000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** Utility functions used throughout sqlite.
000013  **
000014  ** This file contains functions for allocating memory, comparing
000015  ** strings, and stuff like that.
000016  **
000017  */
000018  #include "sqliteInt.h"
000019  #include <stdarg.h>
000020  #ifndef SQLITE_OMIT_FLOATING_POINT
000021  #include <math.h>
000022  #endif
000023  
000024  /*
000025  ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
000026  ** or to bypass normal error detection during testing in order to let
000027  ** execute proceed further downstream.
000028  **
000029  ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
000030  ** sqlite3FaultSim() function only returns non-zero during testing.
000031  **
000032  ** During testing, if the test harness has set a fault-sim callback using
000033  ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
000034  ** each call to sqlite3FaultSim() is relayed to that application-supplied
000035  ** callback and the integer return value form the application-supplied
000036  ** callback is returned by sqlite3FaultSim().
000037  **
000038  ** The integer argument to sqlite3FaultSim() is a code to identify which
000039  ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
000040  ** should have a unique code.  To prevent legacy testing applications from
000041  ** breaking, the codes should not be changed or reused.
000042  */
000043  #ifndef SQLITE_UNTESTABLE
000044  int sqlite3FaultSim(int iTest){
000045    int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
000046    return xCallback ? xCallback(iTest) : SQLITE_OK;
000047  }
000048  #endif
000049  
000050  #ifndef SQLITE_OMIT_FLOATING_POINT
000051  /*
000052  ** Return true if the floating point value is Not a Number (NaN).
000053  **
000054  ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
000055  ** Otherwise, we have our own implementation that works on most systems.
000056  */
000057  int sqlite3IsNaN(double x){
000058    int rc;   /* The value return */
000059  #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
000060    u64 y;
000061    memcpy(&y,&x,sizeof(y));
000062    rc = IsNaN(y);
000063  #else
000064    rc = isnan(x);
000065  #endif /* HAVE_ISNAN */
000066    testcase( rc );
000067    return rc;
000068  }
000069  #endif /* SQLITE_OMIT_FLOATING_POINT */
000070  
000071  #ifndef SQLITE_OMIT_FLOATING_POINT
000072  /*
000073  ** Return true if the floating point value is NaN or +Inf or -Inf.
000074  */
000075  int sqlite3IsOverflow(double x){
000076    int rc;   /* The value return */
000077    u64 y;
000078    memcpy(&y,&x,sizeof(y));
000079    rc = IsOvfl(y);
000080    return rc;
000081  }
000082  #endif /* SQLITE_OMIT_FLOATING_POINT */
000083  
000084  /*
000085  ** Compute a string length that is limited to what can be stored in
000086  ** lower 30 bits of a 32-bit signed integer.
000087  **
000088  ** The value returned will never be negative.  Nor will it ever be greater
000089  ** than the actual length of the string.  For very long strings (greater
000090  ** than 1GiB) the value returned might be less than the true string length.
000091  */
000092  int sqlite3Strlen30(const char *z){
000093    if( z==0 ) return 0;
000094    return 0x3fffffff & (int)strlen(z);
000095  }
000096  
000097  /*
000098  ** Return the declared type of a column.  Or return zDflt if the column
000099  ** has no declared type.
000100  **
000101  ** The column type is an extra string stored after the zero-terminator on
000102  ** the column name if and only if the COLFLAG_HASTYPE flag is set.
000103  */
000104  char *sqlite3ColumnType(Column *pCol, char *zDflt){
000105    if( pCol->colFlags & COLFLAG_HASTYPE ){
000106      return pCol->zCnName + strlen(pCol->zCnName) + 1;
000107    }else if( pCol->eCType ){
000108      assert( pCol->eCType<=SQLITE_N_STDTYPE );
000109      return (char*)sqlite3StdType[pCol->eCType-1];
000110    }else{
000111      return zDflt;
000112    }
000113  }
000114  
000115  /*
000116  ** Helper function for sqlite3Error() - called rarely.  Broken out into
000117  ** a separate routine to avoid unnecessary register saves on entry to
000118  ** sqlite3Error().
000119  */
000120  static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
000121    if( db->pErr ) sqlite3ValueSetNull(db->pErr);
000122    sqlite3SystemError(db, err_code);
000123  }
000124  
000125  /*
000126  ** Set the current error code to err_code and clear any prior error message.
000127  ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
000128  ** that would be appropriate.
000129  */
000130  void sqlite3Error(sqlite3 *db, int err_code){
000131    assert( db!=0 );
000132    db->errCode = err_code;
000133    if( err_code || db->pErr ){
000134      sqlite3ErrorFinish(db, err_code);
000135    }else{
000136      db->errByteOffset = -1;
000137    }
000138  }
000139  
000140  /*
000141  ** The equivalent of sqlite3Error(db, SQLITE_OK).  Clear the error state
000142  ** and error message.
000143  */
000144  void sqlite3ErrorClear(sqlite3 *db){
000145    assert( db!=0 );
000146    db->errCode = SQLITE_OK;
000147    db->errByteOffset = -1;
000148    if( db->pErr ) sqlite3ValueSetNull(db->pErr);
000149  }
000150  
000151  /*
000152  ** Load the sqlite3.iSysErrno field if that is an appropriate thing
000153  ** to do based on the SQLite error code in rc.
000154  */
000155  void sqlite3SystemError(sqlite3 *db, int rc){
000156    if( rc==SQLITE_IOERR_NOMEM ) return;
000157  #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
000158    if( rc==SQLITE_IOERR_IN_PAGE ){
000159      int ii;
000160      int iErr;
000161      sqlite3BtreeEnterAll(db);
000162      for(ii=0; ii<db->nDb; ii++){
000163        if( db->aDb[ii].pBt ){
000164          iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt));
000165          if( iErr ){
000166            db->iSysErrno = iErr;
000167          }
000168        }
000169      }
000170      sqlite3BtreeLeaveAll(db);
000171      return;
000172    }
000173  #endif
000174    rc &= 0xff;
000175    if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
000176      db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
000177    }
000178  }
000179  
000180  /*
000181  ** Set the most recent error code and error string for the sqlite
000182  ** handle "db". The error code is set to "err_code".
000183  **
000184  ** If it is not NULL, string zFormat specifies the format of the
000185  ** error string.  zFormat and any string tokens that follow it are
000186  ** assumed to be encoded in UTF-8.
000187  **
000188  ** To clear the most recent error for sqlite handle "db", sqlite3Error
000189  ** should be called with err_code set to SQLITE_OK and zFormat set
000190  ** to NULL.
000191  */
000192  void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
000193    assert( db!=0 );
000194    db->errCode = err_code;
000195    sqlite3SystemError(db, err_code);
000196    if( zFormat==0 ){
000197      sqlite3Error(db, err_code);
000198    }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
000199      char *z;
000200      va_list ap;
000201      va_start(ap, zFormat);
000202      z = sqlite3VMPrintf(db, zFormat, ap);
000203      va_end(ap);
000204      sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
000205    }
000206  }
000207  
000208  /*
000209  ** Check for interrupts and invoke progress callback.
000210  */
000211  void sqlite3ProgressCheck(Parse *p){
000212    sqlite3 *db = p->db;
000213    if( AtomicLoad(&db->u1.isInterrupted) ){
000214      p->nErr++;
000215      p->rc = SQLITE_INTERRUPT;
000216    }
000217  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000218    if( db->xProgress ){
000219      if( p->rc==SQLITE_INTERRUPT ){
000220        p->nProgressSteps = 0;
000221      }else if( (++p->nProgressSteps)>=db->nProgressOps ){
000222        if( db->xProgress(db->pProgressArg) ){
000223          p->nErr++;
000224          p->rc = SQLITE_INTERRUPT;
000225        }
000226        p->nProgressSteps = 0;
000227      }
000228    }
000229  #endif
000230  }
000231  
000232  /*
000233  ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
000234  **
000235  ** This function should be used to report any error that occurs while
000236  ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
000237  ** last thing the sqlite3_prepare() function does is copy the error
000238  ** stored by this function into the database handle using sqlite3Error().
