000001 /* 000002 ** 2005 May 25 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains the implementation of the sqlite3_prepare() 000013 ** interface, and routines that contribute to loading the database schema 000014 ** from disk. 000015 */ 000016 #include "sqliteInt.h" 000017 000018 /* 000019 ** Fill the InitData structure with an error message that indicates 000020 ** that the database is corrupt. 000021 */ 000022 static void corruptSchema( 000023 InitData *pData, /* Initialization context */ 000024 char **azObj, /* Type and name of object being parsed */ 000025 const char *zExtra /* Error information */ 000026 ){ 000027 sqlite3 *db = pData->db; 000028 if( db->mallocFailed ){ 000029 pData->rc = SQLITE_NOMEM_BKPT; 000030 }else if( pData->pzErrMsg[0]!=0 ){ 000031 /* A error message has already been generated. Do not overwrite it */ 000032 }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){ 000033 static const char *azAlterType[] = { 000034 "rename", 000035 "drop column", 000036 "add column" 000037 }; 000038 *pData->pzErrMsg = sqlite3MPrintf(db, 000039 "error in %s %s after %s: %s", azObj[0], azObj[1], 000040 azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1], 000041 zExtra 000042 ); 000043 pData->rc = SQLITE_ERROR; 000044 }else if( db->flags & SQLITE_WriteSchema ){ 000045 pData->rc = SQLITE_CORRUPT_BKPT; 000046 }else{ 000047 char *z; 000048 const char *zObj = azObj[1] ? azObj[1] : "?"; 000049 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 000050 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 000051 *pData->pzErrMsg = z; 000052 pData->rc = SQLITE_CORRUPT_BKPT; 000053 } 000054 } 000055 000056 /* 000057 ** Check to see if any sibling index (another index on the same table) 000058 ** of pIndex has the same root page number, and if it does, return true. 000059 ** This would indicate a corrupt schema. 000060 */ 000061 int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ 000062 Index *p; 000063 for(p=pIndex->pTable->pIndex; p; p=p->pNext){ 000064 if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; 000065 } 000066 return 0; 000067 } 000068 000069 /* forward declaration */ 000070 static int sqlite3Prepare( 000071 sqlite3 *db, /* Database handle. */ 000072 const char *zSql, /* UTF-8 encoded SQL statement. */ 000073 int nBytes, /* Length of zSql in bytes. */ 000074 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000075 Vdbe *pReprepare, /* VM being reprepared */ 000076 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000077 const char **pzTail /* OUT: End of parsed string */ 000078 ); 000079 000080 000081 /* 000082 ** This is the callback routine for the code that initializes the 000083 ** database. See sqlite3Init() below for additional information. 000084 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 000085 ** 000086 ** Each callback contains the following information: 000087 ** 000088 ** argv[0] = type of object: "table", "index", "trigger", or "view". 000089 ** argv[1] = name of thing being created 000090 ** argv[2] = associated table if an index or trigger 000091 ** argv[3] = root page number for table or index. 0 for trigger or view. 000092 ** argv[4] = SQL text for the CREATE statement. 000093 ** 000094 */ 000095 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 000096 InitData *pData = (InitData*)pInit; 000097 sqlite3 *db = pData->db; 000098 int iDb = pData->iDb; 000099 000100 assert( argc==5 ); 000101 UNUSED_PARAMETER2(NotUsed, argc); 000102 assert( sqlite3_mutex_held(db->mutex) ); 000103 db->mDbFlags |= DBFLAG_EncodingFixed; 000104 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 000105 pData->nInitRow++; 000106 if( db->mallocFailed ){ 000107 corruptSchema(pData, argv, 0); 000108 return 1; 000109 } 000110 000111 assert( iDb>=0 && iDb<db->nDb ); 000112 if( argv[3]==0 ){ 000113 corruptSchema(pData, argv, 0); 000114 }else if( argv[4] 000115 && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] 000116 && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ 000117 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 000118 ** But because db->init.busy is set to 1, no VDBE code is generated 000119 ** or executed. All the parser does is build the internal data 000120 ** structures that describe the table, index, or view. 000121 ** 000122 ** No other valid SQL statement, other than the variable CREATE statements, 000123 ** can begin with the letters "C" and "R". Thus, it is not possible run 000124 ** any other kind of statement while parsing the schema, even a corrupt 000125 ** schema. 000126 */ 000127 int rc; 000128 u8 saved_iDb = db->init.iDb; 000129 sqlite3_stmt *pStmt; 000130 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 000131 000132 assert( db->init.busy ); 000133 db->init.iDb = iDb; 000134 if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 000135 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) 000136 ){ 000137 if( sqlite3Config.bExtraSchemaChecks ){ 000138 corruptSchema(pData, argv, "invalid rootpage"); 000139 } 000140 } 000141 db->init.orphanTrigger = 0; 000142 db->init.azInit = (const char**)argv; 000143 pStmt = 0; 000144 TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); 000145 rc = db->errCode; 000146 assert( (rc&0xFF)==(rcp&0xFF) ); 000147 db->init.iDb = saved_iDb; 000148 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 000149 if( SQLITE_OK!