792 ){ 004793 const char *z = sqlite3_uri_parameter(zFilename, zParam); 004794 sqlite3_int64 v; 004795 if( z && sqlite3DecOrHexToI64(z, &v)==0 ){ 004796 bDflt = v; 004797 } 004798 return bDflt; 004799 } 004800 004801 /* 004802 ** Translate a filename that was handed to a VFS routine into the corresponding 004803 ** database, journal, or WAL file. 004804 ** 004805 ** It is an error to pass this routine a filename string that was not 004806 ** passed into the VFS from the SQLite core. Doing so is similar to 004807 ** passing free() a pointer that was not obtained from malloc() - it is 004808 ** an error that we cannot easily detect but that will likely cause memory 004809 ** corruption. 004810 */ 004811 const char *sqlite3_filename_database(const char *zFilename){ 004812 if( zFilename==0 ) return 0; 004813 return databaseName(zFilename); 004814 } 004815 const char *sqlite3_filename_journal(const char *zFilename){ 004816 if( zFilename==0 ) return 0; 004817 zFilename = databaseName(zFilename); 004818 zFilename += sqlite3Strlen30(zFilename) + 1; 004819 while( ALWAYS(zFilename) && zFilename[0] ){ 004820 zFilename += sqlite3Strlen30(zFilename) + 1; 004821 zFilename += sqlite3Strlen30(zFilename) + 1; 004822 } 004823 return zFilename + 1; 004824 } 004825 const char *sqlite3_filename_wal(const char *zFilename){ 004826 #ifdef SQLITE_OMIT_WAL 004827 return 0; 004828 #else 004829 zFilename = sqlite3_filename_journal(zFilename); 004830 if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1; 004831 return zFilename; 004832 #endif 004833 } 004834 004835 /* 004836 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 004837 */ 004838 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 004839 int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; 004840 return iDb<0 ? 0 : db->aDb[iDb].pBt; 004841 } 004842 004843 /* 004844 ** Return the name of the N-th database schema. Return NULL if N is out 004845 ** of range. 004846 */ 004847 const char *sqlite3_db_name(sqlite3 *db, int N){ 004848 #ifdef SQLITE_ENABLE_API_ARMOR 004849 if( !sqlite3SafetyCheckOk(db) ){ 004850 (void)SQLITE_MISUSE_BKPT; 004851 return 0; 004852 } 004853 #endif 004854 if( N<0 || N>=db->nDb ){ 004855 return 0; 004856 }else{ 004857 return db->aDb[N].zDbSName; 004858 } 004859 } 004860 004861 /* 004862 ** Return the filename of the database associated with a database 004863 ** connection. 004864 */ 004865 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 004866 Btree *pBt; 004867 #ifdef SQLITE_ENABLE_API_ARMOR 004868 if( !sqlite3SafetyCheckOk(db) ){ 004869 (void)SQLITE_MISUSE_BKPT; 004870 return 0; 004871 } 004872 #endif 004873 pBt = sqlite3DbNameToBtree(db, zDbName); 004874 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 004875 } 004876 004877 /* 004878 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 004879 ** no such database exists. 004880 */ 004881 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 004882 Btree *pBt; 004883 #ifdef SQLITE_ENABLE_API_ARMOR 004884 if( !sqlite3SafetyCheckOk(db) ){ 004885 (void)SQLITE_MISUSE_BKPT; 004886 return -1; 004887 } 004888 #endif 004889 pBt = sqlite3DbNameToBtree(db, zDbName); 004890 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 004891 } 004892 004893 #ifdef SQLITE_ENABLE_SNAPSHOT 004894 /* 004895 ** Obtain a snapshot handle for the snapshot of database zDb currently 004896 ** being read by handle db. 004897 */ 004898 int sqlite3_snapshot_get( 004899 sqlite3 *db, 004900 const char *zDb, 004901 sqlite3_snapshot **ppSnapshot 004902 ){ 004903 int rc = SQLITE_ERROR; 004904 #ifndef SQLITE_OMIT_WAL 004905 004906 #ifdef SQLITE_ENABLE_API_ARMOR 004907 if( !sqlite3SafetyCheckOk(db) ){ 004908 return SQLITE_MISUSE_BKPT; 004909 } 004910 #endif 004911 sqlite3_mutex_enter(db->mutex); 004912 004913 if( db->autoCommit==0 ){ 004914 int iDb = sqlite3FindDbName(db, zDb); 004915 if( iDb==0 || iDb>1 ){ 004916 Btree *pBt = db->aDb[iDb].pBt; 004917 if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){ 004918 Pager *pPager = sqlite3BtreePager(pBt); 004919 i64 dummy = 0; 004920 sqlite3PagerSnapshotOpen(pPager, (sqlite3_snapshot*)&dummy); 004921 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 004922 sqlite3PagerSnapshotOpen(pPager, 0); 004923 if( rc==SQLITE_OK ){ 004924 rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); 004925 } 004926 } 004927 } 004928 } 004929 004930 sqlite3_mutex_leave(db->mutex); 004931 #endif /* SQLITE_OMIT_WAL */ 004932 return rc; 004933 } 004934 004935 /* 004936 ** Open a read-transaction on the snapshot identified by pSnapshot. 