000239  ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
000240  ** during statement execution (sqlite3_step() etc.).
000241  */
000242  void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
000243    char *zMsg;
000244    va_list ap;
000245    sqlite3 *db = pParse->db;
000246    assert( db!=0 );
000247    assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
000248    db->errByteOffset = -2;
000249    va_start(ap, zFormat);
000250    zMsg = sqlite3VMPrintf(db, zFormat, ap);
000251    va_end(ap);
000252    if( db->errByteOffset<-1 ) db->errByteOffset = -1;
000253    if( db->suppressErr ){
000254      sqlite3DbFree(db, zMsg);
000255      if( db->mallocFailed ){
000256        pParse->nErr++;
000257        pParse->rc = SQLITE_NOMEM;
000258      }
000259    }else{
000260      pParse->nErr++;
000261      sqlite3DbFree(db, pParse->zErrMsg);
000262      pParse->zErrMsg = zMsg;
000263      pParse->rc = SQLITE_ERROR;
000264      pParse->pWith = 0;
000265    }
000266  }
000267  
000268  /*
000269  ** If database connection db is currently parsing SQL, then transfer
000270  ** error code errCode to that parser if the parser has not already
000271  ** encountered some other kind of error.
000272  */
000273  int sqlite3ErrorToParser(sqlite3 *db, int errCode){
000274    Parse *pParse;
000275    if( db==0 || (pParse = db->pParse)==0 ) return errCode;
000276    pParse->rc = errCode;
000277    pParse->nErr++;
000278    return errCode;
000279  }
000280  
000281  /*
000282  ** Convert an SQL-style quoted string into a normal string by removing
000283  ** the quote characters.  The conversion is done in-place.  If the
000284  ** input does not begin with a quote character, then this routine
000285  ** is a no-op.
000286  **
000287  ** The input string must be zero-terminated.  A new zero-terminator
000288  ** is added to the dequoted string.
000289  **
000290  ** The return value is -1 if no dequoting occurs or the length of the
000291  ** dequoted string, exclusive of the zero terminator, if dequoting does
000292  ** occur.
000293  **
000294  ** 2002-02-14: This routine is extended to remove MS-Access style
000295  ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
000296  ** "a-b-c".
000297  */
000298  void sqlite3Dequote(char *z){
000299    char quote;
000300    int i, j;
000301    if( z==0 ) return;
000302    quote = z[0];
000303    if( !sqlite3Isquote(quote) ) return;
000304    if( quote=='[' ) quote = ']';
000305    for(i=1, j=0;; i++){
000306      assert( z[i] );
000307      if( z[i]==quote ){
000308        if( z[i+1]==quote ){
000309          z[j++] = quote;
000310          i++;
000311        }else{
000312          break;
000313        }
000314      }else{
000315        z[j++] = z[i];
000316      }
000317    }
000318    z[j] = 0;
000319  }
000320  void sqlite3DequoteExpr(Expr *p){
000321    assert( !ExprHasProperty(p, EP_IntValue) );
000322    assert( sqlite3Isquote(p->u.zToken[0]) );
000323    p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
000324    sqlite3Dequote(p->u.zToken);
000325  }
000326  
000327  /*
000328  ** Expression p is a QNUMBER (quoted number). Dequote the value in p->u.zToken
000329  ** and set the type to INTEGER or FLOAT. "Quoted" integers or floats are those
000330  ** that contain '_' characters that must be removed before further processing.
000331  */
000332  void sqlite3DequoteNumber(Parse *pParse, Expr *p){
000333    assert( p!=0 || pParse->db->mallocFailed );
000334    if( p ){
000335      const char *pIn = p->u.zToken;
000336      char *pOut = p->u.zToken;
000337      int bHex = (pIn[0]=='0' && (pIn[1]=='x' || pIn[1]=='X'));
000338      int iValue;
000339      assert( p->op==TK_QNUMBER );
000340      p->op = TK_INTEGER;
000341      do {
000342        if( *pIn!=SQLITE_DIGIT_SEPARATOR ){
000343          *pOut++ = *pIn;
000344          if( *pIn=='e' || *pIn=='E' || *pIn=='.' ) p->op = TK_FLOAT;
000345        }else{
000346          if( (bHex==0 && (!sqlite3Isdigit(pIn[-1]) || !sqlite3Isdigit(pIn[1])))
000347           || (bHex==1 && (!sqlite3Isxdigit(pIn[-1]) || !sqlite3Isxdigit(pIn[1])))
000348          ){
000349            sqlite3ErrorMsg(pParse, "unrecognized token: \"%s\"", p->u.zToken);
000350          }
000351        }
000352      }while( *pIn++ );
000353      if( bHex ) p->op = TK_INTEGER;
000354  
000355      /* tag-20240227-a: If after dequoting, the number is an integer that
000356      ** fits in 32 bits, then it must be converted into EP_IntValue.  Other
000357      ** parts of the code expect this.  See also tag-20240227-b. */
000358      if( p->op==TK_INTEGER && sqlite3GetInt32(p->u.zToken, &iValue) ){
000359        p->u.iValue = iValue;
000360        p->flags |= EP_IntValue;
000361      }
000362    }
000363  }
000364  
000365  /*
000366  ** If the input token p is quoted, try to adjust the token to remove
000367  ** the quotes.  This is not always possible:
000368  **
000369  **     "abc"     ->   abc
000370  **     "ab""cd"  ->   (not possible because of the interior "")
000371  **
000372  ** Remove the quotes if possible.  This is a optimization.  The overall
000373  ** system should still return the correct answer even if this routine
000374  ** is always a no-op.
000375  */
000376  void sqlite3DequoteToken(Token *p){
000377    unsigned int i;
000378    if( p->n<2 ) return;
000379    if( !sqlite3Isquote(p->z[0]) ) return;
000380    for(i=1; i<p->n-1; i++){
000381      if( sqlite3Isquote(p->z[i]) ) return;
000382    }
000383    p->n -= 2;
000384    p->z++;
000385  }
000386  
000387  /*
000388  ** Generate a Token object from a string
000389  */
000390  void sqlite3TokenInit(Token *p, char *z){
000391    p->z = z;
000392    p->n = sqlite3Strlen30(z);
000393  }
000394  
000395  /* Convenient short-hand */
000396  #define UpperToLower sqlite3UpperToLower
000397  
000398  /*
000399  ** Some systems have stricmp().  Others have strcasecmp().  Because
000400  ** there is no consistency, we will define our own.
000401  **
000402  ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
000403  ** sqlite3_strnicmp() APIs allow applications and extensions to compare
000404  ** the contents of two buffers containing UTF-8 strings in a
000405  ** case-independent fashion, using the same definition of "case
000406  ** independence" that SQLite uses internally when comparing identifiers.
000407  */
000408  int sqlite3_stricmp(const char *zLeft, const char *zRight){
000409    if( zLeft==0 ){
000410      return zRight ? -1 : 0;
000411    }else if( zRight==0 ){
000412      return 1;
000413    }
000414    return sqlite3StrICmp(zLeft, zRight);
000415  }
000416  int sqlite3StrICmp(const char *zLeft, const char *zRight){
000417    unsigned char *a, *b;
000418    int c, x;
000419    a = (unsigned char *)zLeft;
000420    b = (unsigned char *)zRight;
000421    for(;;){
000422      c = *a;
000423      x = *b;
000424      if( c==x ){
000425        if( c==0 ) break;
000426      }else{
000427        c = (int)UpperToLower[c] - (int)UpperToLower[x];
000428        if( c ) break;
000429      }
000430      a++;
000431      b++;
000432    }
000433    return c;
000434  }
000435  int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
000436    register unsigned char *a, *b;
000437    if( zLeft==0 ){
000438      return zRight ? -1 : 0;
000439    }else if( zRight==0 ){
000440      return 1;
000441    }
000442    a = (unsigned char *)zLeft;
000443    b = (unsigned char *)zRight;
000444    while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
000445    return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
000446  }
000447  
000448  /*
000449  ** Compute an 8-bit hash on a string that is insensitive to case differences
000450  */
000451  u8 sqlite3StrIHash(const char *z){
000452    u8 h = 0;
000453    if( z==0 ) return 0;
000454    while( z[0] ){
000455      h += UpperToLower[(unsigned char)z[0]];
000456      z++;
000457    }
000458    return h;
000459  }
000460  
000461  /* Double-Double multiplication.  (x[0],x[1]) *= (y,yy)
000462  **
000463  ** Reference:
000464  **   T. J. Dekker, "A Floating-Point Technique for Extending the
000465  **   Available Precision".  1971-07-26.
000466  */
000467  static void dekkerMul2(volatile double *x, double y, double yy){
000468    /*
000469    ** The "volatile" keywords on parameter x[] and on local variables
000470    ** below are needed force intermediate results to be truncated to
000471    ** binary64 rather than be carried around in an extended-precision
000472    ** format.  The truncation is necessary for the Dekker algorithm to
000473    ** work.  Intel x86 floating point might omit the truncation without
000474    ** the use of volatile. 
000475    */
000476    volatile double tx, ty, p, q, c, cc;
000477    double hx, hy;
000478    u64 m;
000479    memcpy(&m, (void*)&x[0], 8);
000480    m &= 0xfffffffffc000000LL;
000481    memcpy(&hx, &m, 8);
000482    tx = x[0] - hx;
000483    memcpy(&m, &y, 8);
000484    m &= 0xfffffffffc000000LL;
000485    memcpy(&hy, &m, 8);
000486    ty = y - hy;
000487    p = hx*hy;
000488    q = hx*ty + tx*hy;
000489    c = p+q;
000490    cc = p - c + q + tx*ty;
000491    cc = x[0]*yy + x[1]*y + cc;
000492    x[0] = c + cc;
000493    x[1] = c - x[0];
000494    x[1] += cc;
000495  }
000496  
000497  /*
000498  ** The string z[] is an text representation of a real number.
000499  ** Convert this string to a double and write it into *pResult.
000500  **
000501  ** The string z[] is length bytes in length (bytes, not characters) and
000502  ** uses the encoding enc.  The string is not necessarily zero-terminated.
000503  **
000504  ** Return TRUE if the result is a valid real number (or integer) and FALSE
000505  ** if the string is empty or contains extraneous text.  More specifically
000506  ** return
000507  **      1          =>  The input string is a pure integer
000508  **      2 or more  =>  The input has a decimal point or eNNN clause
000509  **      0 or less  =>  The input string is not a valid number
000510  **     -1          =>  Not a valid number, but has a valid prefix which
000511  **                     includes a decimal point and/or an eNNN clause
000512  **
000513  ** Valid numbers are in one of these formats:
000514  **
000515  **    [+-]digits[E[+-]digits]
000516  **    [+-]digits.[digits][E[+-]digits]
000517  **    [+-].digits[E[+-]digits]
000518  **
000519  ** Leading and trailing whitespace is ignored for the purpose of determining
000520  ** validity.
000521  **
000522  ** If some prefix of the input string is a valid number, this routine
000523  ** returns FALSE but it still converts the prefix and writes the result
000524  ** into *pResult.
000525  */
000526  #if defined(_MSC_VER)
000527  #pragma warning(disable : 4756)
000528  #endif
000529  int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
000530  #ifndef SQLITE_OMIT_FLOATING_POINT
000531    int incr;
000532    const char *zEnd;
000533    /* sign * significand * (10 ^ (esign * exponent)) */
000534    int sign = 1;    /* sign of significand */
000535    u64 s = 0;       /* significand */
000536    int d = 0;       /* adjust exponent for shifting decimal point */
000537    int esign = 1;   /* sign of exponent */
000538    int e = 0;       /* exponent */
000539    int eValid = 1;  /* True exponent is either not used or is well-formed */
000540    int nDigit = 0;  /* Number of digits processed */
000541    int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
000542    u64 s2;          /* round-tripped significand */
000543    double rr[2];
000544  
000545    assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
000546    *pResult = 0.0;   /* Default return value, in case of an error */
000547    if( length==0 ) return 0;
000548  
000549    if( enc==SQLITE_UTF8 ){
000550      incr = 1;
000551      zEnd = z + length;
000552    }else{
000553      int i;
000554      incr = 2;
000555      length &= ~1;
000556      assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
000557      testcase( enc==SQLITE_UTF16LE );
000558      testcase( enc==SQLITE_UTF16BE );
000559      for(i=3-enc; i<length && z[i]==0; i+=2){}
000560      if( i<length ) eType = -100;
000561      zEnd = &z[i^1];
000562      z += (enc&1);
000563    }
000564  
000565    /* skip leading spaces */
000566    while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
000567    if( z>=zEnd ) return 0;
000568  
000569    /* get sign of significand */
000570    if( *z=='-' ){
000571      sign = -1;
000572      z+=incr;
000573    }else if( *z=='+' ){
000574      z+=incr;
000575    }
000576  
000577    /* copy max significant digits to significand */
000578    while( z<zEnd && sqlite3Isdigit(*z) ){
000579      s = s*10 + (*z - '0');
000580      z+=incr; nDigit++;
000581      if( s>=((LARGEST_UINT64-9)/10) ){
000582        /* skip non-significant significand digits
000583        ** (increase exponent by d to shift decimal left) */
000584        while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
000585      }
000586    }
000587    if( z>=zEnd ) goto do_atof_calc;
000588  
000589    /* if decimal point is present */
000590    if( *z=='.' ){
000591      z+=incr;
000592      eType++;
000593      /* copy digits from after decimal to significand
000594      ** (decrease exponent by d to shift decimal right) */
000595      while( z<zEnd && sqlite3Isdigit(*z) ){
000596        if( s<((LARGEST_UINT64-9)/10) ){
000597          s = s*10 + (*z - '0');
000598          d--;
000599          nDigit++;
000600        }
000601        z+=incr;
000602      }
000603    }
000604    if( z>=zEnd ) goto do_atof_calc;
000605  
000606    /* if exponent is present */
000607    if( *z=='e' || *z=='E' ){
000608      z+=incr;
000609      eValid = 0;
000610      eType++;
000611  
000612      /* This branch is needed to avoid a (harmless) buffer overread.  The
000613      ** special comment alerts the mutation tester that the correct answer
000614      ** is obtained even if the branch is omitted */
000615      if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
000616  
000617      /* get sign of exponent */
000618      if( *z=='-' ){
000619        esign = -1;
000620        z+=incr;
000621      }else if( *z=='+' ){
000622        z+=incr;
000623      }
000624      /* copy digits to exponent */
000625      while( z<zEnd && sqlite3Isdigit(*z) ){
000626        e = e<10000 ? (e*10 + (*z - '0')) : 10000;
000627        z+=incr;
000628        eValid = 1;
000629      }
000630    }
000631  
000632    /* skip trailing spaces */
000633    while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
000634  
000635  do_atof_calc:
000636    /* Zero is a special case */
000637    if( s==0 ){
000638      *pResult = sign<0 ? -0.0 : +0.0;
000639      goto atof_return;
000640    }
000641  
000642    /* adjust exponent by d, and update sign */
000643    e = (e*esign) + d;
000644  
000645    /* Try to adjust the exponent to make it smaller */
000646    while( e>0 && s<((LARGEST_UINT64-0x7ff)/10) ){
000647      s *= 10;
000648      e--;
000649    }
000650    while( e<0 && (s%10)==0 ){
000651      s /= 10;
000652      e++;
000653    }
000654  
000655    rr[0] = (double)s;
000656    assert( sizeof(s2)==sizeof(rr[0]) );
000657  #ifdef SQLITE_DEBUG
000658    rr[1] = 18446744073709549568.0;
000659    memcpy(&s2, &rr[1], sizeof(s2));
000660    assert( s2==0x43efffffffffffffLL );
000661  #endif
000662    /* Largest double that can be safely converted to u64
000663    **         vvvvvvvvvvvvvvvvvvvvvv   */
000664    if( rr[0]<=18446744073709549568.0 ){
000665      s2 = (u64)rr[0];
000666      rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
000667    }else{
000668      rr[1] = 0.0;
000669    }
000670    assert( rr[1]<=1.0e-10*rr[0] );  /* Equal only when rr[0]==0.0 */
000671    
000672    if( e>0 ){
000673      while( e>=100  ){
000674        e -= 100;
000675        dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
000676      }
000677      while( e>=10   ){
000678        e -= 10;
000679        dekkerMul2(rr, 1.0e+10, 0.0);
000680      }
000681      while( e>=1    ){
000682        e -= 1;
000683        dekkerMul2(rr, 1.0e+01, 0.0);
000684      }
000685    }else{
000686      while( e<=-100 ){
000687        e += 100;
000688        dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
000689      }
000690      while( e<=-10  ){
000691        e += 10;
000692        dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
000693      }
000694      while( e<=-1   ){
000695        e += 1;
000696        dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
000697      }
000698    }
000699    *pResult = rr[0]+rr[1];
000700    if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
000701    if( sign<0 ) *pResult = -*pResult;
000702    assert( !sqlite3IsNaN(*pResult) );
000703  
000704  atof_return:
000705    /* return true if number and no extra non-whitespace characters after */
000706    if( z==zEnd && nDigit>0 && eValid && eType>0 ){
000707      return eType;
000708    }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
000709      return -1;
000710    }else{
000711      return 0;
000712    }
000713  #else
000714    return !sqlite3Atoi64(z, pResult, length, enc);
000715  #endif /* SQLITE_OMIT_FLOATING_POINT */
000716  }
000717  #if defined(_MSC_VER)
000718  #pragma warning(default : 4756)
000719  #endif
000720  
000721  /*
000722  ** Render an signed 64-bit integer as text.  Store the result in zOut[] and
000723  ** return the length of the string that was stored, in bytes.  The value
000724  ** returned does not include the zero terminator at the end of the output
000725  ** string.
000726  **
000727  ** The caller must ensure that zOut[] is at least 21 bytes in size.
000728  */
000729  int sqlite3Int64ToText(i64 v, char *zOut){
000730    int i;
000731    u64 x;
000732    char zTemp[22];
000733    if( v<0 ){
000734      x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
000735    }else{
000736      x = v;
000737    }
000738    i = sizeof(zTemp)-2;
000739    zTemp[sizeof(zTemp)-1] = 0;
000740    while( 1 /*exit-by-break*/ ){
000741      zTemp[i] = (x%10) + '0';
000742      x = x/10;
000743      if( x==0 ) break;
000744      i--;
000745    };
000746    if( v<0 ) zTemp[--i] = '-';
000747    memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
000748    return sizeof(zTemp)-1-i;
000749  }
000750  
000751  /*
000752  ** Compare the 19-character string zNum against the text representation
000753  ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
000754  ** if zNum is less than, equal to, or greater than the string.
000755  ** Note that zNum must contain exactly 19 characters.
000756  **
000757  ** Unlike memcmp() this routine is guaranteed to return the difference
000758  ** in the values of the last digit if the only difference is in the
000759  ** last digit.  So, for example,
000760  **
000761  **      compare2pow63("9223372036854775800", 1)
000762  **
000763  ** will return -8.
000764  */
000765  static int compare2pow63(const char *zNum, int incr){
000766    int c = 0;
000767    int i;
000768                      /* 012345678901234567 */
000769    const char *pow63 = "922337203685477580";
000770    for(i=0; c==0 && i<18; i++){
000771      c = (zNum[i*incr]-pow63[i])*10;
000772    }
000773    if( c==0 ){
000774      c = zNum[18*incr] - '8';
000775      testcase( c==(-1) );
000776      testcase( c==0 );
000777      testcase( c==(+1) );
000778    }
000779    return c;
000780  }
000781  
000782  /*
000783  ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
000784  ** routine does *not* accept hexadecimal notation.
000785  **
000786  ** Returns:
000787  **
000788  **    -1    Not even a prefix of the input text looks like an integer
000789  **     0    Successful transformation.  Fits in a 64-bit signed integer.
000790  **     1    Excess non-space text after the integer value
000791  **     2    Integer too large for a 64-bit signed integer or is malformed
000792  **     3    Special case of 9223372036854775808
000793  **
000794  ** length is the number of bytes in the string (bytes, not characters).
000795  ** The string is not necessarily zero-terminated.  The encoding is
000796  ** given by enc.
000797  */
000798  int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
000799    int incr;
000800    u64 u = 0;
000801    int neg = 0; /* assume positive */
000802    int i;
000803    int c = 0;
000804    int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
000805    int rc;          /* Baseline return code */
000806    const char *zStart;
000807    const char *zEnd = zNum + length;
000808    assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
000809    if( enc==SQLITE_UTF8 ){
000810      incr = 1;
000811    }else{
000812      incr = 2;
000813      length &= ~1;
000814      assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
000815      for(i=3-enc; i<length && zNum[i]==0; i+=2){}
000816      nonNum = i<length;
000817      zEnd = &zNum[i^1];
000818      zNum += (enc&1);
000819    }
000820    while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
000821    if( zNum<zEnd ){
000822      if( *zNum=='-' ){
000823        neg = 1;
000824        zNum+=incr;
000825      }else if( *zNum=='+' ){
000826        zNum+=incr;
000827      }
000828    }
000829    zStart = zNum;
000830    while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
000831    for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
000832      u = u*10 + c - '0';
000833    }
000834    testcase( i==18*incr );
000835    testcase( i==19*incr );
000836    testcase( i==20*incr );
000837    if( u>LARGEST_INT64 ){
000838      /* This test and assignment is needed only to suppress UB warnings
000839      ** from clang and -fsanitize=undefined.  This test and assignment make
000840      ** the code a little larger and slower, and no harm comes from omitting
000841      ** them, but we must appease the undefined-behavior pharisees. */
000842      *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
000843    }else if( neg ){
000844      *pNum = -(i64)u;
000845    }else{
000846      *pNum = (i64)u;
000847    }
000848    rc = 0;
000849    if( i==0 && zStart==zNum ){    /* No digits */
000850      rc = -1;
000851    }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
000852      rc = 1;
000853    }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
000854      int jj = i;
000855      do{
000856        if( !sqlite3Isspace(zNum[jj]) ){
000857          rc = 1;          /* Extra non-space text after the integer */
000858          break;
000859        }
000860        jj += incr;
000861      }while( &zNum[jj]<zEnd );
000862    }
000863    if( i<19*incr ){
000864      /* Less than 19 digits, so we know that it fits in 64 bits */
000865      assert( u<=LARGEST_INT64 );
000866      return rc;
000867    }else{
000868      /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
000869      c = i>19*incr ? 1 : compare2pow63(zNum, incr);
000870      if( c<0 ){
000871        /* zNum is less than 9223372036854775808 so it fits */
000872        assert( u<=LARGEST_INT64 );
000873        return rc;
000874      }else{
000875        *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
000876        if( c>0 ){
000877          /* zNum is greater than 9223372036854775808 so it overflows */
000878          return 2;
000879        }else{
000880          /* zNum is exactly 9223372036854775808.  Fits if negative.  The
000881          ** special case 2 overflow if positive */
000882          assert( u-1==LARGEST_INT64 );
000883          return neg ? rc : 3;
000884        }
000885      }
000886    }
000887  }
000888  
000889  /*
000890  ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
000891  ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
000892  ** whereas sqlite3Atoi64() does not.
000893  **
000894  ** Returns:
000895  **
000896  **     0    Successful transformation.  Fits in a 64-bit signed integer.
000897  **     1    Excess text after the integer value
000898  **     2    Integer too large for a 64-bit signed integer or is malformed
000899  **     3    Special case of 9223372036854775808
000900  */
000901  int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
000902  #ifndef SQLITE_OMIT_HEX_INTEGER
000903    if( z[0]=='0'
000904     && (z[1]=='x' || z[1]=='X')
000905    ){
000906      u64 u = 0;
000907      int i, k;
000908      for(i=2; z[i]=='0'; i++){}
000909      for(k=i; sqlite3Isxdigit(z[k]); k++){
000910        u = u*16 + sqlite3HexToInt(z[k]);
000911      }
000912      memcpy(pOut, &u, 8);
000913      if( k-i>16 ) return 2;
000914      if( z[k]!=0 ) return 1;
000915      return 0;
000916    }else
000917  #endif /* SQLITE_OMIT_HEX_INTEGER */
000918    {
000919      int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
000920      if( z[n] ) n++;
000921      return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
000922    }
000923  }
000924  
000925  /*
000926  ** If zNum represents an integer that will fit in 32-bits, then set
000927  ** *pValue to that integer and return true.  Otherwise return false.
000928  **
000929  ** This routine accepts both decimal and hexadecimal notation for integers.
000930  **
000931  ** Any non-numeric characters that following zNum are ignored.
000932  ** This is different from sqlite3Atoi64() which requires the
000933  ** input number to be zero-terminated.
000934  */
000935  int sqlite3GetInt32(const char *zNum, int *pValue){
000936    sqlite_int64 v = 0;
000937    int i, c;
000938    int neg = 0;
000939    if( zNum[0]=='-' ){
000940      neg = 1;
000941      zNum++;
000942    }else if( zNum[0]=='+' ){
000943      zNum++;
000944    }
000945  #ifndef SQLITE_OMIT_HEX_INTEGER
000946    else if( zNum[0]=='0'
000947          && (zNum[1]=='x' || zNum[1]=='X')
000948          && sqlite3Isxdigit(zNum[2])
000949    ){
000950      u32 u = 0;
000951      zNum += 2;
000952      while( zNum[0]=='0' ) zNum++;
000953      for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
000954        u = u*16 + sqlite3HexToInt(zNum[i]);
000955      }
000956      if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
000957        memcpy(pValue, &u, 4);
000958        return 1;
000959      }else{
000960        return 0;
000961      }
000962    }
000963  #endif
000964    if( !sqlite3Isdigit(zNum[0]) ) return 0;
000965    while( zNum[0]=='0' ) zNum++;
000966    for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
000967      v = v*10 + c;
000968    }
000969  
000970    /* The longest decimal representation of a 32 bit integer is 10 digits:
000971    **
000972    **             1234567890
000973    **     2^31 -> 2147483648
000974    */
000975    testcase( i==10 );
000976    if( i>10 ){
000977      return 0;
000978    }
000979    testcase( v-neg==2147483647 );
000980    if( v-neg>2147483647 ){
000981      return 0;
000982    }
000983    if( neg ){
000984      v = -v;
000985    }
000986    *pValue = (int)v;
000987    return 1;
000988  }
000989  
000990  /*
000991  ** Return a 32-bit integer value extracted from a string.  If the
000992  ** string is not an integer, just return 0.
000993  */
000994  int sqlite3Atoi(const char *z){
000995    int x = 0;
000996    sqlite3GetInt32(z, &x);
000997    return x;
000998  }
000999  
001000  /*
001001  ** Decode a floating-point value into an approximate decimal
001002  ** representation.
001003  **
001004  ** If iRound<=0 then round to -iRound significant digits to the
001005  ** the left of the decimal point, or to a maximum of mxRound total
001006  ** significant digits.
001007  **
001008  ** If iRound>0 round to min(iRound,mxRound) significant digits total.
001009  **
001010  ** mxRound must be positive.
001011  **
001012  ** The significant digits of the decimal representation are
001013  ** stored in p->z[] which is a often (but not always) a pointer
001014  ** into the middle of p->zBuf[].  There are p->n significant digits.
001015  ** The p->z[] array is *not* zero-terminated.
001016  */
001017  void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
001018    int i;
001019    u64 v;
001020    int e, exp = 0;
001021    double rr[2];
001022  
001023    p->isSpecial = 0;
001024    p->z = p->zBuf;
001025    assert( mxRound>0 );
001026  
001027    /* Convert negative numbers to positive.  Deal with Infinity, 0.0, and
001028    ** NaN. */
001029    if( r<0.0 ){
001030      p->sign = '-';
001031      r = -r;
001032    }else if( r==0.0 ){
001033      p->sign = '+';
001034      p->n = 1;
001035      p->iDP = 1;
001036      p->z = "0";
001037      return;
001038    }else{
001039      p->sign = '+';
001040    }
001041    memcpy(&v,&r,8);
001042    e = v>>52;
001043    if( (e&0x7ff)==0x7ff ){
001044      p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
001045      p->n = 0;
001046      p->iDP = 0;
001047      return;
001048    }
001049  
001050    /* Multiply r by powers of ten until it lands somewhere in between
001051    ** 1.0e+19 and 1.0e+17.
001052    **
001053    ** Use Dekker-style double-double computation to increase the
001054    ** precision.
001055    **
001056    ** The error terms on constants like 1.0e+100 computed using the
001057    ** decimal extension, for example as follows:
001058    **
001059    **   SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
001060    */
001061    rr[0] = r;
001062    rr[1] = 0.0;
001063    if( rr[0]>9.223372036854774784e+18 ){
001064      while( rr[0]>9.223372036854774784e+118 ){
001065        exp += 100;
001066        dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
001067      }
001068      while( rr[0]>9.223372036854774784e+28 ){
001069        exp += 10;
001070        dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
001071      }
001072      while( rr[0]>9.223372036854774784e+18 ){
001073        exp += 1;
001074        dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
001075      }
001076    }else{
001077      while( rr[0]<9.223372036854774784e-83  ){
001078        exp -= 100;
001079        dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
001080      }
001081      while( rr[0]<9.223372036854774784e+07  ){
001082        exp -= 10;
001083        dekkerMul2(rr, 1.0e+10, 0.0);
001084      }
001085      while( rr[0]<9.22337203685477478e+17  ){
001086        exp -= 1;
001087        dekkerMul2(rr, 1.0e+01, 0.0);
001088      }
001089    }
001090    v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];
001091  
001092    /* Extract significant digits. */
001093    i = sizeof(p->zBuf)-1;
001094    assert( v>0 );
001095    while( v ){  p->zBuf[i--] = (v%10) + '0'; v /= 10; }
001096    assert( i>=0 && i<sizeof(p->zBuf)-1 );
001097    p->n = sizeof(p->zBuf) - 1 - i;
001098    assert( p->n>0 );
001099    assert( p->n<sizeof(p->zBuf) );
001100    p->iDP = p->n + exp;
001101    if( iRound<=0 ){
001102      iRound = p->iDP - iRound;
001103      if( iRound==0 && p->zBuf[i+1]>='5' ){
001104        iRound = 1;
001105        p->zBuf[i--] = '0';
001106        p->n++;
001107        p->iDP++;
001108      }
001109    }
001110    if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
001111      char *z = &p->zBuf[i+1];
001112      if( iRound>mxRound ) iRound = mxRound;
001113      p->n = iRound;
001114      if( z[iRound]>='5' ){
001115        int j = iRound-1;
001116        while( 1 /*exit-by-break*/ ){
001117          z[j]++;
001118          if( z[j]<='9' ) break;
001119          z[j] = '0';
001120          if( j==0 ){
001121            p->z[i--] = '1';
001122            p->n++;
001123            p->iDP++;
001124            break;
001125          }else{
001126            j--;
001127          }
001128        }
001129      }
001130    }
001131    p->z = &p->zBuf[i+1];
001132    assert( i+p->n < sizeof(p->zBuf) );
001133    while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
001134  }
001135  
001136  /*
001137  ** Try to convert z into an unsigned 32-bit integer.  Return true on
001138  ** success and false if there is an error.
001139  **
001140  ** Only decimal notation is accepted.
001141  */
001142  int sqlite3GetUInt32(const char *z, u32 *pI){
001143    u64 v = 0;
001144    int i;
001145    for(i=0; sqlite3Isdigit(z[i]); i++){
001146      v = v*10 + z[i] - '0';
001147      if( v>4294967296LL ){ *pI = 0; return 0; }
001148    }
001149    if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
001150    *pI = (u32)v;
001151    return 1;
001152  }
001153  
001154  /*
001155  ** The variable-length integer encoding is as follows:
001156  **
001157  ** KEY:
001158  **         A = 0xxxxxxx    7 bits of data and one flag bit
001159  **         B = 1xxxxxxx    7 bits of data and one flag bit
001160  **         C = xxxxxxxx    8 bits of data
001161  **
001162  **  7 bits - A
001163  ** 14 bits - BA
001164  ** 21 bits - BBA
001165  ** 28 bits - BBBA
001166  ** 35 bits - BBBBA
001167  ** 42 bits - BBBBBA
001168  ** 49 bits - BBBBBBA
001169  ** 56 bits - BBBBBBBA
001170  ** 64 bits - BBBBBBBBC
001171  */
001172  
001173  /*
001174  ** Write a 64-bit variable-length integer to memory starting at p[0].
001175  ** The length of data write will be between 1 and 9 bytes.  The number
001176  ** of bytes written is returned.
001177  **
001178  ** A variable-length integer consists of the lower 7 bits of each byte
001179  ** for all bytes that have the 8th bit set and one byte with the 8th
001180  ** bit clear.  Except, if we get to the 9th byte, it stores the full
001181  ** 8 bits and is the last byte.
001182  */
001183  static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
001184    int i, j, n;
001185    u8 buf[10];
001186    if( v & (((u64)0xff000000)<<32) ){
001187      p[8] = (u8)v;
001188      v >>= 8;
001189      for(i=7; i>=0; i--){
001190        p[i] = (u8)((v & 0x7f) | 0x80);
001191        v >>= 7;
001192      }
001193      return 9;
001194    }   
001195    n = 0;
001196    do{
001197      buf[n++] = (u8)((v & 0x7f) | 0x80);
001198      v >>= 7;
001199    }while( v!=0 );
001200    buf[0] &= 0x7f;
001201    assert( n<=9 );
001202    for(i=0, j=n-1; j>=0; j--, i++){
001203      p[i] = buf[j];
001204    }
001205    return n;
001206  }
001207  int sqlite3PutVarint(unsigned char *p, u64 v){
001208    if( v<=0x7f ){
001209      p[0] = v&0x7f;
001210      return 1;
001211    }
001212    if( v<=0x3fff ){
001213      p[0] = ((v>>7)&0x7f)|0x80;
001214      p[1] = v&0x7f;
001215      return 2;
001216    }
001217    return putVarint64(p,v);
001218  }
001219  
001220  /*
001221  ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
001222  ** are defined here rather than simply putting the constant expressions
001223  ** inline in order to work around bugs in the RVT compiler.
001224  **
001225  ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
001226  **
001227  ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
001228  */
001229  #define SLOT_2_0     0x001fc07f
001230  #define SLOT_4_2_0   0xf01fc07f
001231  
001232  
001233  /*
001234  ** Read a 64-bit variable-length integer from memory starting at p[0].
001235  ** Return the number of bytes read.  The value is stored in *v.
001236  */
001237  u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
001238    u32 a,b,s;
001239  
001240    if( ((signed char*)p)[0]>=0 ){
001241      *v = *p;
001242      return 1;
001243    }
001244    if( ((signed char*)p)[1]>=0 ){
001245      *v = ((u32)(p[0]&0x7f)<<7) | p[1];
001246      return 2;
001247    }
001248  
001249    /* Verify that constants are precomputed correctly */
001250    assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
001251    assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
001252  
001253    a = ((u32)p[0])<<14;
001254    b = p[1];
001255    p += 2;
001256    a |= *p;
001257    /* a: p0<<14 | p2 (unmasked) */
001258    if (!(a&0x80))
001259    {
001260      a &= SLOT_2_0;
001261      b &= 0x7f;
001262      b = b<<7;
001263      a |= b;
001264      *v = a;
001265      return 3;
001266    }
001267  
001268    /* CSE1 from below */
001269    a &= SLOT_2_0;
001270    p++;
001271    b = b<<14;
001272    b |= *p;
001273    /* b: p1<<14 | p3 (unmasked) */
001274    if (!(b&0x80))
001275    {
001276      b &= SLOT_2_0;
001277      /* moved CSE1 up */
001278      /* a &= (0x7f<<14)|(0x7f); */
001279      a = a<<7;
001280      a |= b;
001281      *v = a;
001282      return 4;
001283    }
001284  
001285    /* a: p0<<14 | p2 (masked) */
001286    /* b: p1<<14 | p3 (unmasked) */
001287    /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
001288    /* moved CSE1 up */
001289    /* a &= (0x7f<<14)|(0x7f); */
001290    b &= SLOT_2_0;
001291    s = a;
001292    /* s: p0<<14 | p2 (masked) */
001293  
001294    p++;
001295    a = a<<14;
001296    a |= *p;
001297    /* a: p0<<28 | p2<<14 | p4 (unmasked) */
001298    if (!(a&0x80))
001299    {
001300      /* we can skip these cause they were (effectively) done above
001301      ** while calculating s */
001302      /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
001303      /* b &= (0x7f<<14)|(0x7f); */
001304      b = b<<7;
001305      a |= b;
001306      s = s>>18;
001307      *v = ((u64)s)<<32 | a;
001308      return 5;
001309    }
001310  
001311    /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
001312    s = s<<7;
001313    s |= b;
001314    /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
001315  
001316    p++;
001317    b = b<<14;
001318    b |= *p;
001319    /* b: p1<<28 | p3<<14 | p5 (unmasked) */
001320    if (!(b&0x80))
001321    {
001322      /* we can skip this cause it was (effectively) done above in calc'ing s */
001323      /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
001324      a &= SLOT_2_0;
001325      a = a<<7;
001326      a |= b;
001327      s = s>>18;
001328      *v = ((u64)s)<<32 | a;
001329      return 6;
001330    }
001331  
001332    p++;
001333    a = a<<14;
001334    a |= *p;
001335    /* a: p2<<28 | p4<<14 | p6 (unmasked) */
001336    if (!(a&0x80))
001337    {
001338      a &= SLOT_4_2_0;
001339      b &= SLOT_2_0;
001340      b = b<<7;
001341      a |= b;
001342      s = s>>11;
001343      *v = ((u64)s)<<32 | a;
001344      return 7;
001345    }
001346  
001347    /* CSE2 from below */
001348    a &= SLOT_2_0;
001349    p++;
001350    b = b<<14;
001351    b |= *p;
001352    /* b: p3<<28 | p5<<14 | p7 (unmasked) */
001353    if (!(b&0x80))
001354    {
001355      b &= SLOT_4_2_0;
001356      /* moved CSE2 up */
001357      /* a &= (0x7f<<14)|(0x7f); */
001358      a = a<<7;
001359      a |= b;
001360      s = s>>4;
001361      *v = ((u64)s)<<32 | a;
001362      return 8;
001363    }
001364  
001365    p++;
001366    a = a<<15;
001367    a |= *p;
001368    /* a: p4<<29 | p6<<15 | p8 (unmasked) */
001369  
001370    /* moved CSE2 up */
001371    /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
001372    b &= SLOT_2_0;
001373    b = b<<8;
001374    a |= b;
001375  
001376    s = s<<4;
001377    b = p[-4];
001378    b &= 0x7f;
001379    b = b>>3;
001380    s |= b;
001381  
001382    *v = ((u64)s)<<32 | a;
001383  
001384    return 9;
001385  }
001386  
001387  /*
001388  ** Read a 32-bit variable-length integer from memory starting at p[0].
001389  ** Return the number of bytes read.  The value is stored in *v.
001390  **
001391  ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
001392  ** integer, then set *v to 0xffffffff.
001393  **
001394  ** A MACRO version, getVarint32, is provided which inlines the
001395  ** single-byte case.  All code should use the MACRO version as
001396  ** this function assumes the single-byte case has already been handled.
001397  */
001398  u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
001399    u64 v64;
001400    u8 n;
001401  
001402    /* Assume that the single-byte case has already been handled by
001403    ** the getVarint32() macro */
001404    assert( (p[0] & 0x80)!=0 );
001405  
001406    if( (p[1] & 0x80)==0 ){
001407      /* This is the two-byte case */
001408      *v = ((p[0]&0x7f)<<7) | p[1];
001409      return 2;
001410    }
001411    if( (p[2] & 0x80)==0 ){
001412      /* This is the three-byte case */
001413      *v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2];
001414      return 3;
001415    }
001416    /* four or more bytes */
001417    n = sqlite3GetVarint(p, &v64);
001418    assert( n>3 && n<=9 );
001419    if( (v64 & SQLITE_MAX_U32)!=v64 ){
001420      *v = 0xffffffff;
001421    }else{
001422      *v = (u32)v64;
001423    }
001424    return n;
001425  }
001426  
001427  /*
001428  ** Return the number of bytes that will be needed to store the given
001429  ** 64-bit integer.
001430  */
001431  int sqlite3VarintLen(u64 v){
001432    int i;
001433    for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
001434    return i;
001435  }
001436  
001437  
001438  /*
001439  ** Read or write a four-byte big-endian integer value.
001440  */
001441  u32 sqlite3Get4byte(const u8 *p){
001442  #if SQLITE_BYTEORDER==4321
001443    u32 x;
001444    memcpy(&x,p,4);
001445    return x;
001446  #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
001447    u32 x;
001448    memcpy(&x,p,4);
001449    return __builtin_bswap32(x);
001450  #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
001451    u32 x;
001452    memcpy(&x,p,4);
001453    return _byteswap_ulong(x);
001454  #else
001455    testcase( p[0]&0x80 );
001456    return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
001457  #endif
001458  }
001459  void sqlite3Put4byte(unsigned char *p, u32 v){
001460  #if SQLITE_BYTEORDER==4321
001461    memcpy(p,&v,4);
001462  #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
001463    u32 x = __builtin_bswap32(v);
001464    memcpy(p,&x,4);
001465  #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
001466    u32 x = _byteswap_ulong(v);
001467    memcpy(p,&x,4);
001468  #else
001469    p[0] = (u8)(v>>24);
001470    p[1] = (u8)(v>>16);
001471    p[2] = (u8)(v>>8);
001472    p[3] = (u8)v;
001473  #endif
001474  }
001475  
001476  
001477  
001478  /*
001479  ** Translate a single byte of Hex into an integer.
001480  ** This routine only works if h really is a valid hexadecimal
001481  ** character:  0..9a..fA..F
001482  */
001483  u8 sqlite3HexToInt(int h){
001484    assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
001485  #ifdef SQLITE_ASCII
001486    h += 9*(1&(h>>6));
001487  #endif
001488  #ifdef SQLITE_EBCDIC
001489    h += 9*(1&~(h>>4));
001490  #endif
001491    return (u8)(h & 0xf);
001492  }
001493  
001494  #if !defined(SQLITE_OMIT_BLOB_LITERAL)
001495  /*
001496  ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
001497  ** value.  Return a pointer to its binary value.  Space to hold the
001498  ** binary value has been obtained from malloc and must be freed by
001499  ** the calling routine.
001500  */
001501  void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
001502    char *zBlob;
001503    int i;
001504  
001505    zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
001506    n--;
001507    if( zBlob ){
001508      for(i=0; i<n; i+=2){
001509        zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
001510      }
001511      zBlob[i/2] = 0;
001512    }
001513    return zBlob;
001514  }
001515  #endif /* !SQLITE_OMIT_BLOB_LITERAL */
001516  
001517  /*
001518  ** Log an error that is an API call on a connection pointer that should
001519  ** not have been used.  The "type" of connection pointer is given as the
001520  ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
001521  */
001522  static void logBadConnection(const char *zType){
001523    sqlite3_log(SQLITE_MISUSE,
001524       "API call with %s database connection pointer",
001525       zType
001526    );
001527  }
001528  
001529  /*
001530  ** Check to make sure we have a valid db pointer.  This test is not
001531  ** foolproof but it does provide some measure of protection against
001532  ** misuse of the interface such as passing in db pointers that are
001533  ** NULL or which have been previously closed.  If this routine returns
001534  ** 1 it means that the db pointer is valid and 0 if it should not be
001535  ** dereferenced for any reason.  The calling function should invoke
001536  ** SQLITE_MISUSE immediately.
001537  **
001538  ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
001539  ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
001540  ** open properly and is not fit for general use but which can be
001541  ** used as an argument to sqlite3_errmsg() or sqlite3_close().
001542  */
001543  int sqlite3SafetyCheckOk(sqlite3 *db){
001544    u8 eOpenState;
001545    if( db==0 ){
001546      logBadConnection("NULL");
001547      return 0;
001548    }
001549    eOpenState = db->eOpenState;
001550    if( eOpenState!=SQLITE_STATE_OPEN ){
001551      if( sqlite3SafetyCheckSickOrOk(db) ){
001552        testcase( sqlite3GlobalConfig.xLog!=0 );
001553        logBadConnection("unopened");
001554      }
001555      return 0;
001556    }else{
001557      return 1;
001558    }
001559  }
001560  int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
001561    u8 eOpenState;
001562    eOpenState = db->eOpenState;
001563    if( eOpenState!=SQLITE_STATE_SICK &&
001564        eOpenState!=SQLITE_STATE_OPEN &&
001565        eOpenState!=SQLITE_STATE_BUSY ){
001566      testcase( sqlite3GlobalConfig.xLog!=0 );
001567      logBadConnection("invalid");
001568      return 0;
001569    }else{
001570      return 1;
001571    }
001572  }
001573  
001574  /*
001575  ** Attempt to add, subtract, or multiply the 64-bit signed value iB against
001576  ** the other 64-bit signed integer at *pA and store the result in *pA.
001577  ** Return 0 on success.  Or if the operation would have resulted in an
001578  ** overflow, leave *pA unchanged and return 1.
001579  */
001580  int sqlite3AddInt64(i64 *pA, i64 iB){
001581  #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
001582    return __builtin_add_overflow(*pA, iB, pA);
001583  #else
001584    i64 iA = *pA;
001585    testcase( iA==0 ); testcase( iA==1 );
001586    testcase( iB==-1 ); testcase( iB==0 );
001587    if( iB>=0 ){
001588      testcase( iA>0 && LARGEST_INT64 - iA == iB );
001589      testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
001590      if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
001591    }else{
001592      testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
001593      testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
001594      if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
001595    }
001596    *pA += iB;
001597    return 0;
001598  #endif
001599  }
001600  int sqlite3SubInt64(i64 *pA, i64 iB){
001601  #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
001602    return __builtin_sub_overflow(*pA, iB, pA);
001603  #else
001604    testcase( iB==SMALLEST_INT64+1 );
001605    if( iB==SMALLEST_INT64 ){
001606      testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
001607      if( (*pA)>=0 ) return 1;
001608      *pA -= iB;
001609      return 0;
001610    }else{
001611      return sqlite3AddInt64(pA, -iB);
001612    }
001613  #endif
001614  }
001615  int sqlite3MulInt64(i64 *pA, i64 iB){
001616  #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
001617    return __builtin_mul_overflow(*pA, iB, pA);
001618  #else
001619    i64 iA = *pA;
001620    if( iB>0 ){
001621      if( iA>LARGEST_INT64/iB ) return 1;
001622      if( iA<SMALLEST_INT64/iB ) return 1;
001623    }else if( iB<0 ){
001624      if( iA>0 ){
001625        if( iB<SMALLEST_INT64/iA ) return 1;
001626      }else if( iA<0 ){
001627        if( iB==SMALLEST_INT64 ) return 1;
001628        if( iA==SMALLEST_INT64 ) return 1;
001629        if( -iA>LARGEST_INT64/-iB ) return 1;
001630      }
001631    }
001632    *pA = iA*iB;
001633    return 0;
001634  #endif
001635  }
001636  
001637  /*
001638  ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
001639  ** if the integer has a value of -2147483648, return +2147483647
001640  */
001641  int sqlite3AbsInt32(int x){
001642    if( x>=0 ) return x;
001643    if( x==(int)0x80000000 ) return 0x7fffffff;
001644    return -x;
001645  }
001646  
001647  #ifdef SQLITE_ENABLE_8_3_NAMES
001648  /*
001649  ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
001650  ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
001651  ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
001652  ** three characters, then shorten the suffix on z[] to be the last three
001653  ** characters of the original suffix.
001654  **
001655  ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
001656  ** do the suffix shortening regardless of URI parameter.
001657  **
001658  ** Examples:
001659  **
001660  **     test.db-journal    =>   test.nal
001661  **     test.db-wal        =>   test.wal
001662  **     test.db-shm        =>   test.shm
001663  **     test.db-mj7f3319fa =>   test.9fa
001664  */
001665  void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
001666  #if SQLITE_ENABLE_8_3_NAMES<2
001667    if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
001668  #endif
001669    {
001670      int i, sz;
001671      sz = sqlite3Strlen30(z);
001672      for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
001673      if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
001674    }
001675  }
001676  #endif
001677  
001678  /*
001679  ** Find (an approximate) sum of two LogEst values.  This computation is
001680  ** not a simple "+" operator because LogEst is stored as a logarithmic
001681  ** value.
001682  **
001683  */
001684  LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
001685    static const unsigned char x[] = {
001686       10, 10,                         /* 0,1 */
001687        9, 9,                          /* 2,3 */
001688        8, 8,                          /* 4,5 */
001689        7, 7, 7,                       /* 6,7,8 */
001690        6, 6, 6,                       /* 9,10,11 */
001691        5, 5, 5,                       /* 12-14 */
001692        4, 4, 4, 4,                    /* 15-18 */
001693        3, 3, 3, 3, 3, 3,              /* 19-24 */
001694        2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
001695    };
001696    if( a>=b ){
001697      if( a>b+49 ) return a;
001698      if( a>b+31 ) return a+1;
001699      return a+x[a-b];
001700    }else{
001701      if( b>a+49 ) return b;
001702      if( b>a+31 ) return b+1;
001703      return b+x[b-a];
001704    }
001705  }
001706  
001707  /*
001708  ** Convert an integer into a LogEst.  In other words, compute an
001709  ** approximation for 10*log2(x).
001710  */
001711  LogEst sqlite3LogEst(u64 x){
001712    static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
001713    LogEst y = 40;
001714    if( x<8 ){
001715      if( x<2 ) return 0;
001716      while( x<8 ){  y -= 10; x <<= 1; }
001717    }else{
001718  #if GCC_VERSION>=5004000
001719      int i = 60 - __builtin_clzll(x);
001720      y += i*10;
001721      x >>= i;
001722  #else
001723      while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
001724      while( x>15 ){  y += 10; x >>= 1; }
001725  #endif
001726    }
001727    return a[x&7] + y - 10;
001728  }
001729  
001730  /*
001731  ** Convert a double into a LogEst
001732  ** In other words, compute an approximation for 10*log2(x).
001733  */
001734  LogEst sqlite3LogEstFromDouble(double x){
001735    u64 a;
001736    LogEst e;
001737    assert( sizeof(x)==8 && sizeof(a)==8 );
001738    if( x<=1 ) return 0;
001739    if( x<=2000000000 ) return sqlite3LogEst((u64)x);
001740    memcpy(&a, &x, 8);
001741    e = (a>>52) - 1022;
001742    return e*10;
001743  }
001744  
001745  /*
001746  ** Convert a LogEst into an integer.
001747  */
001748  u64 sqlite3LogEstToInt(LogEst x){
001749    u64 n;
001750    n = x%10;
001751    x /= 10;
001752    if( n>=5 ) n -= 2;
001753    else if( n>=1 ) n -= 1;
001754    if( x>60 ) return (u64)LARGEST_INT64;
001755    return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
001756  }
001757  
001758  /*
001759  ** Add a new name/number pair to a VList.  This might require that the
001760  ** VList object be reallocated, so return the new VList.  If an OOM
001761  ** error occurs, the original VList returned and the
001762  ** db->mallocFailed flag is set.
001763  **
001764  ** A VList is really just an array of integers.  To destroy a VList,
001765  ** simply pass it to sqlite3DbFree().
001766  **
001767  ** The first integer is the number of integers allocated for the whole
001768  ** VList.  The second integer is the number of integers actually used.
001769  ** Each name/number pair is encoded by subsequent groups of 3 or more
001770  ** integers.
001771  **
001772  ** Each name/number pair starts with two integers which are the numeric
001773  ** value for the pair and the size of the name/number pair, respectively.
001774  ** The text name overlays one or more following integers.  The text name
001775  ** is always zero-terminated.
001776  **
001777  ** Conceptually:
001778  **
001779  **    struct VList {
001780  **      int nAlloc;   // Number of allocated slots
001781  **      int nUsed;    // Number of used slots
001782  **      struct VListEntry {
001783  **        int iValue;    // Value for this entry
001784  **        int nSlot;     // Slots used by this entry
001785  **        // ... variable name goes here
001786  **      } a[0];
001787  **    }
001788  **
001789  ** During code generation, pointers to the variable names within the
001790  ** VList are taken.  When that happens, nAlloc is set to zero as an
001791  ** indication that the VList may never again be enlarged, since the
001792  ** accompanying realloc() would invalidate the pointers.
001793  */
001794  VList *sqlite3VListAdd(
001795    sqlite3 *db,           /* The database connection used for malloc() */
001796    VList *pIn,            /* The input VList.  Might be NULL */
001797    const char *zName,     /* Name of symbol to add */
001798    int nName,             /* Bytes of text in zName */
001799    int iVal               /* Value to associate with zName */
001800  ){
001801    int nInt;              /* number of sizeof(int) objects needed for zName */
001802    char *z;               /* Pointer to where zName will be stored */
001803    int i;                 /* Index in pIn[] where zName is stored */
001804  
001805    nInt = nName/4 + 3;
001806    assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
001807    if( pIn==0 || pIn[1]+nInt > pIn[0] ){
001808      /* Enlarge the allocation */
001809      sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
001810      VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
001811      if( pOut==0 ) return pIn;
001812      if( pIn==0 ) pOut[1] = 2;
001813      pIn = pOut;
001814      pIn[0] = nAlloc;
001815    }
001816    i = pIn[1];
001817    pIn[i] = iVal;
001818    pIn[i+1] = nInt;
001819    z = (char*)&pIn[i+2];
001820    pIn[1] = i+nInt;
001821    assert( pIn[1]<=pIn[0] );
001822    memcpy(z, zName, nName);
001823    z[nName] = 0;
001824    return pIn;
001825  }
001826  
001827  /*
001828  ** Return a pointer to the name of a variable in the given VList that
001829  ** has the value iVal.  Or return a NULL if there is no such variable in
001830  ** the list
001831  */
001832  const char *sqlite3VListNumToName(VList *pIn, int iVal){
001833    int i, mx;
001834    if( pIn==0 ) return 0;
001835    mx = pIn[1];
001836    i = 2;
001837    do{
001838      if( pIn[i]==iVal ) return (char*)&pIn[i+2];
001839      i += pIn[i+1];
001840    }while( i<mx );
001841    return 0;
001842  }
001843  
001844  /*
001845  ** Return the number of the variable named zName, if it is in VList.
001846  ** or return 0 if there is no such variable.
001847  */
001848  int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
001849    int i, mx;
001850    if( pIn==0 ) return 0;
001851    mx = pIn[1];
001852    i = 2;
001853    do{
001854      const char *z = (const char*)&pIn[i+2];
001855      if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
001856      i += pIn[i+1];
001857    }while( i<mx );
001858    return 0;
001859  }