=rc ){ 000150 if( db->init.orphanTrigger ){ 000151 assert( iDb==1 ); 000152 }else{ 000153 if( rc > pData->rc ) pData->rc = rc; 000154 if( rc==SQLITE_NOMEM ){ 000155 sqlite3OomFault(db); 000156 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 000157 corruptSchema(pData, argv, sqlite3_errmsg(db)); 000158 } 000159 } 000160 } 000161 db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ 000162 sqlite3_finalize(pStmt); 000163 }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ 000164 corruptSchema(pData, argv, 0); 000165 }else{ 000166 /* If the SQL column is blank it means this is an index that 000167 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 000168 ** constraint for a CREATE TABLE. The index should have already 000169 ** been created when we processed the CREATE TABLE. All we have 000170 ** to do here is record the root page number for that index. 000171 */ 000172 Index *pIndex; 000173 pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); 000174 if( pIndex==0 ){ 000175 corruptSchema(pData, argv, "orphan index"); 000176 }else 000177 if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 000178 || pIndex->tnum<2 000179 || pIndex->tnum>pData->mxPage 000180 || sqlite3IndexHasDuplicateRootPage(pIndex) 000181 ){ 000182 if( sqlite3Config.bExtraSchemaChecks ){ 000183 corruptSchema(pData, argv, "invalid rootpage"); 000184 } 000185 } 000186 } 000187 return 0; 000188 } 000189 000190 /* 000191 ** Attempt to read the database schema and initialize internal 000192 ** data structures for a single database file. The index of the 000193 ** database file is given by iDb. iDb==0 is used for the main 000194 ** database. iDb==1 should never be used. iDb>=2 is used for 000195 ** auxiliary databases. Return one of the SQLITE_ error codes to 000196 ** indicate success or failure. 000197 */ 000198 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 000199 int rc; 000200 int i; 000201 #ifndef SQLITE_OMIT_DEPRECATED 000202 int size; 000203 #endif 000204 Db *pDb; 000205 char const *azArg[6]; 000206 int meta[5]; 000207 InitData initData; 000208 const char *zSchemaTabName; 000209 int openedTransaction = 0; 000210 int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); 000211 000212 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 000213 assert( iDb>=0 && iDb<db->nDb ); 000214 assert( db->aDb[iDb].pSchema ); 000215 assert( sqlite3_mutex_held(db->mutex) ); 000216 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 000217 000218 db->init.busy = 1; 000219 000220 /* Construct the in-memory representation schema tables (sqlite_schema or 000221 ** sqlite_temp_schema) by invoking the parser directly. The appropriate 000222 ** table name will be inserted automatically by the parser so we can just 000223 ** use the abbreviation "x" here. The parser will also automatically tag 000224 ** the schema table as read-only. */ 000225 azArg[0] = "table"; 000226 azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); 000227 azArg[2] = azArg[1]; 000228 azArg[3] = "1"; 000229 azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," 000230 "rootpage int,sql text)"; 000231 azArg[5] = 0; 000232 initData.db = db; 000233 initData.iDb = iDb; 000234 initData.rc = SQLITE_OK; 000235 initData.pzErrMsg = pzErrMsg; 000236 initData.mInitFlags = mFlags; 000237 initData.nInitRow = 0; 000238 initData.mxPage = 0; 000239 sqlite3InitCallback(&initData, 5, (char **)azArg, 0); 000240 db->mDbFlags &= mask; 000241 if( initData.rc ){ 000242 rc = initData.rc; 000243 goto error_out; 000244 } 000245 000246 /* Create a cursor to hold the database open 000247 */ 000248 pDb = &db->aDb[iDb]; 000249 if( pDb->pBt==0 ){ 000250 assert( iDb==1 ); 000251 DbSetProperty(db, 1, DB_SchemaLoaded); 000252 rc = SQLITE_OK; 000253 goto error_out; 000254 } 000255 000256 /* If there is not already a read-only (or read-write) transaction opened 000257 ** on the b-tree database, open one now. If a transaction is opened, it 000258 ** will be closed before this function returns. */ 000259 sqlite3BtreeEnter(pDb->pBt); 000260 if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ 000261 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 000262 if( rc!=SQLITE_OK ){ 000263 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 000264 goto initone_error_out; 000265 } 000266 openedTransaction = 1; 000267 } 000268 000269 /* Get the database meta information. 000270 ** 000271 ** Meta values are as follows: 000272 ** meta[0] Schema cookie. Changes with each schema change. 000273 ** meta[1] File format of schema layer. 000274 ** meta[2] Size of the page cache. 000275 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 000276 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 000277 ** meta[5] User version 000278 ** meta[6] Incremental vacuum mode 000279 ** meta[7] unused 000280 ** meta[8] unused 000281 ** meta[9] unused 000282 ** 000283 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 000284 ** the possible values of meta[4]. 000285 */ 000286 for(i=0; i<ArraySize(meta); i++){ 000287 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 000288 } 000289 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 000290 memset(meta, 0, sizeof(meta)); 000291 } 000292 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 000293 000294 /* If opening a non-empty database, check the text encoding. For the 000295 ** main database, set sqlite3.enc to the encoding of the main database. 000296 ** For an attached db, it is an error if the encoding is not the same 000297 ** as sqlite3.enc. 000298 */ 000299 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 000300 if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 000301 u8 encoding; 000302 #ifndef SQLITE_OMIT_UTF16 000303 /* If opening the main database, set ENC(db). */ 000304 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 000305 if( encoding==0 ) encoding = SQLITE_UTF8; 000306 #else 000307 encoding = SQLITE_UTF8; 000308 #endif 000309 sqlite3SetTextEncoding(db, encoding); 000310 }else{ 000311 /* If opening an attached database, the encoding much match ENC(db) */ 000312 if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ 000313 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 000314 " text encoding as main database"); 000315 rc = SQLITE_ERROR; 000316 goto initone_error_out; 000317 } 000318 } 000319 } 000320 pDb->pSchema->enc = ENC(db); 000321 000322 if( pDb->pSchema->cache_size==0 ){ 000323 #ifndef SQLITE_OMIT_DEPRECATED 000324 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 000325 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 000326 pDb->pSchema->cache_size = size; 000327 #else 000328 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 000329 #endif 000330 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 000331 } 000332 000333 /* 000334 ** file_format==1 Version 3.0.0. 000335 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 000336 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 000337 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 000338 */ 000339 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 000340 if( pDb->pSchema->file_format==0 ){ 000341 pDb->pSchema->file_format = 1; 000342 } 000343 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 000344 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 000345 rc = SQLITE_ERROR; 000346 goto initone_error_out; 000347 } 000348 000349 /* Ticket #2804: When we open a database in the newer file format, 000350 ** clear the legacy_file_format pragma flag so that a VACUUM will 000351 ** not downgrade the database and thus invalidate any descending 000352 ** indices that the user might have created. 000353 */ 000354 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 000355 db->flags &= ~(u64)SQLITE_LegacyFileFmt; 000356 } 000357 000358 /* Read the schema information out of the schema tables 000359 */ 000360 assert( db->init.busy ); 000361 initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); 000362 { 000363 char *zSql; 000364 zSql = sqlite3MPrintf(db, 000365 "SELECT*FROM\"%w\".%s ORDER BY rowid", 000366 db->aDb[iDb].zDbSName, zSchemaTabName); 000367 #ifndef SQLITE_OMIT_AUTHORIZATION 000368 { 000369 sqlite3_xauth xAuth; 000370 xAuth = db->xAuth; 000371 db->xAuth = 0; 000372 #endif 000373 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 000374 #ifndef SQLITE_OMIT_AUTHORIZATION 000375 db->xAuth = xAuth; 000376 } 000377 #endif 000378 if( rc==SQLITE_OK ) rc = initData.rc; 000379 sqlite3DbFree(db, zSql); 000380 #ifndef SQLITE_OMIT_ANALYZE 000381 if( rc==SQLITE_OK ){ 000382 sqlite3AnalysisLoad(db, iDb); 000383 } 000384 #endif 000385 } 000386 assert( pDb == &(db->aDb[iDb]) ); 000387 if( db->mallocFailed ){ 000388 rc = SQLITE_NOMEM_BKPT; 000389 sqlite3ResetAllSchemasOfConnection(db); 000390 pDb = &db->aDb[iDb]; 000391 }else 000392 if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){ 000393 /* Hack: If the SQLITE_NoSchemaError flag is set, then consider 000394 ** the schema loaded, even if errors (other than OOM) occurred. In 000395 ** this situation the current sqlite3_prepare() operation will fail, 000396 ** but the following one will attempt to compile the supplied statement 000397 ** against whatever subset of the schema was loaded before the error 000398 ** occurred. 000399 ** 000400 ** The primary purpose of this is to allow access to the sqlite_schema 000401 ** table even when its contents have been corrupted. 000402 */ 000403 DbSetProperty(db, iDb, DB_SchemaLoaded); 000404 rc = SQLITE_OK; 000405 } 000406 000407 /* Jump here for an error that occurs after successfully allocating 000408 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 000409 ** before that point, jump to error_out. 000410 */ 000411 initone_error_out: 000412 if( openedTransaction ){ 000413 sqlite3BtreeCommit(pDb->pBt); 000414 } 000415 sqlite3BtreeLeave(pDb->pBt); 000416 000417 error_out: 000418 if( rc ){ 000419 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 000420 sqlite3OomFault(db); 000421 } 000422 sqlite3ResetOneSchema(db, iDb); 000423 } 000424 db->init.busy = 0; 000425 return rc; 000426 } 000427 000428 /* 000429 ** Initialize all database files - the main database file, the file 000430 ** used to store temporary tables, and any additional database files 000431 ** created using ATTACH statements. Return a success code. If an 000432 ** error occurs, write an error message into *pzErrMsg. 000433 ** 000434 ** After a database is initialized, the DB_SchemaLoaded bit is set 000435 ** bit is set in the flags field of the Db structure. 000436 */ 000437 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 000438 int i, rc; 000439 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 000440 000441 assert( sqlite3_mutex_held(db->mutex) ); 000442 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 000443 assert( db->init.busy==0 ); 000444 ENC(db) = SCHEMA_ENC(db); 000445 assert( db->nDb>0 ); 000446 /* Do the main schema first */ 000447 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 000448 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 000449 if( rc ) return rc; 000450 } 000451 /* All other schemas after the main schema. The "temp" schema must be last */ 000452 for(i=db->nDb-1; i>0; i--){ 000453 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 000454 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 000455 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 000456 if( rc ) return rc; 000457 } 000458 } 000459 if( commit_internal ){ 000460 sqlite3CommitInternalChanges(db); 000461 } 000462 return SQLITE_OK; 000463 } 000464 000465 /* 000466 ** This routine is a no-op if the database schema is already initialized. 000467 ** Otherwise, the schema is loaded. An error code is returned. 000468 */ 000469 int sqlite3ReadSchema(Parse *pParse){ 000470 int rc = SQLITE_OK; 000471 sqlite3 *db = pParse->db; 000472 assert( sqlite3_mutex_held(db->mutex) ); 000473 if( !db->init.busy ){ 000474 rc = sqlite3Init(db, &pParse->zErrMsg); 000475 if( rc!=SQLITE_OK ){ 000476 pParse->rc = rc; 000477 pParse->nErr++; 000478 }else if( db->noSharedCache ){ 000479 db->mDbFlags |= DBFLAG_SchemaKnownOk; 000480 } 000481 } 000482 return rc; 000483 } 000484 000485 000486 /* 000487 ** Check schema cookies in all databases. If any cookie is out 000488 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 000489 ** make no changes to pParse->rc. 000490 */ 000491 static void schemaIsValid(Parse *pParse){ 000492 sqlite3 *db = pParse->db; 000493 int iDb; 000494 int rc; 000495 int cookie; 000496 000497 assert( pParse->checkSchema ); 000498 assert( sqlite3_mutex_held(db->mutex) ); 000499 for(iDb=0; iDb<db->nDb; iDb++){ 000500 int openedTransaction = 0; /* True if a transaction is opened */ 000501 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 000502 if( pBt==0 ) continue; 000503 000504 /* If there is not already a read-only (or read-write) transaction opened 000505 ** on the b-tree database, open one now. If a transaction is opened, it 000506 ** will be closed immediately after reading the meta-value. */ 000507 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ 000508 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 000509 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 000510 sqlite3OomFault(db); 000511 pParse->rc = SQLITE_NOMEM; 000512 } 000513 if( rc!=SQLITE_OK ) return; 000514 openedTransaction = 1; 000515 } 000516 000517 /* Read the schema cookie from the database. If it does not match the 000518 ** value stored as part of the in-memory schema representation, 000519 ** set Parse.rc to SQLITE_SCHEMA. */ 000520 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 000521 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 000522 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 000523 if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA; 000524 sqlite3ResetOneSchema(db, iDb); 000525 } 000526 000527 /* Close the transaction, if one was opened. */ 000528 if( openedTransaction ){ 000529 sqlite3BtreeCommit(pBt); 000530 } 000531 } 000532 } 000533 000534 /* 000535 ** Convert a schema pointer into the iDb index that indicates 000536 ** which database file in db->aDb[] the schema refers to. 000537 ** 000538 ** If the same database is attached more than once, the first 000539 ** attached database is returned. 000540 */ 000541 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 000542 int i = -32768; 000543 000544 /* If pSchema is NULL, then return -32768. This happens when code in 000545 ** expr.c is trying to resolve a reference to a transient table (i.e. one 000546 ** created by a sub-select). In this case the return value of this 000547 ** function should never be used. 000548 ** 000549 ** We return -32768 instead of the more usual -1 simply because using 000550 ** -32768 as the incorrect index into db->aDb[] is much 000551 ** more likely to cause a segfault than -1 (of course there are assert() 000552 ** statements too, but it never hurts to play the odds) and 000553 ** -32768 will still fit into a 16-bit signed integer. 000554 */ 000555 assert( sqlite3_mutex_held(db->mutex) ); 000556 if( pSchema ){ 000557 for(i=0; 1; i++){ 000558 assert( i<db->nDb ); 000559 if( db->aDb[i].pSchema==pSchema ){ 000560 break; 000561 } 000562 } 000563 assert( i>=0 && i<db->nDb ); 000564 } 000565 return i; 000566 } 000567 000568 /* 000569 ** Free all memory allocations in the pParse object 000570 */ 000571 void sqlite3ParseObjectReset(Parse *pParse){ 000572 sqlite3 *db = pParse->db; 000573 assert( db!=0 ); 000574 assert( db->pParse==pParse ); 000575 assert( pParse->nested==0 ); 000576 #ifndef SQLITE_OMIT_SHARED_CACHE 000577 if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock); 000578 #endif 000579 while( pParse->pCleanup ){ 000580 ParseCleanup *pCleanup = pParse->pCleanup; 000581 pParse->pCleanup = pCleanup->pNext; 000582 pCleanup->xCleanup(db, pCleanup->pPtr); 000583 sqlite3DbNNFreeNN(db, pCleanup); 000584 } 000585 if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel); 000586 if( pParse->pConstExpr ){ 000587 sqlite3ExprListDelete(db, pParse->pConstExpr); 000588 } 000589 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 000590 db->lookaside.bDisable -= pParse->disableLookaside; 000591 db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; 000592 assert( pParse->db->pParse==pParse ); 000593 db->pParse = pParse->pOuterParse; 000594 } 000595 000596 /* 000597 ** Add a new cleanup operation to a Parser. The cleanup should happen when 000598 ** the parser object is destroyed. But, beware: the cleanup might happen 000599 ** immediately. 000600 ** 000601 ** Use this mechanism for uncommon cleanups. There is a higher setup 000602 ** cost for this mechanism (an extra malloc), so it should not be used 000603 ** for common cleanups that happen on most calls. But for less 000604 ** common cleanups, we save a single NULL-pointer comparison in 000605 ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count. 000606 ** 000607 ** If a memory allocation error occurs, then the cleanup happens immediately. 000608 ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the 000609 ** pParse->earlyCleanup flag is set in that case. Calling code show verify 000610 ** that test cases exist for which this happens, to guard against possible 000611 ** use-after-free errors following an OOM. The preferred way to do this is 000612 ** to immediately follow the call to this routine with: 000613 ** 000614 ** testcase( pParse->earlyCleanup ); 000615 ** 000616 ** This routine returns a copy of its pPtr input (the third parameter) 000617 ** except if an early cleanup occurs, in which case it returns NULL. So 000618 ** another way to check for early cleanup is to check the return value. 000619 ** Or, stop using the pPtr parameter with this call and use only its 000620 ** return value thereafter. Something like this: 000621 ** 000622 ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); 000623 */ 000624 void *sqlite3ParserAddCleanup( 000625 Parse *pParse, /* Destroy when this Parser finishes */ 000626 void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ 000627 void *pPtr /* Pointer to object to be cleaned up */ 000628 ){ 000629 ParseCleanup *pCleanup; 000630 if( sqlite3FaultSim(300) ){ 000631 pCleanup = 0; 000632 sqlite3OomFault(pParse->db); 000633 }else{ 000634 pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); 000635 } 000636 if( pCleanup ){ 000637 pCleanup->pNext = pParse->pCleanup; 000638 pParse->pCleanup = pCleanup; 000639 pCleanup->pPtr = pPtr; 000640 pCleanup->xCleanup = xCleanup; 000641 }else{ 000642 xCleanup(pParse->db, pPtr); 000643 pPtr = 0; 000644 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 000645 pParse->earlyCleanup = 1; 000646 #endif 000647 } 000648 return pPtr; 000649 } 000650 000651 /* 000652 ** Turn bulk memory into a valid Parse object and link that Parse object 000653 ** into database connection db. 000654 ** 000655 ** Call sqlite3ParseObjectReset() to undo this operation. 000656 ** 000657 ** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which 000658 ** is generated by Lemon. 000659 */ 000660 void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){ 000661 memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ); 000662 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 000663 assert( db->pParse!=pParse ); 000664 pParse->pOuterParse = db->pParse; 000665 db->pParse = pParse; 000666 pParse->db = db; 000667 if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory"); 000668 } 000669 000670 /* 000671 ** Maximum number of times that we will try again to prepare a statement 000672 ** that returns SQLITE_ERROR_RETRY. 