004937 */ 004938 int sqlite3_snapshot_open( 004939 sqlite3 *db, 004940 const char *zDb, 004941 sqlite3_snapshot *pSnapshot 004942 ){ 004943 int rc = SQLITE_ERROR; 004944 #ifndef SQLITE_OMIT_WAL 004945 004946 #ifdef SQLITE_ENABLE_API_ARMOR 004947 if( !sqlite3SafetyCheckOk(db) ){ 004948 return SQLITE_MISUSE_BKPT; 004949 } 004950 #endif 004951 sqlite3_mutex_enter(db->mutex); 004952 if( db->autoCommit==0 ){ 004953 int iDb; 004954 iDb = sqlite3FindDbName(db, zDb); 004955 if( iDb==0 || iDb>1 ){ 004956 Btree *pBt = db->aDb[iDb].pBt; 004957 if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){ 004958 Pager *pPager = sqlite3BtreePager(pBt); 004959 int bUnlock = 0; 004960 if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){ 004961 if( db->nVdbeActive==0 ){ 004962 rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot); 004963 if( rc==SQLITE_OK ){ 004964 bUnlock = 1; 004965 rc = sqlite3BtreeCommit(pBt); 004966 } 004967 } 004968 }else{ 004969 rc = SQLITE_OK; 004970 } 004971 if( rc==SQLITE_OK ){ 004972 rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot); 004973 } 004974 if( rc==SQLITE_OK ){ 004975 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 004976 sqlite3PagerSnapshotOpen(pPager, 0); 004977 } 004978 if( bUnlock ){ 004979 sqlite3PagerSnapshotUnlock(pPager); 004980 } 004981 } 004982 } 004983 } 004984 004985 sqlite3_mutex_leave(db->mutex); 004986 #endif /* SQLITE_OMIT_WAL */ 004987 return rc; 004988 } 004989 004990 /* 004991 ** Recover as many snapshots as possible from the wal file associated with 004992 ** schema zDb of database db. 004993 */ 004994 int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ 004995 int rc = SQLITE_ERROR; 004996 #ifndef SQLITE_OMIT_WAL 004997 int iDb; 004998 004999 #ifdef SQLITE_ENABLE_API_ARMOR 005000 if( !sqlite3SafetyCheckOk(db) ){ 005001 return SQLITE_MISUSE_BKPT; 005002 } 005003 #endif 005004 005005 sqlite3_mutex_enter(db->mutex); 005006 iDb = sqlite3FindDbName(db, zDb); 005007 if( iDb==0 || iDb>1 ){ 005008 Btree *pBt = db->aDb[iDb].pBt; 005009 if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){ 005010 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 005011 if( rc==SQLITE_OK ){ 005012 rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); 005013 sqlite3BtreeCommit(pBt); 005014 } 005015 } 005016 } 005017 sqlite3_mutex_leave(db->mutex); 005018 #endif /* SQLITE_OMIT_WAL */ 005019 return rc; 005020 } 005021 005022 /* 005023 ** Free a snapshot handle obtained from sqlite3_snapshot_get(). 005024 */ 005025 void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ 005026 sqlite3_free(pSnapshot); 005027 } 005028 #endif /* SQLITE_ENABLE_SNAPSHOT */ 005029 005030 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 005031 /* 005032 ** Given the name of a compile-time option, return true if that option 005033 ** was used and false if not. 005034 ** 005035 ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix 005036 ** is not required for a match. 005037 */ 005038 int sqlite3_compileoption_used(const char *zOptName){ 005039 int i, n; 005040 int nOpt; 005041 const char **azCompileOpt; 005042 005043 #ifdef SQLITE_ENABLE_API_ARMOR 005044 if( zOptName==0 ){ 005045 (void)SQLITE_MISUSE_BKPT; 005046 return 0; 005047 } 005048 #endif 005049 005050 azCompileOpt = sqlite3CompileOptions(&nOpt); 005051 005052 if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; 005053 n = sqlite3Strlen30(zOptName); 005054 005055 /* Since nOpt is normally in single digits, a linear search is 005056 ** adequate. No need for a binary search. */ 005057 for(i=0; i<nOpt; i++){ 005058 if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0 005059 && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0 005060 ){ 005061 return 1; 005062 } 005063 } 005064 return 0; 005065 } 005066 005067 /* 005068 ** Return the N-th compile-time option string. If N is out of range, 005069 ** return a NULL pointer. 005070 */ 005071 const char *sqlite3_compileoption_get(int N){ 005072 int nOpt; 005073 const char **azCompileOpt; 005074 azCompileOpt = sqlite3CompileOptions(&nOpt); 005075 if( N>=0 && N<nOpt ){ 005076 return azCompileOpt[N]; 005077 } 005078 return 0; 005079 } 005080 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */