000001  /*
000002  ** 2005 May 25
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** This file contains the implementation of the sqlite3_prepare()
000013  ** interface, and routines that contribute to loading the database schema
000014  ** from disk.
000015  */
000016  #include "sqliteInt.h"
000017  
000018  /*
000019  ** Fill the InitData structure with an error message that indicates
000020  ** that the database is corrupt.
000021  */
000022  static void corruptSchema(
000023    InitData *pData,     /* Initialization context */
000024    char **azObj,        /* Type and name of object being parsed */
000025    const char *zExtra   /* Error information */
000026  ){
000027    sqlite3 *db = pData->db;
000028    if( db->mallocFailed ){
000029      pData->rc = SQLITE_NOMEM_BKPT;
000030    }else if( pData->pzErrMsg[0]!=0 ){
000031      /* A error message has already been generated.  Do not overwrite it */
000032    }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){
000033      static const char *azAlterType[] = {
000034         "rename",
000035         "drop column",
000036         "add column"
000037      };
000038      *pData->pzErrMsg = sqlite3MPrintf(db, 
000039          "error in %s %s after %s: %s", azObj[0], azObj[1], 
000040          azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1], 
000041          zExtra
000042      );
000043      pData->rc = SQLITE_ERROR;
000044    }else if( db->flags & SQLITE_WriteSchema ){
000045      pData->rc = SQLITE_CORRUPT_BKPT;
000046    }else{
000047      char *z;
000048      const char *zObj = azObj[1] ? azObj[1] : "?";
000049      z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj);
000050      if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra);
000051      *pData->pzErrMsg = z;
000052      pData->rc = SQLITE_CORRUPT_BKPT;
000053    }
000054  }
000055  
000056  /*
000057  ** Check to see if any sibling index (another index on the same table)
000058  ** of pIndex has the same root page number, and if it does, return true.
000059  ** This would indicate a corrupt schema.
000060  */
000061  int sqlite3IndexHasDuplicateRootPage(Index *pIndex){
000062    Index *p;
000063    for(p=pIndex->pTable->pIndex; p; p=p->pNext){
000064      if( p->tnum==pIndex->tnum && p!=pIndex ) return 1;
000065    }
000066    return 0;
000067  }
000068  
000069  /* forward declaration */
000070  static int sqlite3Prepare(
000071    sqlite3 *db,              /* Database handle. */
000072    const char *zSql,         /* UTF-8 encoded SQL statement. */
000073    int nBytes,               /* Length of zSql in bytes. */
000074    u32 prepFlags,            /* Zero or more SQLITE_PREPARE_* flags */
000075    Vdbe *pReprepare,         /* VM being reprepared */
000076    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000077    const char **pzTail       /* OUT: End of parsed string */
000078  );
000079  
000080  
000081  /*
000082  ** This is the callback routine for the code that initializes the
000083  ** database.  See sqlite3Init() below for additional information.
000084  ** This routine is also called from the OP_ParseSchema opcode of the VDBE.
000085  **
000086  ** Each callback contains the following information:
000087  **
000088  **     argv[0] = type of object: "table", "index", "trigger", or "view".
000089  **     argv[1] = name of thing being created
000090  **     argv[2] = associated table if an index or trigger
000091  **     argv[3] = root page number for table or index. 0 for trigger or view.
000092  **     argv[4] = SQL text for the CREATE statement.
000093  **
000094  */
000095  int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
000096    InitData *pData = (InitData*)pInit;
000097    sqlite3 *db = pData->db;
000098    int iDb = pData->iDb;
000099  
000100    assert( argc==5 );
000101    UNUSED_PARAMETER2(NotUsed, argc);
000102    assert( sqlite3_mutex_held(db->mutex) );
000103    db->mDbFlags |= DBFLAG_EncodingFixed;
000104    if( argv==0 ) return 0;   /* Might happen if EMPTY_RESULT_CALLBACKS are on */
000105    pData->nInitRow++;
000106    if( db->mallocFailed ){
000107      corruptSchema(pData, argv, 0);
000108      return 1;
000109    }
000110  
000111    assert( iDb>=0 && iDb<db->nDb );
000112    if( argv[3]==0 ){
000113      corruptSchema(pData, argv, 0);
000114    }else if( argv[4]
000115           && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]]
000116           && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){
000117      /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
000118      ** But because db->init.busy is set to 1, no VDBE code is generated
000119      ** or executed.  All the parser does is build the internal data
000120      ** structures that describe the table, index, or view.
000121      **
000122      ** No other valid SQL statement, other than the variable CREATE statements,
000123      ** can begin with the letters "C" and "R".  Thus, it is not possible run
000124      ** any other kind of statement while parsing the schema, even a corrupt
000125      ** schema.
