000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** The code in this file implements the function that runs the
000013  ** bytecode of a prepared statement.
000014  **
000015  ** Various scripts scan this source file in order to generate HTML
000016  ** documentation, headers files, or other derived files.  The formatting
000017  ** of the code in this file is, therefore, important.  See other comments
000018  ** in this file for details.  If in doubt, do not deviate from existing
000019  ** commenting and indentation practices when changing or adding code.
000020  */
000021  #include "sqliteInt.h"
000022  #include "vdbeInt.h"
000023  
000024  /*
000025  ** High-resolution hardware timer used for debugging and testing only.
000026  */
000027  #if defined(VDBE_PROFILE)  \
000028   || defined(SQLITE_PERFORMANCE_TRACE) \
000029   || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
000030  # include "hwtime.h"
000031  #endif
000032  
000033  /*
000034  ** Invoke this macro on memory cells just prior to changing the
000035  ** value of the cell.  This macro verifies that shallow copies are
000036  ** not misused.  A shallow copy of a string or blob just copies a
000037  ** pointer to the string or blob, not the content.  If the original
000038  ** is changed while the copy is still in use, the string or blob might
000039  ** be changed out from under the copy.  This macro verifies that nothing
000040  ** like that ever happens.
000041  */
000042  #ifdef SQLITE_DEBUG
000043  # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
000044  #else
000045  # define memAboutToChange(P,M)
000046  #endif
000047  
000048  /*
000049  ** The following global variable is incremented every time a cursor
000050  ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
000051  ** procedures use this information to make sure that indices are
000052  ** working correctly.  This variable has no function other than to
000053  ** help verify the correct operation of the library.
000054  */
000055  #ifdef SQLITE_TEST
000056  int sqlite3_search_count = 0;
000057  #endif
000058  
000059  /*
000060  ** When this global variable is positive, it gets decremented once before
000061  ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
000062  ** field of the sqlite3 structure is set in order to simulate an interrupt.
000063  **
000064  ** This facility is used for testing purposes only.  It does not function
000065  ** in an ordinary build.
000066  */
000067  #ifdef SQLITE_TEST
000068  int sqlite3_interrupt_count = 0;
000069  #endif
000070  
000071  /*
000072  ** The next global variable is incremented each type the OP_Sort opcode
000073  ** is executed.  The test procedures use this information to make sure that
000074  ** sorting is occurring or not occurring at appropriate times.   This variable
000075  ** has no function other than to help verify the correct operation of the
000076  ** library.
000077  */
000078  #ifdef SQLITE_TEST
000079  int sqlite3_sort_count = 0;
000080  #endif
000081  
000082  /*
000083  ** The next global variable records the size of the largest MEM_Blob
000084  ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
000085  ** use this information to make sure that the zero-blob functionality
000086  ** is working correctly.   This variable has no function other than to
000087  ** help verify the correct operation of the library.
000088  */
000089  #ifdef SQLITE_TEST
000090  int sqlite3_max_blobsize = 0;
000091  static void updateMaxBlobsize(Mem *p){
000092    if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
000093      sqlite3_max_blobsize = p->n;
000094    }
000095  }
000096  #endif
000097  
000098  /*
000099  ** This macro evaluates to true if either the update hook or the preupdate
000100  ** hook are enabled for database connect DB.
000101  */
000102  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
000103  # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
000104  #else
000105  # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
000106  #endif
000107  
000108  /*
000109  ** The next global variable is incremented each time the OP_Found opcode
000110  ** is executed. This is used to test whether or not the foreign key
000111  ** operation implemented using OP_FkIsZero is working. This variable
000112  ** has no function other than to help verify the correct operation of the
000113  ** library.
000114  */
000115  #ifdef SQLITE_TEST
000116  int sqlite3_found_count = 0;
000117  #endif
000118  
000119  /*
000120  ** Test a register to see if it exceeds the current maximum blob size.
000121  ** If it does, record the new maximum blob size.
000122  */
000123  #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
000124  # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
000125  #else
000126  # define UPDATE_MAX_BLOBSIZE(P)
000127  #endif
000128  
000129  #ifdef SQLITE_DEBUG
000130  /* This routine provides a convenient place to set a breakpoint during
000131  ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
000132  ** each opcode is printed.  Variables "pc" (program counter) and pOp are
000133  ** available to add conditionals to the breakpoint.  GDB example:
000134  **
000135  **         break test_trace_breakpoint if pc=22
000136  **
000137  ** Other useful labels for breakpoints include:
000138  **   test_addop_breakpoint(pc,pOp)
000139  **   sqlite3CorruptError(lineno)
000140  **   sqlite3MisuseError(lineno)
000141  **   sqlite3CantopenError(lineno)
000142  */
000143  static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
000144    static u64 n = 0;
000145    (void)pc;
000146    (void)pOp;
000147    (void)v;
000148    n++;
000149    if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */
000150  }
000151  #endif
000152  
000153  /*
000154  ** Invoke the VDBE coverage callback, if that callback is defined.  This
000155  ** feature is used for test suite validation only and does not appear an
000156  ** production builds.
000157  **
000158  ** M is the type of branch.  I is the direction taken for this instance of
000159  ** the branch.
000160  **
000161  **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
000162  **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
000163  **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
000164  **
000165  ** In other words, if M is 2, then I is either 0 (for fall-through) or
000166  ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
000167  ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
000168  ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
000169  ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
000170  ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
000171  ** depending on if the operands are less than, equal, or greater than.
000172  **
000173  ** iSrcLine is the source code line (from the __LINE__ macro) that
000174  ** generated the VDBE instruction combined with flag bits.  The source
000175  ** code line number is in the lower 24 bits of iSrcLine and the upper
000176  ** 8 bytes are flags.  The lower three bits of the flags indicate
000177  ** values for I that should never occur.  For example, if the branch is
000178  ** always taken, the flags should be 0x05 since the fall-through and
000179  ** alternate branch are never taken.  If a branch is never taken then
000180  ** flags should be 0x06 since only the fall-through approach is allowed.
000181  **
000182  ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
000183  ** interested in equal or not-equal.  In other words, I==0 and I==2
000184  ** should be treated as equivalent
000185  **
000186  ** Since only a line number is retained, not the filename, this macro
000187  ** only works for amalgamation builds.  But that is ok, since these macros
000188  ** should be no-ops except for special builds used to measure test coverage.
000189  */
000190  #if !defined(SQLITE_VDBE_COVERAGE)
000191  # define VdbeBranchTaken(I,M)
000192  #else
000193  # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
000194    static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
000195      u8 mNever;
000196      assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
000197      assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
000198      assert( I<M );   /* I can only be 2 if M is 3 or 4 */
000199      /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
000200      I = 1<<I;
000201      /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
000202      ** the flags indicate directions that the branch can never go.  If
000203      ** a branch really does go in one of those directions, assert right
000204      ** away. */
000205      mNever = iSrcLine >> 24;
000206      assert( (I & mNever)==0 );
000207      if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
000208      /* Invoke the branch coverage callback with three arguments:
000209      **    iSrcLine - the line number of the VdbeCoverage() macro, with
000210      **               flags removed.
000211      **    I        - Mask of bits 0x07 indicating which cases are are
000212      **               fulfilled by this instance of the jump.  0x01 means
000213      **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
000214      **               impossible cases (ex: if the comparison is never NULL)
000215      **               are filled in automatically so that the coverage
000216      **               measurement logic does not flag those impossible cases
000217      **               as missed coverage.
000218      **    M        - Type of jump.  Same as M argument above
000219      */
000220      I |= mNever;
000221      if( M==2 ) I |= 0x04;
000222      if( M==4 ){
000223        I |= 0x08;
000224        if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
000225      }
000226      sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
000227                                      iSrcLine&0xffffff, I, M);
000228    }
000229  #endif
000230  
000231  /*
000232  ** An ephemeral string value (signified by the MEM_Ephem flag) contains
000233  ** a pointer to a dynamically allocated string where some other entity
000234  ** is responsible for deallocating that string.  Because the register
000235  ** does not control the string, it might be deleted without the register
000236  ** knowing it.
000237  **
000238  ** This routine converts an ephemeral string into a dynamically allocated
000239  ** string that the register itself controls.  In other words, it
000240  ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
000241  */
000242  #define Deephemeralize(P) \
000243     if( ((P)->flags&MEM_Ephem)!=0 \
000244         && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
000245  
000246  /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
000247  #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
000248  
000249  /*
000250  ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
000251  ** if we run out of memory.
000252  */
000253  static VdbeCursor *allocateCursor(
000254    Vdbe *p,              /* The virtual machine */
000255    int iCur,             /* Index of the new VdbeCursor */
000256    int nField,           /* Number of fields in the table or index */
000257    u8 eCurType           /* Type of the new cursor */
000258  ){
000259    /* Find the memory cell that will be used to store the blob of memory
000260    ** required for this VdbeCursor structure. It is convenient to use a
000261    ** vdbe memory cell to manage the memory allocation required for a
000262    ** VdbeCursor structure for the following reasons:
000263    **
000264    **   * Sometimes cursor numbers are used for a couple of different
000265    **     purposes in a vdbe program. The different uses might require
000266    **     different sized allocations. Memory cells provide growable
000267    **     allocations.
000268    **
000269    **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
000270    **     be freed lazily via the sqlite3_release_memory() API. This
000271    **     minimizes the number of malloc calls made by the system.
000272    **
000273    ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
000274    ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
000275    ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
000276    */
000277    Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
000278  
000279    int nByte;
000280    VdbeCursor *pCx = 0;
000281    nByte =
000282        ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
000283        (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
000284  
000285    assert( iCur>=0 && iCur<p->nCursor );
000286    if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
000287      sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
000288      p->apCsr[iCur] = 0;
000289    }
000290  
000291    /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
000292    ** the pMem used to hold space for the cursor has enough storage available
000293    ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
000294    ** to hold cursors, it is faster to in-line the logic. */
000295    assert( pMem->flags==MEM_Undefined );
000296    assert( (pMem->flags & MEM_Dyn)==0 );
000297    assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
000298    if( pMem->szMalloc<nByte ){
000299      if( pMem->szMalloc>0 ){
000300        sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
000301      }
000302      pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
000303      if( pMem->zMalloc==0 ){
000304        pMem->szMalloc = 0;
000305        return 0;
000306      }
000307      pMem->szMalloc = nByte;
000308    }
000309  
000310    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
000311    memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
000312    pCx->eCurType = eCurType;
000313    pCx->nField = nField;
000314    pCx->aOffset = &pCx->aType[nField];
000315    if( eCurType==CURTYPE_BTREE ){
000316      pCx->uc.pCursor = (BtCursor*)
000317          &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
000318      sqlite3BtreeCursorZero(pCx->uc.pCursor);
000319    }
000320    return pCx;
000321  }
000322  
000323  /*
000324  ** The string in pRec is known to look like an integer and to have a
000325  ** floating point value of rValue.  Return true and set *piValue to the
000326  ** integer value if the string is in range to be an integer.  Otherwise,
000327  ** return false.
000328  */
000329  static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
000330    i64 iValue;
000331    iValue = sqlite3RealToI64(rValue);
000332    if( sqlite3RealSameAsInt(rValue,iValue) ){
000333      *piValue = iValue;
000334      return 1;
000335    }
000336    return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
000337  }
000338  
000339  /*
000340  ** Try to convert a value into a numeric representation if we can
000341  ** do so without loss of information.  In other words, if the string
000342  ** looks like a number, convert it into a number.  If it does not
000343  ** look like a number, leave it alone.
000344  **
000345  ** If the bTryForInt flag is true, then extra effort is made to give
000346  ** an integer representation.  Strings that look like floating point
000347  ** values but which have no fractional component (example: '48.00')
000348  ** will have a MEM_Int representation when bTryForInt is true.
000349  **
000350  ** If bTryForInt is false, then if the input string contains a decimal
000351  ** point or exponential notation, the result is only MEM_Real, even
000352  ** if there is an exact integer representation of the quantity.
000353  */
000354  static void applyNumericAffinity(Mem *pRec, int bTryForInt){
000355    double rValue;
000356    u8 enc = pRec->enc;
000357    int rc;
000358    assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
000359    rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
000360    if( rc<=0 ) return;
000361    if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
000362      pRec->flags |= MEM_Int;
000363    }else{
000364      pRec->u.r = rValue;
000365      pRec->flags |= MEM_Real;
000366      if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
000367    }
000368    /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
000369    ** string representation after computing a numeric equivalent, because the
000370    ** string representation might not be the canonical representation for the
000371    ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
000372    pRec->flags &= ~MEM_Str;
000373  }
000374  
000375  /*
000376  ** Processing is determine by the affinity parameter:
000377  **
000378  ** SQLITE_AFF_INTEGER:
000379  ** SQLITE_AFF_REAL:
000380  ** SQLITE_AFF_NUMERIC:
000381  **    Try to convert pRec to an integer representation or a
000382  **    floating-point representation if an integer representation
000383  **    is not possible.  Note that the integer representation is
000384  **    always preferred, even if the affinity is REAL, because
000385  **    an integer representation is more space efficient on disk.
000386  **
000387  ** SQLITE_AFF_FLEXNUM:
000388  **    If the value is text, then try to convert it into a number of
000389  **    some kind (integer or real) but do not make any other changes.
000390  **
000391  ** SQLITE_AFF_TEXT:
000392  **    Convert pRec to a text representation.
000393  **
000394  ** SQLITE_AFF_BLOB:
000395  ** SQLITE_AFF_NONE:
000396  **    No-op.  pRec is unchanged.
000397  */
000398  static void applyAffinity(
000399    Mem *pRec,          /* The value to apply affinity to */
000400    char affinity,      /* The affinity to be applied */
000401    u8 enc              /* Use this text encoding */
000402  ){
000403    if( affinity>=SQLITE_AFF_NUMERIC ){
000404      assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
000405               || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
000406      if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
000407        if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
000408          if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
000409        }else if( affinity<=SQLITE_AFF_REAL ){
000410          sqlite3VdbeIntegerAffinity(pRec);
000411        }
000412      }
000413    }else if( affinity==SQLITE_AFF_TEXT ){
000414      /* Only attempt the conversion to TEXT if there is an integer or real
000415      ** representation (blob and NULL do not get converted) but no string
000416      ** representation.  It would be harmless to repeat the conversion if
000417      ** there is already a string rep, but it is pointless to waste those
000418      ** CPU cycles. */
000419      if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
000420        if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
000421          testcase( pRec->flags & MEM_Int );
000422          testcase( pRec->flags & MEM_Real );
000423          testcase( pRec->flags & MEM_IntReal );
000424          sqlite3VdbeMemStringify(pRec, enc, 1);
000425        }
000426      }
000427      pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
000428    }
000429  }
000430  
000431  /*
000432  ** Try to convert the type of a function argument or a result column
000433  ** into a numeric representation.  Use either INTEGER or REAL whichever
000434  ** is appropriate.  But only do the conversion if it is possible without
000435  ** loss of information and return the revised type of the argument.
000436  */
000437  int sqlite3_value_numeric_type(sqlite3_value *pVal){
000438    int eType = sqlite3_value_type(pVal);
000439    if( eType==SQLITE_TEXT ){
000440      Mem *pMem = (Mem*)pVal;
000441      applyNumericAffinity(pMem, 0);
000442      eType = sqlite3_value_type(pVal);
000443    }
000444    return eType;
000445  }
000446  
000447  /*
000448  ** Exported version of applyAffinity(). This one works on sqlite3_value*,
000449  ** not the internal Mem* type.
000450  */
000451  void sqlite3ValueApplyAffinity(
000452    sqlite3_value *pVal,
000453    u8 affinity,
000454    u8 enc
000455  ){
000456    applyAffinity((Mem *)pVal, affinity, enc);
000457  }
000458  
000459  /*
000460  ** pMem currently only holds a string type (or maybe a BLOB that we can
000461  ** interpret as a string if we want to).  Compute its corresponding
000462  ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
000463  ** accordingly.
000464  */
000465  static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
000466    int rc;
000467    sqlite3_int64 ix;
000468    assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
000469    assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
000470    if( ExpandBlob(pMem) ){
000471      pMem->u.i = 0;
000472      return MEM_Int;
000473    }
000474    rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
000475    if( rc<=0 ){
000476      if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
000477        pMem->u.i = ix;
000478        return MEM_Int;
000479      }else{
000480        return MEM_Real;
000481      }
000482    }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
000483      pMem->u.i = ix;
000484      return MEM_Int;
000485    }
000486    return MEM_Real;
000487  }
000488  
000489  /*
000490  ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
000491  ** none. 
000492  **
000493  ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
000494  ** But it does set pMem->u.r and pMem->u.i appropriately.
000495  */
000496  static u16 numericType(Mem *pMem){
000497    assert( (pMem->flags & MEM_Null)==0
000498         || pMem->db==0 || pMem->db->mallocFailed );
000499    if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
000500      testcase( pMem->flags & MEM_Int );
000501      testcase( pMem->flags & MEM_Real );
000502      testcase( pMem->flags & MEM_IntReal );
000503      return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
000504    }
000505    assert( pMem->flags & (MEM_Str|MEM_Blob) );
000506    testcase( pMem->flags & MEM_Str );
000507    testcase( pMem->flags & MEM_Blob );
000508    return computeNumericType(pMem);
000509    return 0;
000510  }
000511  
000512  #ifdef SQLITE_DEBUG
000513  /*
000514  ** Write a nice string representation of the contents of cell pMem
000515  ** into buffer zBuf, length nBuf.
000516  */
000517  void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
000518    int f = pMem->flags;
000519    static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
000520    if( f&MEM_Blob ){
000521      int i;
000522      char c;
000523      if( f & MEM_Dyn ){
000524        c = 'z';
000525        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000526      }else if( f & MEM_Static ){
000527        c = 't';
000528        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000529      }else if( f & MEM_Ephem ){
000530        c = 'e';
000531        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000532      }else{
000533        c = 's';
000534      }
000535      sqlite3_str_appendf(pStr, "%cx[", c);
000536      for(i=0; i<25 && i<pMem->n; i++){
000537        sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
000538      }
000539      sqlite3_str_appendf(pStr, "|");
000540      for(i=0; i<25 && i<pMem->n; i++){
000541        char z = pMem->z[i];
000542        sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
000543      }
000544      sqlite3_str_appendf(pStr,"]");
000545      if( f & MEM_Zero ){
000546        sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
000547      }
000548    }else if( f & MEM_Str ){
000549      int j;
000550      u8 c;
000551      if( f & MEM_Dyn ){
000552        c = 'z';
000553        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000554      }else if( f & MEM_Static ){
000555        c = 't';
000556        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000557      }else if( f & MEM_Ephem ){
000558        c = 'e';
000559        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000560      }else{
000561        c = 's';
000562      }
000563      sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
000564      for(j=0; j<25 && j<pMem->n; j++){
000565        c = pMem->z[j];
000566        sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
000567      }
000568      sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
000569      if( f & MEM_Term ){
000570        sqlite3_str_appendf(pStr, "(0-term)");
000571      }
000572    }
000573  }
000574  #endif
000575  
000576  #ifdef SQLITE_DEBUG
000577  /*
000578  ** Print the value of a register for tracing purposes:
000579  */
000580  static void memTracePrint(Mem *p){
000581    if( p->flags & MEM_Undefined ){
000582      printf(" undefined");
000583    }else if( p->flags & MEM_Null ){
000584      printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
000585    }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
000586      printf(" si:%lld", p->u.i);
000587    }else if( (p->flags & (MEM_IntReal))!=0 ){
000588      printf(" ir:%lld", p->u.i);
000589    }else if( p->flags & MEM_Int ){
000590      printf(" i:%lld", p->u.i);
000591  #ifndef SQLITE_OMIT_FLOATING_POINT
000592    }else if( p->flags & MEM_Real ){
000593      printf(" r:%.17g", p->u.r);
000594  #endif
000595    }else if( sqlite3VdbeMemIsRowSet(p) ){
000596      printf(" (rowset)");
000597    }else{
000598      StrAccum acc;
000599      char zBuf[1000];
000600      sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
000601      sqlite3VdbeMemPrettyPrint(p, &acc);
000602      printf(" %s", sqlite3StrAccumFinish(&acc));
000603    }
000604    if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
000605  }
000606  static void registerTrace(int iReg, Mem *p){
000607    printf("R[%d] = ", iReg);
000608    memTracePrint(p);
000609    if( p->pScopyFrom ){
000610      assert( p->pScopyFrom->bScopy );
000611      printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
000612    }
000613    printf("\n");
000614    sqlite3VdbeCheckMemInvariants(p);
000615  }
000616  /**/ void sqlite3PrintMem(Mem *pMem){
000617    memTracePrint(pMem);
000618    printf("\n");
000619    fflush(stdout);
000620  }
000621  #endif
000622  
000623  #ifdef SQLITE_DEBUG
000624  /*
000625  ** Show the values of all registers in the virtual machine.  Used for
000626  ** interactive debugging.
000627  */
000628  void sqlite3VdbeRegisterDump(Vdbe *v){
000629    int i;
000630    for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
000631  }
000632  #endif /* SQLITE_DEBUG */
000633  
000634  
000635  #ifdef SQLITE_DEBUG
000636  #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
000637  #else
000638  #  define REGISTER_TRACE(R,M)
000639  #endif
000640  
000641  #ifndef NDEBUG
000642  /*
000643  ** This function is only called from within an assert() expression. It
000644  ** checks that the sqlite3.nTransaction variable is correctly set to
000645  ** the number of non-transaction savepoints currently in the
000646  ** linked list starting at sqlite3.pSavepoint.
000647  **
000648  ** Usage:
000649  **
000650  **     assert( checkSavepointCount(db) );
000651  */
000652  static int checkSavepointCount(sqlite3 *db){
000653    int n = 0;
000654    Savepoint *p;
000655    for(p=db->pSavepoint; p; p=p->pNext) n++;
000656    assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
000657    return 1;
000658  }
000659  #endif
000660  
000661  /*
000662  ** Return the register of pOp->p2 after first preparing it to be
000663  ** overwritten with an integer value.
000664  */
000665  static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
000666    sqlite3VdbeMemSetNull(pOut);
000667    pOut->flags = MEM_Int;
000668    return pOut;
000669  }
000670  static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
000671    Mem *pOut;
000672    assert( pOp->p2>0 );
000673    assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000674    pOut = &p->aMem[pOp->p2];
000675    memAboutToChange(p, pOut);
000676    if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
000677      return out2PrereleaseWithClear(pOut);
000678    }else{
000679      pOut->flags = MEM_Int;
000680      return pOut;
000681    }
000682  }
000683  
000684  /*
000685  ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
000686  ** with pOp->p3.  Return the hash.
000687  */
000688  static u64 filterHash(const Mem *aMem, const Op *pOp){
000689    int i, mx;
000690    u64 h = 0;
000691  
000692    assert( pOp->p4type==P4_INT32 );
000693    for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
000694      const Mem *p = &aMem[i];
000695      if( p->flags & (MEM_Int|MEM_IntReal) ){
000696        h += p->u.i;
000697      }else if( p->flags & MEM_Real ){
000698        h += sqlite3VdbeIntValue(p);
000699      }else if( p->flags & (MEM_Str|MEM_Blob) ){
000700        /* All strings have the same hash and all blobs have the same hash,
000701        ** though, at least, those hashes are different from each other and
000702        ** from NULL. */
000703        h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
000704      }
000705    }
000706    return h;
000707  }
000708  
000709  
000710  /*
000711  ** For OP_Column, factor out the case where content is loaded from
000712  ** overflow pages, so that the code to implement this case is separate
000713  ** the common case where all content fits on the page.  Factoring out
000714  ** the code reduces register pressure and helps the common case
000715  ** to run faster.
000716  */
000717  static SQLITE_NOINLINE int vdbeColumnFromOverflow(
000718    VdbeCursor *pC,       /* The BTree cursor from which we are reading */
000719    int iCol,             /* The column to read */
000720    int t,                /* The serial-type code for the column value */
000721    i64 iOffset,          /* Offset to the start of the content value */
000722    u32 cacheStatus,      /* Current Vdbe.cacheCtr value */
000723    u32 colCacheCtr,      /* Current value of the column cache counter */
000724    Mem *pDest            /* Store the value into this register. */
000725  ){
000726    int rc;
000727    sqlite3 *db = pDest->db;
000728    int encoding = pDest->enc;
000729    int len = sqlite3VdbeSerialTypeLen(t);
000730    assert( pC->eCurType==CURTYPE_BTREE );
000731    if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
000732    if( len > 4000 && pC->pKeyInfo==0 ){
000733      /* Cache large column values that are on overflow pages using
000734      ** an RCStr (reference counted string) so that if they are reloaded,
000735      ** that do not have to be copied a second time.  The overhead of
000736      ** creating and managing the cache is such that this is only
000737      ** profitable for larger TEXT and BLOB values.
000738      **
000739      ** Only do this on table-btrees so that writes to index-btrees do not
000740      ** need to clear the cache.  This buys performance in the common case
000741      ** in exchange for generality.
000742      */
000743      VdbeTxtBlbCache *pCache;
000744      char *pBuf;
000745      if( pC->colCache==0 ){
000746        pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
000747        if( pC->pCache==0 ) return SQLITE_NOMEM;
000748        pC->colCache = 1;
000749      }
000750      pCache = pC->pCache;
000751      if( pCache->pCValue==0
000752       || pCache->iCol!=iCol
000753       || pCache->cacheStatus!=cacheStatus
000754       || pCache->colCacheCtr!=colCacheCtr
000755       || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
000756      ){
000757        if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
000758        pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
000759        if( pBuf==0 ) return SQLITE_NOMEM;
000760        rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
000761        if( rc ) return rc;
000762        pBuf[len] = 0;
000763        pBuf[len+1] = 0;
000764        pBuf[len+2] = 0;
000765        pCache->iCol = iCol;
000766        pCache->cacheStatus = cacheStatus;
000767        pCache->colCacheCtr = colCacheCtr;
000768        pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
000769      }else{
000770        pBuf = pCache->pCValue;
000771      }
000772      assert( t>=12 );
000773      sqlite3RCStrRef(pBuf);
000774      if( t&1 ){
000775        rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
000776                                  sqlite3RCStrUnref);
000777        pDest->flags |= MEM_Term;
000778      }else{
000779        rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
000780                                  sqlite3RCStrUnref);
000781      }
000782    }else{
000783      rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
000784      if( rc ) return rc;
000785      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
000786      if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
000787        pDest->z[len] = 0;
000788        pDest->flags |= MEM_Term;
000789      }
000790    }
000791    pDest->flags &= ~MEM_Ephem;
000792    return rc;
000793  }
000794  
000795  
000796  /*
000797  ** Return the symbolic name for the data type of a pMem
000798  */
000799  static const char *vdbeMemTypeName(Mem *pMem){
000800    static const char *azTypes[] = {
000801        /* SQLITE_INTEGER */ "INT",
000802        /* SQLITE_FLOAT   */ "REAL",
000803        /* SQLITE_TEXT    */ "TEXT",
000804        /* SQLITE_BLOB    */ "BLOB",
000805        /* SQLITE_NULL    */ "NULL"
000806    };
000807    return azTypes[sqlite3_value_type(pMem)-1];
000808  }
000809  
000810  /*
000811  ** Execute as much of a VDBE program as we can.
000812  ** This is the core of sqlite3_step(). 
000813  */
000814  int sqlite3VdbeExec(
000815    Vdbe *p                    /* The VDBE */
000816  ){
000817    Op *aOp = p->aOp;          /* Copy of p->aOp */
000818    Op *pOp = aOp;             /* Current operation */
000819  #ifdef SQLITE_DEBUG
000820    Op *pOrigOp;               /* Value of pOp at the top of the loop */
000821    int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
000822    u8 iCompareIsInit = 0;     /* iCompare is initialized */
000823  #endif
000824    int rc = SQLITE_OK;        /* Value to return */
000825    sqlite3 *db = p->db;       /* The database */
000826    u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
000827    u8 encoding = ENC(db);     /* The database encoding */
000828    int iCompare = 0;          /* Result of last comparison */
000829    u64 nVmStep = 0;           /* Number of virtual machine steps */
000830  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000831    u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
000832  #endif
000833    Mem *aMem = p->aMem;       /* Copy of p->aMem */
000834    Mem *pIn1 = 0;             /* 1st input operand */
000835    Mem *pIn2 = 0;             /* 2nd input operand */
000836    Mem *pIn3 = 0;             /* 3rd input operand */
000837    Mem *pOut = 0;             /* Output operand */
000838    u32 colCacheCtr = 0;       /* Column cache counter */
000839  #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
000840    u64 *pnCycle = 0;
000841    int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
000842  #endif
000843    /*** INSERT STACK UNION HERE ***/
000844  
000845    assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
000846    if( DbMaskNonZero(p->lockMask) ){
000847      sqlite3VdbeEnter(p);
000848    }
000849  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000850    if( db->xProgress ){
000851      u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
000852      assert( 0 < db->nProgressOps );
000853      nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
000854    }else{
000855      nProgressLimit = LARGEST_UINT64;
000856    }
000857  #endif
000858    if( p->rc==SQLITE_NOMEM ){
000859      /* This happens if a malloc() inside a call to sqlite3_column_text() or
000860      ** sqlite3_column_text16() failed.  */
000861      goto no_mem;
000862    }
000863    assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
000864    testcase( p->rc!=SQLITE_OK );
000865    p->rc = SQLITE_OK;
000866    assert( p->bIsReader || p->readOnly!=0 );
000867    p->iCurrentTime = 0;
000868    assert( p->explain==0 );
000869    db->busyHandler.nBusy = 0;
000870    if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
000871    sqlite3VdbeIOTraceSql(p);
000872  #ifdef SQLITE_DEBUG
000873    sqlite3BeginBenignMalloc();
000874    if( p->pc==0
000875     && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
000876    ){
000877      int i;
000878      int once = 1;
000879      sqlite3VdbePrintSql(p);
000880      if( p->db->flags & SQLITE_VdbeListing ){
000881        printf("VDBE Program Listing:\n");
000882        for(i=0; i<p->nOp; i++){
000883          sqlite3VdbePrintOp(stdout, i, &aOp[i]);
000884        }
000885      }
000886      if( p->db->flags & SQLITE_VdbeEQP ){
000887        for(i=0; i<p->nOp; i++){
000888          if( aOp[i].opcode==OP_Explain ){
000889            if( once ) printf("VDBE Query Plan:\n");
000890            printf("%s\n", aOp[i].p4.z);
000891            once = 0;
000892          }
000893        }
000894      }
000895      if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
000896    }
000897    sqlite3EndBenignMalloc();
000898  #endif
000899    for(pOp=&aOp[p->pc]; 1; pOp++){
000900      /* Errors are detected by individual opcodes, with an immediate
000901      ** jumps to abort_due_to_error. */
000902      assert( rc==SQLITE_OK );
000903  
000904      assert( pOp>=aOp && pOp<&aOp[p->nOp]);
000905      nVmStep++;
000906  
000907  #if defined(VDBE_PROFILE)
000908      pOp->nExec++;
000909      pnCycle = &pOp->nCycle;
000910      if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
000911  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
000912      if( bStmtScanStatus ){
000913        pOp->nExec++;
000914        pnCycle = &pOp->nCycle;
000915        *pnCycle -= sqlite3Hwtime();
000916      }
000917  #endif
000918  
000919      /* Only allow tracing if SQLITE_DEBUG is defined.
000920      */
000921  #ifdef SQLITE_DEBUG
000922      if( db->flags & SQLITE_VdbeTrace ){
000923        sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
000924        test_trace_breakpoint((int)(pOp - aOp),pOp,p);
000925      }
000926  #endif
000927       
000928  
000929      /* Check to see if we need to simulate an interrupt.  This only happens
000930      ** if we have a special test build.
000931      */
000932  #ifdef SQLITE_TEST
000933      if( sqlite3_interrupt_count>0 ){
000934        sqlite3_interrupt_count--;
000935        if( sqlite3_interrupt_count==0 ){
000936          sqlite3_interrupt(db);
000937        }
000938      }
000939  #endif
000940  
000941      /* Sanity checking on other operands */
000942  #ifdef SQLITE_DEBUG
000943      {
000944        u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
000945        if( (opProperty & OPFLG_IN1)!=0 ){
000946          assert( pOp->p1>0 );
000947          assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
000948          assert( memIsValid(&aMem[pOp->p1]) );
000949          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
000950          REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
000951        }
000952        if( (opProperty & OPFLG_IN2)!=0 ){
000953          assert( pOp->p2>0 );
000954          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000955          assert( memIsValid(&aMem[pOp->p2]) );
000956          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
000957          REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
000958        }
000959        if( (opProperty & OPFLG_IN3)!=0 ){
000960          assert( pOp->p3>0 );
000961          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000962          assert( memIsValid(&aMem[pOp->p3]) );
000963          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
000964          REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
000965        }
000966        if( (opProperty & OPFLG_OUT2)!=0 ){
000967          assert( pOp->p2>0 );
000968          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000969          memAboutToChange(p, &aMem[pOp->p2]);
000970        }
000971        if( (opProperty & OPFLG_OUT3)!=0 ){
000972          assert( pOp->p3>0 );
000973          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000974          memAboutToChange(p, &aMem[pOp->p3]);
000975        }
000976      }
000977  #endif
000978  #ifdef SQLITE_DEBUG
000979      pOrigOp = pOp;
000980  #endif
000981   
000982      switch( pOp->opcode ){
000983  
000984  /*****************************************************************************
000985  ** What follows is a massive switch statement where each case implements a
000986  ** separate instruction in the virtual machine.  If we follow the usual
000987  ** indentation conventions, each case should be indented by 6 spaces.  But
000988  ** that is a lot of wasted space on the left margin.  So the code within
000989  ** the switch statement will break with convention and be flush-left. Another
000990  ** big comment (similar to this one) will mark the point in the code where
000991  ** we transition back to normal indentation.