000673 */ 000674 #ifndef SQLITE_MAX_PREPARE_RETRY 000675 # define SQLITE_MAX_PREPARE_RETRY 25 000676 #endif 000677 000678 /* 000679 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 000680 */ 000681 static int sqlite3Prepare( 000682 sqlite3 *db, /* Database handle. */ 000683 const char *zSql, /* UTF-8 encoded SQL statement. */ 000684 int nBytes, /* Length of zSql in bytes. */ 000685 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000686 Vdbe *pReprepare, /* VM being reprepared */ 000687 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000688 const char **pzTail /* OUT: End of parsed string */ 000689 ){ 000690 int rc = SQLITE_OK; /* Result code */ 000691 int i; /* Loop counter */ 000692 Parse sParse; /* Parsing context */ 000693 000694 /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ 000695 memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); 000696 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 000697 sParse.pOuterParse = db->pParse; 000698 db->pParse = &sParse; 000699 sParse.db = db; 000700 if( pReprepare ){ 000701 sParse.pReprepare = pReprepare; 000702 sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare); 000703 }else{ 000704 assert( sParse.pReprepare==0 ); 000705 } 000706 assert( ppStmt && *ppStmt==0 ); 000707 if( db->mallocFailed ){ 000708 sqlite3ErrorMsg(&sParse, "out of memory"); 000709 db->errCode = rc = SQLITE_NOMEM; 000710 goto end_prepare; 000711 } 000712 assert( sqlite3_mutex_held(db->mutex) ); 000713 000714 /* For a long-term use prepared statement avoid the use of 000715 ** lookaside memory. 000716 */ 000717 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 000718 sParse.disableLookaside++; 000719 DisableLookaside; 000720 } 000721 sParse.prepFlags = prepFlags & 0xff; 000722 000723 /* Check to verify that it is possible to get a read lock on all 000724 ** database schemas. The inability to get a read lock indicates that 000725 ** some other database connection is holding a write-lock, which in 000726 ** turn means that the other connection has made uncommitted changes 000727 ** to the schema. 000728 ** 000729 ** Were we to proceed and prepare the statement against the uncommitted 000730 ** schema changes and if those schema changes are subsequently rolled 000731 ** back and different changes are made in their place, then when this 000732 ** prepared statement goes to run the schema cookie would fail to detect 000733 ** the schema change. Disaster would follow. 000734 ** 000735 ** This thread is currently holding mutexes on all Btrees (because 000736 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 000737 ** is not possible for another thread to start a new schema change 000738 ** while this routine is running. Hence, we do not need to hold 000739 ** locks on the schema, we just need to make sure nobody else is 000740 ** holding them. 000741 ** 000742 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 000743 ** but it does *not* override schema lock detection, so this all still 000744 ** works even if READ_UNCOMMITTED is set. 000745 */ 000746 if( !db->noSharedCache ){ 000747 for(i=0; i<db->nDb; i++) { 000748 Btree *pBt = db->aDb[i].pBt; 000749 if( pBt ){ 000750 assert( sqlite3BtreeHoldsMutex(pBt) ); 000751 rc = sqlite3BtreeSchemaLocked(pBt); 000752 if( rc ){ 000753 const char *zDb = db->aDb[i].zDbSName; 000754 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 000755 testcase( db->flags & SQLITE_ReadUncommit ); 000756 goto end_prepare; 000757 } 000758 } 000759 } 000760 } 000761 000762 #ifndef SQLITE_OMIT_VIRTUALTABLE 000763 if( db->pDisconnect ) sqlite3VtabUnlockList(db); 000764 #endif 000765 000766 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 000767 char *zSqlCopy; 000768 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 000769 testcase( nBytes==mxLen ); 000770 testcase( nBytes==mxLen+1 ); 000771 if( nBytes>mxLen ){ 000772 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 000773 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 000774 goto end_prepare; 000775 } 000776 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 000777 if( zSqlCopy ){ 000778 sqlite3RunParser(&sParse, zSqlCopy); 000779 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 000780 sqlite3DbFree(db, zSqlCopy); 000781 }else{ 000782 sParse.zTail = &zSql[nBytes]; 000783 } 000784 }else{ 000785 sqlite3RunParser(&sParse, zSql); 000786 } 000787 assert( 0==sParse.nQueryLoop ); 000788 000789 if( pzTail ){ 000790 *pzTail = sParse.zTail; 000791 } 000792 000793 if( db->init.busy==0 ){ 000794 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 000795 } 000796 if( db->mallocFailed ){ 000797 sParse.rc = SQLITE_NOMEM_BKPT; 000798 sParse.checkSchema = 0; 000799 } 000800 if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ 000801 if( sParse.checkSchema && db->init.busy==0 ){ 000802 schemaIsValid(&sParse); 000803 } 000804 if( sParse.pVdbe ){ 000805 sqlite3VdbeFinalize(sParse.pVdbe); 000806 } 000807 assert( 0==(*ppStmt) ); 000808 rc = sParse.rc; 000809 if( sParse.zErrMsg ){ 000810 sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg); 000811 sqlite3DbFree(db, sParse.zErrMsg); 000812 }else{ 000813 sqlite3Error(db, rc); 000814 } 000815 }else{ 000816 assert( sParse.zErrMsg==0 ); 000817 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 000818 rc = SQLITE_OK; 000819 sqlite3ErrorClear(db); 000820 } 000821 000822 000823 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 000824 while( sParse.pTriggerPrg ){ 000825 TriggerPrg *pT = sParse.pTriggerPrg; 