000126      */
000127      int rc;
000128      u8 saved_iDb = db->init.iDb;
000129      sqlite3_stmt *pStmt;
000130      TESTONLY(int rcp);            /* Return code from sqlite3_prepare() */
000131  
000132      assert( db->init.busy );
000133      db->init.iDb = iDb;
000134      if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0
000135       || (db->init.newTnum>pData->mxPage && pData->mxPage>0)
000136      ){
000137        if( sqlite3Config.bExtraSchemaChecks ){
000138          corruptSchema(pData, argv, "invalid rootpage");
000139        }
000140      }
000141      db->init.orphanTrigger = 0;
000142      db->init.azInit = (const char**)argv;
000143      pStmt = 0;
000144      TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0);
000145      rc = db->errCode;
000146      assert( (rc&0xFF)==(rcp&0xFF) );
000147      db->init.iDb = saved_iDb;
000148      /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */
000149      if( SQLITE_OK!=rc ){
000150        if( db->init.orphanTrigger ){
000151          assert( iDb==1 );
000152        }else{
000153          if( rc > pData->rc ) pData->rc = rc;
000154          if( rc==SQLITE_NOMEM ){
000155            sqlite3OomFault(db);
000156          }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
000157            corruptSchema(pData, argv, sqlite3_errmsg(db));
000158          }
000159        }
000160      }
000161      db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
000162      sqlite3_finalize(pStmt);
000163    }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){
000164      corruptSchema(pData, argv, 0);
000165    }else{
000166      /* If the SQL column is blank it means this is an index that
000167      ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
000168      ** constraint for a CREATE TABLE.  The index should have already
000169      ** been created when we processed the CREATE TABLE.  All we have
000170      ** to do here is record the root page number for that index.
000171      */
000172      Index *pIndex;
000173      pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName);
000174      if( pIndex==0 ){
000175        corruptSchema(pData, argv, "orphan index");
000176      }else
000177      if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0
000178       || pIndex->tnum<2
000179       || pIndex->tnum>pData->mxPage
000180       || sqlite3IndexHasDuplicateRootPage(pIndex)
000181      ){
000182        if( sqlite3Config.bExtraSchemaChecks ){
000183          corruptSchema(pData, argv, "invalid rootpage");
000184        }
000185      }
000186    }
000187    return 0;
000188  }
000189  
000190  /*
000191  ** Attempt to read the database schema and initialize internal
000192  ** data structures for a single database file.  The index of the
000193  ** database file is given by iDb.  iDb==0 is used for the main
000194  ** database.  iDb==1 should never be used.  iDb>=2 is used for
000195  ** auxiliary databases.  Return one of the SQLITE_ error codes to
000196  ** indicate success or failure.
000197  */
000198  int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){
000199    int rc;
000200    int i;
000201  #ifndef SQLITE_OMIT_DEPRECATED
000202    int size;
000203  #endif
000204    Db *pDb;
000205    char const *azArg[6];
000206    int meta[5];
000207    InitData initData;
000208    const char *zSchemaTabName;
000209    int openedTransaction = 0;
000210    int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed);
000211  
000212    assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 );
000213    assert( iDb>=0 && iDb<db->nDb );
000214    assert( db->aDb[iDb].pSchema );
000215    assert( sqlite3_mutex_held(db->mutex) );
000216    assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
000217  
000218    db->init.busy = 1;
000219  
000220    /* Construct the in-memory representation schema tables (sqlite_schema or
000221    ** sqlite_temp_schema) by invoking the parser directly.  The appropriate
000222    ** table name will be inserted automatically by the parser so we can just
000223    ** use the abbreviation "x" here.  The parser will also automatically tag
000224    ** the schema table as read-only. */
000225    azArg[0] = "table";
000226    azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb);
000227    azArg[2] = azArg[1];
000228    azArg[3] = "1";
000229    azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text,"
000230                              "rootpage int,sql text)";
000231    azArg[5] = 0;
000232    initData.db = db;
000233    initData.iDb = iDb;
000234    initData.rc = SQLITE_OK;
000235    initData.pzErrMsg = pzErrMsg;
000236    initData.mInitFlags = mFlags;
000237    initData.nInitRow = 0;
000238    initData.mxPage = 0;
000239    sqlite3InitCallback(&initData, 5, (char **)azArg, 0);
000240    db->mDbFlags &= mask;
000241    if( initData.rc ){
000242      rc = initData.rc;
000243      goto error_out;
000244    }
000245  
000246    /* Create a cursor to hold the database open
000247    */
000248    pDb = &db->aDb[iDb];
000249    if( pDb->pBt==0 ){
000250      assert( iDb==1 );
000251      DbSetProperty(db, 1, DB_SchemaLoaded);
000252      rc = SQLITE_OK;
000253      goto error_out;
000254    }
000255  
000256    /* If there is not already a read-only (or read-write) transaction opened
000257    ** on the b-tree database, open one now. If a transaction is opened, it 
000258    ** will be closed before this function returns.  */
000259    sqlite3BtreeEnter(pDb->pBt);
000260    if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){
000261      rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0);
000262      if( rc!=SQLITE_OK ){
000263        sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc));
000264        goto initone_error_out;
000265      }
000266      openedTransaction = 1;
000267    }
000268  
000269    /* Get the database meta information.
000270    **
000271    ** Meta values are as follows:
000272    **    meta[0]   Schema cookie.  Changes with each schema change.
000273    **    meta[1]   File format of schema layer.
000274    **    meta[2]   Size of the page cache.