000992  **
000993  ** The formatting of each case is important.  The makefile for SQLite
000994  ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
000995  ** file looking for lines that begin with "case OP_".  The opcodes.h files
000996  ** will be filled with #defines that give unique integer values to each
000997  ** opcode and the opcodes.c file is filled with an array of strings where
000998  ** each string is the symbolic name for the corresponding opcode.  If the
000999  ** case statement is followed by a comment of the form "/# same as ... #/"
001000  ** that comment is used to determine the particular value of the opcode.
001001  **
001002  ** Other keywords in the comment that follows each case are used to
001003  ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
001004  ** Keywords include: in1, in2, in3, out2, out3.  See
001005  ** the mkopcodeh.awk script for additional information.
001006  **
001007  ** Documentation about VDBE opcodes is generated by scanning this file
001008  ** for lines of that contain "Opcode:".  That line and all subsequent
001009  ** comment lines are used in the generation of the opcode.html documentation
001010  ** file.
001011  **
001012  ** SUMMARY:
001013  **
001014  **     Formatting is important to scripts that scan this file.
001015  **     Do not deviate from the formatting style currently in use.
001016  **
001017  *****************************************************************************/
001018  
001019  /* Opcode:  Goto * P2 * * *
001020  **
001021  ** An unconditional jump to address P2.
001022  ** The next instruction executed will be
001023  ** the one at index P2 from the beginning of
001024  ** the program.
001025  **
001026  ** The P1 parameter is not actually used by this opcode.  However, it
001027  ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
001028  ** that this Goto is the bottom of a loop and that the lines from P2 down
001029  ** to the current line should be indented for EXPLAIN output.
001030  */
001031  case OP_Goto: {             /* jump */
001032  
001033  #ifdef SQLITE_DEBUG
001034    /* In debugging mode, when the p5 flags is set on an OP_Goto, that
001035    ** means we should really jump back to the preceding OP_ReleaseReg
001036    ** instruction. */
001037    if( pOp->p5 ){
001038      assert( pOp->p2 < (int)(pOp - aOp) );
001039      assert( pOp->p2 > 1 );
001040      pOp = &aOp[pOp->p2 - 2];
001041      assert( pOp[1].opcode==OP_ReleaseReg );
001042      goto check_for_interrupt;
001043    }
001044  #endif
001045  
001046  jump_to_p2_and_check_for_interrupt:
001047    pOp = &aOp[pOp->p2 - 1];
001048  
001049    /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
001050    ** OP_VNext, or OP_SorterNext) all jump here upon
001051    ** completion.  Check to see if sqlite3_interrupt() has been called
001052    ** or if the progress callback needs to be invoked.
001053    **
001054    ** This code uses unstructured "goto" statements and does not look clean.
001055    ** But that is not due to sloppy coding habits. The code is written this
001056    ** way for performance, to avoid having to run the interrupt and progress
001057    ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
001058    ** faster according to "valgrind --tool=cachegrind" */
001059  check_for_interrupt:
001060    if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
001061  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
001062    /* Call the progress callback if it is configured and the required number
001063    ** of VDBE ops have been executed (either since this invocation of
001064    ** sqlite3VdbeExec() or since last time the progress callback was called).
001065    ** If the progress callback returns non-zero, exit the virtual machine with
001066    ** a return code SQLITE_ABORT.
001067    */
001068    while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
001069      assert( db->nProgressOps!=0 );
001070      nProgressLimit += db->nProgressOps;
001071      if( db->xProgress(db->pProgressArg) ){
001072        nProgressLimit = LARGEST_UINT64;
001073        rc = SQLITE_INTERRUPT;
001074        goto abort_due_to_error;
001075      }
001076    }
001077  #endif
001078   
001079    break;
001080  }
001081  
001082  /* Opcode:  Gosub P1 P2 * * *
001083  **
001084  ** Write the current address onto register P1
001085  ** and then jump to address P2.
001086  */
001087  case OP_Gosub: {            /* jump */
001088    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001089    pIn1 = &aMem[pOp->p1];
001090    assert( VdbeMemDynamic(pIn1)==0 );
001091    memAboutToChange(p, pIn1);
001092    pIn1->flags = MEM_Int;
001093    pIn1->u.i = (int)(pOp-aOp);
001094    REGISTER_TRACE(pOp->p1, pIn1);
001095    goto jump_to_p2_and_check_for_interrupt;
001096  }
001097  
001098  /* Opcode:  Return P1 P2 P3 * *
001099  **
001100  ** Jump to the address stored in register P1.  If P1 is a return address
001101  ** register, then this accomplishes a return from a subroutine.
001102  **
001103  ** If P3 is 1, then the jump is only taken if register P1 holds an integer
001104  ** values, otherwise execution falls through to the next opcode, and the
001105  ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
001106  ** integer or else an assert() is raised.  P3 should be set to 1 when
001107  ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
001108  ** otherwise.
001109  **
001110  ** The value in register P1 is unchanged by this opcode.
001111  **
001112  ** P2 is not used by the byte-code engine.  However, if P2 is positive
001113  ** and also less than the current address, then the "EXPLAIN" output
001114  ** formatter in the CLI will indent all opcodes from the P2 opcode up
001115  ** to be not including the current Return.   P2 should be the first opcode
001116  ** in the subroutine from which this opcode is returning.  Thus the P2
001117  ** value is a byte-code indentation hint.  See tag-20220407a in
001118  ** wherecode.c and shell.c.
001119  */
001120  case OP_Return: {           /* in1 */
001121    pIn1 = &aMem[pOp->p1];
001122    if( pIn1->flags & MEM_Int ){
001123      if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
001124      pOp = &aOp[pIn1->u.i];
001125    }else if( ALWAYS(pOp->p3) ){
001126      VdbeBranchTaken(0, 2);
001127    }
001128    break;
001129  }
001130  
001131  /* Opcode: InitCoroutine P1 P2 P3 * *
001132  **
001133  ** Set up register P1 so that it will Yield to the coroutine
001134  ** located at address P3.
001135  **
001136  ** If P2!=0 then the coroutine implementation immediately follows
001137  ** this opcode.  So jump over the coroutine implementation to
001138  ** address P2.
001139  **
001140  ** See also: EndCoroutine
001141  */
001142  case OP_InitCoroutine: {     /* jump0 */
001143    assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
001144    assert( pOp->p2>=0 && pOp->p2<p->nOp );
001145    assert( pOp->p3>=0 && pOp->p3<p->nOp );
001146    pOut = &aMem[pOp->p1];
001147    assert( !VdbeMemDynamic(pOut) );
001148    pOut->u.i = pOp->p3 - 1;
001149    pOut->flags = MEM_Int;
001150    if( pOp->p2==0 ) break;
001151  
001152    /* Most jump operations do a goto to this spot in order to update
001153    ** the pOp pointer. */
001154  jump_to_p2:
001155    assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
001156    assert( pOp->p2<p->nOp );  /* Jumps must be in range */
001157    pOp = &aOp[pOp->p2 - 1];
001158    break;
001159  }
001160  
001161  /* Opcode:  EndCoroutine P1 * * * *
001162  **
001163  ** The instruction at the address in register P1 is a Yield.
001164  ** Jump to the P2 parameter of that Yield.
001165  ** After the jump, the value register P1 is left with a value
001166  ** such that subsequent OP_Yields go back to the this same
001167  ** OP_EndCoroutine instruction.
001168  **
001169  ** See also: InitCoroutine
001170  */
001171  case OP_EndCoroutine: {           /* in1 */
001172    VdbeOp *pCaller;
001173    pIn1 = &aMem[pOp->p1];
001174    assert( pIn1->flags==MEM_Int );
001175    assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
001176    pCaller = &aOp[pIn1->u.i];
001177    assert( pCaller->opcode==OP_Yield );
001178    assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
001179    pIn1->u.i = (int)(pOp - p->aOp) - 1;
001180    pOp = &aOp[pCaller->p2 - 1];
001181    break;
001182  }
001183  
001184  /* Opcode:  Yield P1 P2 * * *
001185  **
001186  ** Swap the program counter with the value in register P1.  This
001187  ** has the effect of yielding to a coroutine.
001188  **
001189  ** If the coroutine that is launched by this instruction ends with
001190  ** Yield or Return then continue to the next instruction.  But if
001191  ** the coroutine launched by this instruction ends with
001192  ** EndCoroutine, then jump to P2 rather than continuing with the
001193  ** next instruction.
001194  **
001195  ** See also: InitCoroutine
001196  */
001197  case OP_Yield: {            /* in1, jump0 */
001198    int pcDest;
001199    pIn1 = &aMem[pOp->p1];
001200    assert( VdbeMemDynamic(pIn1)==0 );
001201    pIn1->flags = MEM_Int;
001202    pcDest = (int)pIn1->u.i;
001203    pIn1->u.i = (int)(pOp - aOp);
001204    REGISTER_TRACE(pOp->p1, pIn1);
001205    pOp = &aOp[pcDest];
001206    break;
001207  }
001208  
001209  /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
001210  ** Synopsis: if r[P3]=null halt
001211  **
001212  ** Check the value in register P3.  If it is NULL then Halt using
001213  ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
001214  ** value in register P3 is not NULL, then this routine is a no-op.
001215  ** The P5 parameter should be 1.
001216  */
001217  case OP_HaltIfNull: {      /* in3 */
001218    pIn3 = &aMem[pOp->p3];
001219  #ifdef SQLITE_DEBUG
001220    if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
001221  #endif
001222    if( (pIn3->flags & MEM_Null)==0 ) break;
001223    /* Fall through into OP_Halt */
001224    /* no break */ deliberate_fall_through
001225  }
001226  
001227  /* Opcode:  Halt P1 P2 P3 P4 P5
001228  **
001229  ** Exit immediately.  All open cursors, etc are closed
001230  ** automatically.
001231  **
001232  ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
001233  ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
001234  ** For errors, it can be some other value.  If P1!=0 then P2 will determine
001235  ** whether or not to rollback the current transaction.  Do not rollback
001236  ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
001237  ** then back out all changes that have occurred during this execution of the
001238  ** VDBE, but do not rollback the transaction.
001239  **
001240  ** If P3 is not zero and P4 is NULL, then P3 is a register that holds the
001241  ** text of an error message.
001242  **
001243  ** If P3 is zero and P4 is not null then the error message string is held
001244  ** in P4.
001245  **
001246  ** P5 is a value between 1 and 4, inclusive, then the P4 error message
001247  ** string is modified as follows:
001248  **
001249  **    1:  NOT NULL constraint failed: P4
001250  **    2:  UNIQUE constraint failed: P4
001251  **    3:  CHECK constraint failed: P4
001252  **    4:  FOREIGN KEY constraint failed: P4
001253  **
001254  ** If P3 is zero and P5 is not zero and P4 is NULL, then everything after
001255  ** the ":" is omitted.
001256  **
001257  ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
001258  ** every program.  So a jump past the last instruction of the program
001259  ** is the same as executing Halt.