000826 sParse.pTriggerPrg = pT->pNext; 000827 sqlite3DbFree(db, pT); 000828 } 000829 000830 end_prepare: 000831 000832 sqlite3ParseObjectReset(&sParse); 000833 return rc; 000834 } 000835 static int sqlite3LockAndPrepare( 000836 sqlite3 *db, /* Database handle. */ 000837 const char *zSql, /* UTF-8 encoded SQL statement. */ 000838 int nBytes, /* Length of zSql in bytes. */ 000839 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000840 Vdbe *pOld, /* VM being reprepared */ 000841 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000842 const char **pzTail /* OUT: End of parsed string */ 000843 ){ 000844 int rc; 000845 int cnt = 0; 000846 000847 #ifdef SQLITE_ENABLE_API_ARMOR 000848 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 000849 #endif 000850 *ppStmt = 0; 000851 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 000852 return SQLITE_MISUSE_BKPT; 000853 } 000854 sqlite3_mutex_enter(db->mutex); 000855 sqlite3BtreeEnterAll(db); 000856 do{ 000857 /* Make multiple attempts to compile the SQL, until it either succeeds 000858 ** or encounters a permanent error. A schema problem after one schema 000859 ** reset is considered a permanent error. */ 000860 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 000861 assert( rc==SQLITE_OK || *ppStmt==0 ); 000862 if( rc==SQLITE_OK || db->mallocFailed ) break; 000863 }while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY) 000864 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 000865 sqlite3BtreeLeaveAll(db); 000866 rc = sqlite3ApiExit(db, rc); 000867 assert( (rc&db->errMask)==rc ); 000868 db->busyHandler.nBusy = 0; 000869 sqlite3_mutex_leave(db->mutex); 000870 assert( rc==SQLITE_OK || (*ppStmt)==0 ); 000871 return rc; 000872 } 000873 000874 000875 /* 000876 ** Rerun the compilation of a statement after a schema change. 000877 ** 000878 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 000879 ** if the statement cannot be recompiled because another connection has 000880 ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error 000881 ** occurs, return SQLITE_SCHEMA. 000882 */ 000883 int sqlite3Reprepare(Vdbe *p){ 000884 int rc; 000885 sqlite3_stmt *pNew; 000886 const char *zSql; 000887 sqlite3 *db; 000888 u8 prepFlags; 000889 000890 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 000891 zSql = sqlite3_sql((sqlite3_stmt *)p); 000892 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 000893 db = sqlite3VdbeDb(p); 000894 assert( sqlite3_mutex_held(db->mutex) ); 000895 prepFlags = sqlite3VdbePrepareFlags(p); 000896 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 000897 if( rc ){ 000898 if( rc==SQLITE_NOMEM ){ 000899 sqlite3OomFault(db); 000900 } 000901 assert( pNew==0 ); 000902 return rc; 000903 }else{ 000904 assert( pNew!=0 ); 000905 } 000906 sqlite3VdbeSwap((Vdbe*)pNew, p); 000907 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 000908 sqlite3VdbeResetStepResult((Vdbe*)pNew); 000909 sqlite3VdbeFinalize((Vdbe*)pNew); 000910 return SQLITE_OK; 000911 } 000912 000913 000914 /* 000915 ** Two versions of the official API. Legacy and new use. In the legacy 000916 ** version, the original SQL text is not saved in the prepared statement 000917 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 000918 ** sqlite3_step(). In the new version, the original SQL text is retained 000919 ** and the statement is automatically recompiled if an schema change 000920 ** occurs. 000921 */ 000922 int sqlite3_prepare( 000923 sqlite3 *db, /* Database handle. */ 000924 const char *zSql, /* UTF-8 encoded SQL statement. */ 000925 int nBytes, /* Length of zSql in bytes. */ 000926 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000927 const char **pzTail /* OUT: End of parsed string */ 000928 ){ 000929 int rc; 000930 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 000931 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 000932 return rc; 000933 } 000934 int sqlite3_prepare_v2( 000935 sqlite3 *db, /* Database handle. */ 000936 const char *zSql, /* UTF-8 encoded SQL statement. */ 000937 int nBytes, /* Length of zSql in bytes. */ 000938 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000939 const char **pzTail /* OUT: End of parsed string */ 000940 ){ 000941 int rc; 000942 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 000943 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 000944 ** parameter. 000945 ** 000946 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 000947 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 000948 ppStmt,pzTail); 000949 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 000950 return rc; 000951 } 000952 int sqlite3_prepare_v3( 000953 sqlite3 *db, /* Database handle. */ 000954 const char *zSql, /* UTF-8 encoded SQL statement. */ 000955 int nBytes, /* Length of zSql in bytes. */ 000956 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000957 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000958 const char **pzTail /* OUT: End of parsed string */ 000959 ){ 000960 int rc; 000961 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 000962 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 000963 ** which is a bit array consisting of zero or more of the 000964 ** SQLITE_PREPARE_* flags. 