000275    **    meta[3]   Largest rootpage (auto/incr_vacuum mode)
000276    **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
000277    **    meta[5]   User version
000278    **    meta[6]   Incremental vacuum mode
000279    **    meta[7]   unused
000280    **    meta[8]   unused
000281    **    meta[9]   unused
000282    **
000283    ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
000284    ** the possible values of meta[4].
000285    */
000286    for(i=0; i<ArraySize(meta); i++){
000287      sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
000288    }
000289    if( (db->flags & SQLITE_ResetDatabase)!=0 ){
000290      memset(meta, 0, sizeof(meta));
000291    }
000292    pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
000293  
000294    /* If opening a non-empty database, check the text encoding. For the
000295    ** main database, set sqlite3.enc to the encoding of the main database.
000296    ** For an attached db, it is an error if the encoding is not the same
000297    ** as sqlite3.enc.
000298    */
000299    if( meta[BTREE_TEXT_ENCODING-1] ){  /* text encoding */
000300      if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
000301        u8 encoding;
000302  #ifndef SQLITE_OMIT_UTF16
000303        /* If opening the main database, set ENC(db). */
000304        encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
000305        if( encoding==0 ) encoding = SQLITE_UTF8;
000306  #else
000307        encoding = SQLITE_UTF8;
000308  #endif
000309        sqlite3SetTextEncoding(db, encoding);
000310      }else{
000311        /* If opening an attached database, the encoding much match ENC(db) */
000312        if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){
000313          sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
000314              " text encoding as main database");
000315          rc = SQLITE_ERROR;
000316          goto initone_error_out;
000317        }
000318      }
000319    }
000320    pDb->pSchema->enc = ENC(db);
000321  
000322    if( pDb->pSchema->cache_size==0 ){
000323  #ifndef SQLITE_OMIT_DEPRECATED
000324      size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
000325      if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
000326      pDb->pSchema->cache_size = size;
000327  #else
000328      pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE;
000329  #endif
000330      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
000331    }
000332  
000333    /*
000334    ** file_format==1    Version 3.0.0.
000335    ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
000336    ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
000337    ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
000338    */
000339    pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
000340    if( pDb->pSchema->file_format==0 ){
000341      pDb->pSchema->file_format = 1;
000342    }
000343    if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
000344      sqlite3SetString(pzErrMsg, db, "unsupported file format");
000345      rc = SQLITE_ERROR;
000346      goto initone_error_out;
000347    }
000348  
000349    /* Ticket #2804:  When we open a database in the newer file format,
000350    ** clear the legacy_file_format pragma flag so that a VACUUM will
000351    ** not downgrade the database and thus invalidate any descending
000352    ** indices that the user might have created.
000353    */
000354    if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
000355      db->flags &= ~(u64)SQLITE_LegacyFileFmt;
000356    }
000357  
000358    /* Read the schema information out of the schema tables
000359    */
000360    assert( db->init.busy );
000361    initData.mxPage = sqlite3BtreeLastPage(pDb->pBt);
000362    {
000363      char *zSql;
000364      zSql = sqlite3MPrintf(db, 
000365          "SELECT*FROM\"%w\".%s ORDER BY rowid",
000366          db->aDb[iDb].zDbSName, zSchemaTabName);
000367  #ifndef SQLITE_OMIT_AUTHORIZATION
000368      {
000369        sqlite3_xauth xAuth;
000370        xAuth = db->xAuth;
000371        db->xAuth = 0;
000372  #endif
000373        rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
000374  #ifndef SQLITE_OMIT_AUTHORIZATION
000375        db->xAuth = xAuth;
000376      }
000377  #endif
000378      if( rc==SQLITE_OK ) rc = initData.rc;
000379      sqlite3DbFree(db, zSql);
000380  #ifndef SQLITE_OMIT_ANALYZE
000381      if( rc==SQLITE_OK ){
000382        sqlite3AnalysisLoad(db, iDb);
000383      }
000384  #endif
000385    }
000386    assert( pDb == &(db->aDb[iDb]) );
000387    if( db->mallocFailed ){
000388      rc = SQLITE_NOMEM_BKPT;
000389      sqlite3ResetAllSchemasOfConnection(db);
000390      pDb = &db->aDb[iDb];
000391    }else
000392    if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){
000393      /* Hack: If the SQLITE_NoSchemaError flag is set, then consider
000394      ** the schema loaded, even if errors (other than OOM) occurred. In
000395      ** this situation the current sqlite3_prepare() operation will fail,
000396      ** but the following one will attempt to compile the supplied statement
000397      ** against whatever subset of the schema was loaded before the error
000398      ** occurred.
000399      **
000400      ** The primary purpose of this is to allow access to the sqlite_schema
000401      ** table even when its contents have been corrupted.
000402      */
000403      DbSetProperty(db, iDb, DB_SchemaLoaded);
000404      rc = SQLITE_OK;
000405    }
000406  
000407    /* Jump here for an error that occurs after successfully allocating
000408    ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
000409    ** before that point, jump to error_out.
000410    */
000411  initone_error_out:
000412    if( openedTransaction ){
000413      sqlite3BtreeCommit(pDb->pBt);
000414    }
000415    sqlite3BtreeLeave(pDb->pBt);
000416  
000417  error_out:
000418    if( rc ){
000419      if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
000420        sqlite3OomFault(db);
000421      }
000422      sqlite3ResetOneSchema(db, iDb);
000423    }
000424    db->init.busy = 0;
000425    return rc;
000426  }
000427  
000428  /*
000429  ** Initialize all database files - the main database file, the file
000430  ** used to store temporary tables, and any additional database files
000431  ** created using ATTACH statements.  Return a success code.  If an
000432  ** error occurs, write an error message into *pzErrMsg.
000433  **
000434  ** After a database is initialized, the DB_SchemaLoaded bit is set
000435  ** bit is set in the flags field of the Db structure. 
000436  */
000437  int sqlite3Init(sqlite3 *db, char **pzErrMsg){
000438    int i, rc;
000439    int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange);
000440    
000441    assert( sqlite3_mutex_held(db->mutex) );
000442    assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) );
000443    assert( db->init.busy==0 );
000444    ENC(db) = SCHEMA_ENC(db);
000445    assert( db->nDb>0 );
000446    /* Do the main schema first */
000447    if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){
000448      rc = sqlite3InitOne(db, 0, pzErrMsg, 0);
000449      if( rc ) return rc;
000450    }
000451    /* All other schemas after the main schema. The "temp" schema must be last */
000452    for(i=db->nDb-1; i>0; i--){
000453      assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) );
000454      if( !DbHasProperty(db, i, DB_SchemaLoaded) ){
000455        rc = sqlite3InitOne(db, i, pzErrMsg, 0);
000456        if( rc ) return rc;
000457      }
000458    }
000459    if( commit_internal ){
000460      sqlite3CommitInternalChanges(db);
000461    }
000462    return SQLITE_OK;
000463  }
000464  
000465  /*
000466  ** This routine is a no-op if the database schema is already initialized.
000467  ** Otherwise, the schema is loaded. An error code is returned.
000468  */
000469  int sqlite3ReadSchema(Parse *pParse){
000470    int rc = SQLITE_OK;
000471    sqlite3 *db = pParse->db;
000472    assert( sqlite3_mutex_held(db->mutex) );
000473    if( !db->init.busy ){
000474      rc = sqlite3Init(db, &pParse->zErrMsg);
000475      if( rc!=SQLITE_OK ){
000476        pParse->rc = rc;
000477        pParse->nErr++;
000478      }else if( db->noSharedCache ){
000479        db->mDbFlags |= DBFLAG_SchemaKnownOk;
000480      }
000481    }
000482    return rc;
000483  }
000484  
000485  
000486  /*
000487  ** Check schema cookies in all databases.  If any cookie is out
000488  ** of date set pParse->rc to SQLITE_SCHEMA.  If all schema cookies
000489  ** make no changes to pParse->rc.
000490  */
000491  static void schemaIsValid(Parse *pParse){
000492    sqlite3 *db = pParse->db;
000493    int iDb;
000494    int rc;
000495    int cookie;
000496  
000497    assert( pParse->checkSchema );
000498    assert( sqlite3_mutex_held(db->mutex) );
000499    for(iDb=0; iDb<db->nDb; iDb++){
000500      int openedTransaction = 0;         /* True if a transaction is opened */
000501      Btree *pBt = db->aDb[iDb].pBt;     /* Btree database to read cookie from */
000502      if( pBt==0 ) continue;
000503  
000504      /* If there is not already a read-only (or read-write) transaction opened
000505      ** on the b-tree database, open one now. If a transaction is opened, it 
000506      ** will be closed immediately after reading the meta-value. */
000507      if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){
000508        rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
000509        if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
000510          sqlite3OomFault(db);
000511          pParse->rc = SQLITE_NOMEM;
000512        }
000513        if( rc!=SQLITE_OK ) return;
000514        openedTransaction = 1;
000515      }
000516  
000517      /* Read the schema cookie from the database. If it does not match the 
000518      ** value stored as part of the in-memory schema representation,
000519      ** set Parse.rc to SQLITE_SCHEMA. */
000520      sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
000521      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
000522      if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
000523        if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA;
000524        sqlite3ResetOneSchema(db, iDb);
000525      }
000526  
000527      /* Close the transaction, if one was opened. */
000528      if( openedTransaction ){
000529        sqlite3BtreeCommit(pBt);
000530      }
000531    }
000532  }
000533  
000534  /*
000535  ** Convert a schema pointer into the iDb index that indicates
000536  ** which database file in db->aDb[] the schema refers to.
000537  **
000538  ** If the same database is attached more than once, the first
000539  ** attached database is returned.
000540  */
000541  int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
000542    int i = -32768;
000543  
000544    /* If pSchema is NULL, then return -32768. This happens when code in 
000545    ** expr.c is trying to resolve a reference to a transient table (i.e. one
000546    ** created by a sub-select). In this case the return value of this 
000547    ** function should never be used.
000548    **
000549    ** We return -32768 instead of the more usual -1 simply because using
000550    ** -32768 as the incorrect index into db->aDb[] is much 
000551    ** more likely to cause a segfault than -1 (of course there are assert()
000552    ** statements too, but it never hurts to play the odds) and
000553    ** -32768 will still fit into a 16-bit signed integer.
000554    */
000555    assert( sqlite3_mutex_held(db->mutex) );
000556    if( pSchema ){
000557      for(i=0; 1; i++){
000558        assert( i<db->nDb );
000559        if( db->aDb[i].pSchema==pSchema ){
000560          break;
000561        }
000562      }
000563      assert( i>=0 && i<db->nDb );
000564    }
000565    return i;
000566  }
000567  
000568  /*
000569  ** Free all memory allocations in the pParse object
000570  */
000571  void sqlite3ParseObjectReset(Parse *pParse){
000572    sqlite3 *db = pParse->db;
000573    assert( db!=0 );
000574    assert( db->pParse==pParse );
000575    assert( pParse->nested==0 );
000576  #ifndef SQLITE_OMIT_SHARED_CACHE
000577    if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock);
000578  #endif
000579    while( pParse->pCleanup ){
000580      ParseCleanup *pCleanup = pParse->pCleanup;
000581      pParse->pCleanup = pCleanup->pNext;
000582      pCleanup->xCleanup(db, pCleanup->pPtr);
000583      sqlite3DbNNFreeNN(db, pCleanup);
000584    }
000585    if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel);
000586    if( pParse->pConstExpr ){
000587      sqlite3ExprListDelete(db, pParse->pConstExpr);
000588    }
000589    assert( db->lookaside.bDisable >= pParse->disableLookaside );
000590    db->lookaside.bDisable -= pParse->disableLookaside;
000591    db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue;
000592    assert( pParse->db->pParse==pParse );
000593    db->pParse = pParse->pOuterParse;
000594  }
000595  
000596  /*
000597  ** Add a new cleanup operation to a Parser.  The cleanup should happen when
000598  ** the parser object is destroyed.  But, beware: the cleanup might happen
000599  ** immediately.
000600  **
000601  ** Use this mechanism for uncommon cleanups.  There is a higher setup
000602  ** cost for this mechanism (an extra malloc), so it should not be used
000603  ** for common cleanups that happen on most calls.  But for less
000604  ** common cleanups, we save a single NULL-pointer comparison in
000605  ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count.
000606  **
000607  ** If a memory allocation error occurs, then the cleanup happens immediately.
000608  ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the
000609  ** pParse->earlyCleanup flag is set in that case.  Calling code show verify
000610  ** that test cases exist for which this happens, to guard against possible
000611  ** use-after-free errors following an OOM.  The preferred way to do this is
000612  ** to immediately follow the call to this routine with:
000613  **
000614  **       testcase( pParse->earlyCleanup );
000615  **
000616  ** This routine returns a copy of its pPtr input (the third parameter)
000617  ** except if an early cleanup occurs, in which case it returns NULL.  So
000618  ** another way to check for early cleanup is to check the return value.
000619  ** Or, stop using the pPtr parameter with this call and use only its
000620  ** return value thereafter.  Something like this:
000621  **
000622  **       pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj);
000623  */
000624  void *sqlite3ParserAddCleanup(
000625    Parse *pParse,                      /* Destroy when this Parser finishes */
000626    void (*xCleanup)(sqlite3*,void*),   /* The cleanup routine */
000627    void *pPtr                          /* Pointer to object to be cleaned up */
000628  ){
000629    ParseCleanup *pCleanup;
000630    if( sqlite3FaultSim(300) ){
000631      pCleanup = 0;
000632      sqlite3OomFault(pParse->db);
000633    }else{
000634      pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup));
000635    }
000636    if( pCleanup ){
000637      pCleanup->pNext = pParse->pCleanup;
000638      pParse->pCleanup = pCleanup;
000639      pCleanup->pPtr = pPtr;
000640      pCleanup->xCleanup = xCleanup;
000641    }else{
000642      xCleanup(pParse->db, pPtr);
000643      pPtr = 0;
000644  #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
000645      pParse->earlyCleanup = 1;
000646  #endif
000647    }
000648    return pPtr;
000649  }
000650  
000651  /*
000652  ** Turn bulk memory into a valid Parse object and link that Parse object
000653  ** into database connection db.
000654  **
000655  ** Call sqlite3ParseObjectReset() to undo this operation.
000656  **
000657  ** Caution:  Do not confuse this routine with sqlite3ParseObjectInit() which
000658  ** is generated by Lemon.
000659  */
000660  void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){
000661    memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ);
000662    memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
000663    assert( db->pParse!=pParse );
000664    pParse->pOuterParse = db->pParse;
000665    db->pParse = pParse;
000666    pParse->db = db;
000667    if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory");
000668  }
000669  
000670  /*
000671  ** Maximum number of times that we will try again to prepare a statement
000672  ** that returns SQLITE_ERROR_RETRY.
000673  */
000674  #ifndef SQLITE_MAX_PREPARE_RETRY
000675  # define SQLITE_MAX_PREPARE_RETRY 25
000676  #endif
000677  
000678  /*
000679  ** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
000680  */
000681  static int sqlite3Prepare(
000682    sqlite3 *db,              /* Database handle. */
000683    const char *zSql,         /* UTF-8 encoded SQL statement. */
000684    int nBytes,               /* Length of zSql in bytes. */
000685    u32 prepFlags,            /* Zero or more SQLITE_PREPARE_* flags */
000686    Vdbe *pReprepare,         /* VM being reprepared */
000687    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000688    const char **pzTail       /* OUT: End of parsed string */
000689  ){
000690    int rc = SQLITE_OK;       /* Result code */
000691    int i;                    /* Loop counter */
000692    Parse sParse;             /* Parsing context */
000693  
000694    /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */
000695    memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ);
000696    memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ);
000697    sParse.pOuterParse = db->pParse;
000698    db->pParse = &sParse;
000699    sParse.db = db;
000700    if( pReprepare ){
000701      sParse.pReprepare = pReprepare;
000702      sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare);
000703    }else{
000704      assert( sParse.pReprepare==0 );
000705    }
000706    assert( ppStmt && *ppStmt==0 );
000707    if( db->mallocFailed ){
000708      sqlite3ErrorMsg(&sParse, "out of memory");
000709      db->errCode = rc = SQLITE_NOMEM;
000710      goto end_prepare;
000711    }
000712    assert( sqlite3_mutex_held(db->mutex) );
000713  
000714    /* For a long-term use prepared statement avoid the use of
000715    ** lookaside memory.
000716    */
000717    if( prepFlags & SQLITE_PREPARE_PERSISTENT ){
000718      sParse.disableLookaside++;
000719      DisableLookaside;
000720    }
000721    sParse.prepFlags = prepFlags & 0xff;
000722  
000723    /* Check to verify that it is possible to get a read lock on all
000724    ** database schemas.  The inability to get a read lock indicates that
000725    ** some other database connection is holding a write-lock, which in
000726    ** turn means that the other connection has made uncommitted changes
000727    ** to the schema.
000728    **
000729    ** Were we to proceed and prepare the statement against the uncommitted
000730    ** schema changes and if those schema changes are subsequently rolled
000731    ** back and different changes are made in their place, then when this
000732    ** prepared statement goes to run the schema cookie would fail to detect
000733    ** the schema change.  Disaster would follow.
000734    **
000735    ** This thread is currently holding mutexes on all Btrees (because
000736    ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
000737    ** is not possible for another thread to start a new schema change
000738    ** while this routine is running.  Hence, we do not need to hold 
000739    ** locks on the schema, we just need to make sure nobody else is 
000740    ** holding them.
000741    **
000742    ** Note that setting READ_UNCOMMITTED overrides most lock detection,
000743    ** but it does *not* override schema lock detection, so this all still
000744    ** works even if READ_UNCOMMITTED is set.
000745    */
000746    if( !db->noSharedCache ){
000747      for(i=0; i<db->nDb; i++) {
000748        Btree *pBt = db->aDb[i].pBt;
000749        if( pBt ){
000750          assert( sqlite3BtreeHoldsMutex(pBt) );
000751          rc = sqlite3BtreeSchemaLocked(pBt);
000752          if( rc ){
000753            const char *zDb = db->aDb[i].zDbSName;
000754            sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb);
000755            testcase( db->flags & SQLITE_ReadUncommit );
000756            goto end_prepare;
000757          }
000758        }
000759      }
000760    }
000761  
000762  #ifndef SQLITE_OMIT_VIRTUALTABLE
000763    if( db->pDisconnect ) sqlite3VtabUnlockList(db);
000764  #endif
000765  
000766    if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
000767      char *zSqlCopy;
000768      int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
000769      testcase( nBytes==mxLen );
000770      testcase( nBytes==mxLen+1 );
000771      if( nBytes>mxLen ){
000772        sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long");
000773        rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
000774        goto end_prepare;
000775      }
000776      zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
000777      if( zSqlCopy ){
000778        sqlite3RunParser(&sParse, zSqlCopy);
000779        sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
000780        sqlite3DbFree(db, zSqlCopy);
000781      }else{
000782        sParse.zTail = &zSql[nBytes];
000783      }
000784    }else{
000785      sqlite3RunParser(&sParse, zSql);
000786    }
000787    assert( 0==sParse.nQueryLoop );
000788  
000789    if( pzTail ){
000790      *pzTail = sParse.zTail;
000791    }
000792  
000793    if( db->init.busy==0 ){
000794      sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags);
000795    }
000796    if( db->mallocFailed ){
000797      sParse.rc = SQLITE_NOMEM_BKPT;
000798      sParse.checkSchema = 0;
000799    }
000800    if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){
000801      if( sParse.checkSchema && db->init.busy==0 ){
000802        schemaIsValid(&sParse);
000803      }
000804      if( sParse.pVdbe ){
000805        sqlite3VdbeFinalize(sParse.pVdbe);
000806      }
000807      assert( 0==(*ppStmt) );
000808      rc = sParse.rc;
000809      if( sParse.zErrMsg ){
000810        sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg);
000811        sqlite3DbFree(db, sParse.zErrMsg);
000812      }else{
000813        sqlite3Error(db, rc);
000814      }
000815    }else{
000816      assert( sParse.zErrMsg==0 );
000817      *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
000818      rc = SQLITE_OK;
000819      sqlite3ErrorClear(db);
000820    }
000821  
000822  
000823    /* Delete any TriggerPrg structures allocated while parsing this statement. */
000824    while( sParse.pTriggerPrg ){
000825      TriggerPrg *pT = sParse.pTriggerPrg;
000826      sParse.pTriggerPrg = pT->pNext;
000827      sqlite3DbFree(db, pT);
000828    }
000829  
000830  end_prepare:
000831  
000832    sqlite3ParseObjectReset(&sParse);
000833    return rc;
000834  }
000835  static int sqlite3LockAndPrepare(
000836    sqlite3 *db,              /* Database handle. */
000837    const char *zSql,         /* UTF-8 encoded SQL statement. */
000838    int nBytes,               /* Length of zSql in bytes. */
000839    u32 prepFlags,            /* Zero or more SQLITE_PREPARE_* flags */
000840    Vdbe *pOld,               /* VM being reprepared */
000841    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000842    const char **pzTail       /* OUT: End of parsed string */
000843  ){
000844    int rc;
000845    int cnt = 0;
000846  
000847  #ifdef SQLITE_ENABLE_API_ARMOR
000848    if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
000849  #endif
000850    *ppStmt = 0;
000851    if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
000852      return SQLITE_MISUSE_BKPT;
000853    }
000854    sqlite3_mutex_enter(db->mutex);
000855    sqlite3BtreeEnterAll(db);
000856    do{
000857      /* Make multiple attempts to compile the SQL, until it either succeeds
000858      ** or encounters a permanent error.  A schema problem after one schema
000859      ** reset is considered a permanent error. */
000860      rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail);
000861      assert( rc==SQLITE_OK || *ppStmt==0 );
000862      if( rc==SQLITE_OK || db->mallocFailed ) break;
000863    }while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY)
000864         || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) );
000865    sqlite3BtreeLeaveAll(db);
000866    rc = sqlite3ApiExit(db, rc);
000867    assert( (rc&db->errMask)==rc );
000868    db->busyHandler.nBusy = 0;
000869    sqlite3_mutex_leave(db->mutex);
000870    assert( rc==SQLITE_OK || (*ppStmt)==0 );
000871    return rc;
000872  }
000873  
000874  
000875  /*
000876  ** Rerun the compilation of a statement after a schema change.
000877  **
000878  ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
000879  ** if the statement cannot be recompiled because another connection has
000880  ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error
000881  ** occurs, return SQLITE_SCHEMA.
000882  */
000883  int sqlite3Reprepare(Vdbe *p){
000884    int rc;
000885    sqlite3_stmt *pNew;
000886    const char *zSql;
000887    sqlite3 *db;
000888    u8 prepFlags;
000889  
000890    assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
000891    zSql = sqlite3_sql((sqlite3_stmt *)p);
000892    assert( zSql!=0 );  /* Reprepare only called for prepare_v2() statements */
000893    db = sqlite3VdbeDb(p);
000894    assert( sqlite3_mutex_held(db->mutex) );
000895    prepFlags = sqlite3VdbePrepareFlags(p);
000896    rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0);
000897    if( rc ){
000898      if( rc==SQLITE_NOMEM ){
000899        sqlite3OomFault(db);
000900      }
000901      assert( pNew==0 );
000902      return rc;
000903    }else{
000904      assert( pNew!=0 );
000905    }
000906    sqlite3VdbeSwap((Vdbe*)pNew, p);
000907    sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
000908    sqlite3VdbeResetStepResult((Vdbe*)pNew);
000909    sqlite3VdbeFinalize((Vdbe*)pNew);
000910    return SQLITE_OK;
000911  }
000912  
000913  
000914  /*
000915  ** Two versions of the official API.  Legacy and new use.  In the legacy
000916  ** version, the original SQL text is not saved in the prepared statement
000917  ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
000918  ** sqlite3_step().  In the new version, the original SQL text is retained
000919  ** and the statement is automatically recompiled if an schema change
000920  ** occurs.
000921  */
000922  int sqlite3_prepare(
000923    sqlite3 *db,              /* Database handle. */
000924    const char *zSql,         /* UTF-8 encoded SQL statement. */
000925    int nBytes,               /* Length of zSql in bytes. */
000926    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000927    const char **pzTail       /* OUT: End of parsed string */
000928  ){
000929    int rc;
000930    rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
000931    assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
000932    return rc;
000933  }
000934  int sqlite3_prepare_v2(
000935    sqlite3 *db,              /* Database handle. */
000936    const char *zSql,         /* UTF-8 encoded SQL statement. */
000937    int nBytes,               /* Length of zSql in bytes. */
000938    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000939    const char **pzTail       /* OUT: End of parsed string */
000940  ){
000941    int rc;
000942    /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works
000943    ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags
000944    ** parameter.