000965 ** 000966 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 000967 ** directly above. */ 000968 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 000969 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 000970 0,ppStmt,pzTail); 000971 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 000972 return rc; 000973 } 000974 000975 000976 #ifndef SQLITE_OMIT_UTF16 000977 /* 000978 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 000979 */ 000980 static int sqlite3Prepare16( 000981 sqlite3 *db, /* Database handle. */ 000982 const void *zSql, /* UTF-16 encoded SQL statement. */ 000983 int nBytes, /* Length of zSql in bytes. */ 000984 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000985 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000986 const void **pzTail /* OUT: End of parsed string */ 000987 ){ 000988 /* This function currently works by first transforming the UTF-16 000989 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 000990 ** tricky bit is figuring out the pointer to return in *pzTail. 000991 */ 000992 char *zSql8; 000993 const char *zTail8 = 0; 000994 int rc = SQLITE_OK; 000995 000996 #ifdef SQLITE_ENABLE_API_ARMOR 000997 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 000998 #endif 000999 *ppStmt = 0; 001000 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 001001 return SQLITE_MISUSE_BKPT; 001002 } 001003 001004 /* Make sure nBytes is non-negative and correct. It should be the 001005 ** number of bytes until the end of the input buffer or until the first 001006 ** U+0000 character. If the input nBytes is odd, convert it into 001007 ** an even number. If the input nBytes is negative, then the input 001008 ** must be terminated by at least one U+0000 character */ 001009 if( nBytes>=0 ){ 001010 int sz; 001011 const char *z = (const char*)zSql; 001012 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 001013 nBytes = sz; 001014 }else{ 001015 int sz; 001016 const char *z = (const char*)zSql; 001017 for(sz=0; z[sz]!=0 || z[sz+1]!=0; sz += 2){} 001018 nBytes = sz; 001019 } 001020 001021 sqlite3_mutex_enter(db->mutex); 001022 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 001023 if( zSql8 ){ 001024 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 001025 } 001026 001027 if( zTail8 && pzTail ){ 001028 /* If sqlite3_prepare returns a tail pointer, we calculate the 001029 ** equivalent pointer into the UTF-16 string by counting the unicode 001030 ** characters between zSql8 and zTail8, and then returning a pointer 001031 ** the same number of characters into the UTF-16 string. 001032 */ 001033 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 001034 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, nBytes, chars_parsed); 001035 } 001036 sqlite3DbFree(db, zSql8); 001037 rc = sqlite3ApiExit(db, rc); 001038 sqlite3_mutex_leave(db->mutex); 001039 return rc; 001040 } 001041 001042 /* 001043 ** Two versions of the official API. Legacy and new use. In the legacy 001044 ** version, the original SQL text is not saved in the prepared statement 001045 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 001046 ** sqlite3_step(). In the new version, the original SQL text is retained 001047 ** and the statement is automatically recompiled if an schema change 001048 ** occurs. 001049 */ 001050 int sqlite3_prepare16( 001051 sqlite3 *db, /* Database handle. */ 001052 const void *zSql, /* UTF-16 encoded SQL statement. */ 001053 int nBytes, /* Length of zSql in bytes. */ 001054 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 001055 const void **pzTail /* OUT: End of parsed string */ 001056 ){ 001057 int rc; 001058 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 001059 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 001060 return rc; 001061 } 001062 int sqlite3_prepare16_v2( 001063 sqlite3 *db, /* Database handle. */ 001064 const void *zSql, /* UTF-16 encoded SQL statement. */ 001065 int nBytes, /* Length of zSql in bytes. */ 001066 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 001067 const void **pzTail /* OUT: End of parsed string */ 001068 ){ 001069 int rc; 001070 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 001071 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 001072 return rc; 001073 } 001074 int sqlite3_prepare16_v3( 001075 sqlite3 *db, /* Database handle. */ 001076 const void *zSql, /* UTF-16 encoded SQL statement. */ 001077 int nBytes, /* Length of zSql in bytes. */ 001078 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 001079 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 001080 const void **pzTail /* OUT: End of parsed string */ 001081 ){ 001082 int rc; 001083 rc = sqlite3Prepare16(db,zSql,nBytes, 001084 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 001085 ppStmt,pzTail); 001086 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 001087 return rc; 001088 } 001089 001090 #endif /* SQLITE_OMIT_UTF16 */