000945    **
000946    ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */
000947    rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0,
000948                               ppStmt,pzTail);
000949    assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
000950    return rc;
000951  }
000952  int sqlite3_prepare_v3(
000953    sqlite3 *db,              /* Database handle. */
000954    const char *zSql,         /* UTF-8 encoded SQL statement. */
000955    int nBytes,               /* Length of zSql in bytes. */
000956    unsigned int prepFlags,   /* Zero or more SQLITE_PREPARE_* flags */
000957    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000958    const char **pzTail       /* OUT: End of parsed string */
000959  ){
000960    int rc;
000961    /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from
000962    ** sqlite3_prepare_v2() only in having the extra prepFlags parameter,
000963    ** which is a bit array consisting of zero or more of the
000964    ** SQLITE_PREPARE_* flags.
000965    **
000966    ** Proof by comparison to the implementation of sqlite3_prepare_v2()
000967    ** directly above. */
000968    rc = sqlite3LockAndPrepare(db,zSql,nBytes,
000969                   SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
000970                   0,ppStmt,pzTail);
000971    assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
000972    return rc;
000973  }
000974  
000975  
000976  #ifndef SQLITE_OMIT_UTF16
000977  /*
000978  ** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
000979  */
000980  static int sqlite3Prepare16(
000981    sqlite3 *db,              /* Database handle. */ 
000982    const void *zSql,         /* UTF-16 encoded SQL statement. */
000983    int nBytes,               /* Length of zSql in bytes. */
000984    u32 prepFlags,            /* Zero or more SQLITE_PREPARE_* flags */
000985    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
000986    const void **pzTail       /* OUT: End of parsed string */
000987  ){
000988    /* This function currently works by first transforming the UTF-16
000989    ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
000990    ** tricky bit is figuring out the pointer to return in *pzTail.
000991    */
000992    char *zSql8;
000993    const char *zTail8 = 0;
000994    int rc = SQLITE_OK;
000995  
000996  #ifdef SQLITE_ENABLE_API_ARMOR
000997    if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
000998  #endif
000999    *ppStmt = 0;
001000    if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
001001      return SQLITE_MISUSE_BKPT;
001002    }
001003  
001004    /* Make sure nBytes is non-negative and correct.  It should be the
001005    ** number of bytes until the end of the input buffer or until the first
001006    ** U+0000 character.  If the input nBytes is odd, convert it into
001007    ** an even number.  If the input nBytes is negative, then the input
001008    ** must be terminated by at least one U+0000 character */
001009    if( nBytes>=0 ){
001010      int sz;
001011      const char *z = (const char*)zSql;
001012      for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
001013      nBytes = sz;
001014    }else{
001015      int sz;
001016      const char *z = (const char*)zSql;
001017      for(sz=0; z[sz]!=0 || z[sz+1]!=0; sz += 2){}
001018      nBytes = sz;
001019    }
001020  
001021    sqlite3_mutex_enter(db->mutex);
001022    zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
001023    if( zSql8 ){
001024      rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8);
001025    }
001026  
001027    if( zTail8 && pzTail ){
001028      /* If sqlite3_prepare returns a tail pointer, we calculate the
001029      ** equivalent pointer into the UTF-16 string by counting the unicode
001030      ** characters between zSql8 and zTail8, and then returning a pointer
001031      ** the same number of characters into the UTF-16 string.
001032      */
001033      int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
001034      *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, nBytes, chars_parsed);
001035    }
001036    sqlite3DbFree(db, zSql8); 
001037    rc = sqlite3ApiExit(db, rc);
001038    sqlite3_mutex_leave(db->mutex);
001039    return rc;
001040  }
001041  
001042  /*
001043  ** Two versions of the official API.  Legacy and new use.  In the legacy
001044  ** version, the original SQL text is not saved in the prepared statement
001045  ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
001046  ** sqlite3_step().  In the new version, the original SQL text is retained
001047  ** and the statement is automatically recompiled if an schema change
001048  ** occurs.
001049  */
001050  int sqlite3_prepare16(
001051    sqlite3 *db,              /* Database handle. */ 
001052    const void *zSql,         /* UTF-16 encoded SQL statement. */
001053    int nBytes,               /* Length of zSql in bytes. */
001054    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
001055    const void **pzTail       /* OUT: End of parsed string */
001056  ){
001057    int rc;
001058    rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
001059    assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
001060    return rc;
001061  }
001062  int sqlite3_prepare16_v2(
001063    sqlite3 *db,              /* Database handle. */ 
001064    const void *zSql,         /* UTF-16 encoded SQL statement. */
001065    int nBytes,               /* Length of zSql in bytes. */
001066    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
001067    const void **pzTail       /* OUT: End of parsed string */
001068  ){
001069    int rc;
001070    rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail);
001071    assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
001072    return rc;
001073  }
001074  int sqlite3_prepare16_v3(
001075    sqlite3 *db,              /* Database handle. */ 
001076    const void *zSql,         /* UTF-16 encoded SQL statement. */
001077    int nBytes,               /* Length of zSql in bytes. */
001078    unsigned int prepFlags,   /* Zero or more SQLITE_PREPARE_* flags */
001079    sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
001080    const void **pzTail       /* OUT: End of parsed string */
001081  ){
001082    int rc;
001083    rc = sqlite3Prepare16(db,zSql,nBytes,
001084           SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
001085           ppStmt,pzTail);
001086    assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
001087    return rc;
001088  }
001089  
001090  #endif /* SQLITE_OMIT_UTF16 */