001260  */
001261  case OP_Halt: {
001262    VdbeFrame *pFrame;
001263    int pcx;
001264  
001265  #ifdef SQLITE_DEBUG
001266    if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
001267  #endif
001268    assert( pOp->p4type==P4_NOTUSED
001269         || pOp->p4type==P4_STATIC
001270         || pOp->p4type==P4_DYNAMIC );
001271  
001272    /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
001273    ** something is wrong with the code generator.  Raise an assertion in order
001274    ** to bring this to the attention of fuzzers and other testing tools. */
001275    assert( pOp->p1!=SQLITE_INTERNAL );
001276  
001277    if( p->pFrame && pOp->p1==SQLITE_OK ){
001278      /* Halt the sub-program. Return control to the parent frame. */
001279      pFrame = p->pFrame;
001280      p->pFrame = pFrame->pParent;
001281      p->nFrame--;
001282      sqlite3VdbeSetChanges(db, p->nChange);
001283      pcx = sqlite3VdbeFrameRestore(pFrame);
001284      if( pOp->p2==OE_Ignore ){
001285        /* Instruction pcx is the OP_Program that invoked the sub-program
001286        ** currently being halted. If the p2 instruction of this OP_Halt
001287        ** instruction is set to OE_Ignore, then the sub-program is throwing
001288        ** an IGNORE exception. In this case jump to the address specified
001289        ** as the p2 of the calling OP_Program.  */
001290        pcx = p->aOp[pcx].p2-1;
001291      }
001292      aOp = p->aOp;
001293      aMem = p->aMem;
001294      pOp = &aOp[pcx];
001295      break;
001296    }
001297    p->rc = pOp->p1;
001298    p->errorAction = (u8)pOp->p2;
001299    assert( pOp->p5<=4 );
001300    if( p->rc ){
001301      if( pOp->p3>0 && pOp->p4type==P4_NOTUSED ){
001302        const char *zErr;
001303        assert( pOp->p3<=(p->nMem + 1 - p->nCursor) );
001304        zErr = sqlite3ValueText(&aMem[pOp->p3], SQLITE_UTF8);
001305        sqlite3VdbeError(p, "%s", zErr);
001306      }else if( pOp->p5 ){
001307        static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
001308                                               "FOREIGN KEY" };
001309        testcase( pOp->p5==1 );
001310        testcase( pOp->p5==2 );
001311        testcase( pOp->p5==3 );
001312        testcase( pOp->p5==4 );
001313        sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
001314        if( pOp->p4.z ){
001315          p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
001316        }
001317      }else{
001318        sqlite3VdbeError(p, "%s", pOp->p4.z);
001319      }
001320      pcx = (int)(pOp - aOp);
001321      sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
001322    }
001323    rc = sqlite3VdbeHalt(p);
001324    assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
001325    if( rc==SQLITE_BUSY ){
001326      p->rc = SQLITE_BUSY;
001327    }else{
001328      assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
001329      assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
001330      rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
001331    }
001332    goto vdbe_return;
001333  }
001334  
001335  /* Opcode: Integer P1 P2 * * *
001336  ** Synopsis: r[P2]=P1
001337  **
001338  ** The 32-bit integer value P1 is written into register P2.
001339  */
001340  case OP_Integer: {         /* out2 */
001341    pOut = out2Prerelease(p, pOp);
001342    pOut->u.i = pOp->p1;
001343    break;
001344  }
001345  
001346  /* Opcode: Int64 * P2 * P4 *
001347  ** Synopsis: r[P2]=P4
001348  **
001349  ** P4 is a pointer to a 64-bit integer value.
001350  ** Write that value into register P2.
001351  */
001352  case OP_Int64: {           /* out2 */
001353    pOut = out2Prerelease(p, pOp);
001354    assert( pOp->p4.pI64!=0 );
001355    pOut->u.i = *pOp->p4.pI64;
001356    break;
001357  }
001358  
001359  #ifndef SQLITE_OMIT_FLOATING_POINT
001360  /* Opcode: Real * P2 * P4 *
001361  ** Synopsis: r[P2]=P4
001362  **
001363  ** P4 is a pointer to a 64-bit floating point value.
001364  ** Write that value into register P2.
001365  */
001366  case OP_Real: {            /* same as TK_FLOAT, out2 */
001367    pOut = out2Prerelease(p, pOp);
001368    pOut->flags = MEM_Real;
001369    assert( !sqlite3IsNaN(*pOp->p4.pReal) );
001370    pOut->u.r = *pOp->p4.pReal;
001371    break;
001372  }
001373  #endif
001374  
001375  /* Opcode: String8 * P2 * P4 *
001376  ** Synopsis: r[P2]='P4'
001377  **
001378  ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
001379  ** into a String opcode before it is executed for the first time.  During
001380  ** this transformation, the length of string P4 is computed and stored
001381  ** as the P1 parameter.
001382  */
001383  case OP_String8: {         /* same as TK_STRING, out2 */
001384    assert( pOp->p4.z!=0 );
001385    pOut = out2Prerelease(p, pOp);
001386    pOp->p1 = sqlite3Strlen30(pOp->p4.z);
001387  
001388  #ifndef SQLITE_OMIT_UTF16
001389    if( encoding!=SQLITE_UTF8 ){
001390      rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
001391      assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
001392      if( rc ) goto too_big;
001393      if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
001394      assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
001395      assert( VdbeMemDynamic(pOut)==0 );
001396      pOut->szMalloc = 0;
001397      pOut->flags |= MEM_Static;
001398      if( pOp->p4type==P4_DYNAMIC ){
001399        sqlite3DbFree(db, pOp->p4.z);
001400      }
001401      pOp->p4type = P4_DYNAMIC;
001402      pOp->p4.z = pOut->z;
001403      pOp->p1 = pOut->n;
001404    }
001405  #endif
001406    if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001407      goto too_big;
001408    }
001409    pOp->opcode = OP_String;
001410    assert( rc==SQLITE_OK );
001411    /* Fall through to the next case, OP_String */
001412    /* no break */ deliberate_fall_through
001413  }
001414   
001415  /* Opcode: String P1 P2 P3 P4 P5
001416  ** Synopsis: r[P2]='P4' (len=P1)
001417  **
001418  ** The string value P4 of length P1 (bytes) is stored in register P2.
001419  **
001420  ** If P3 is not zero and the content of register P3 is equal to P5, then
001421  ** the datatype of the register P2 is converted to BLOB.  The content is
001422  ** the same sequence of bytes, it is merely interpreted as a BLOB instead
001423  ** of a string, as if it had been CAST.  In other words:
001424  **
001425  ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
001426  */
001427  case OP_String: {          /* out2 */
001428    assert( pOp->p4.z!=0 );
001429    pOut = out2Prerelease(p, pOp);
001430    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
001431    pOut->z = pOp->p4.z;
001432    pOut->n = pOp->p1;
001433    pOut->enc = encoding;
001434    UPDATE_MAX_BLOBSIZE(pOut);
001435  #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
001436    if( pOp->p3>0 ){
001437      assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001438      pIn3 = &aMem[pOp->p3];
001439      assert( pIn3->flags & MEM_Int );
001440      if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
001441    }
001442  #endif
001443    break;
001444  }
001445  
001446  /* Opcode: BeginSubrtn * P2 * * *
001447  ** Synopsis: r[P2]=NULL
001448  **
001449  ** Mark the beginning of a subroutine that can be entered in-line
001450  ** or that can be called using OP_Gosub.  The subroutine should
001451  ** be terminated by an OP_Return instruction that has a P1 operand that
001452  ** is the same as the P2 operand to this opcode and that has P3 set to 1.
001453  ** If the subroutine is entered in-line, then the OP_Return will simply
001454  ** fall through.  But if the subroutine is entered using OP_Gosub, then
001455  ** the OP_Return will jump back to the first instruction after the OP_Gosub.
001456  **
001457  ** This routine works by loading a NULL into the P2 register.  When the
001458  ** return address register contains a NULL, the OP_Return instruction is
001459  ** a no-op that simply falls through to the next instruction (assuming that
001460  ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
001461  ** entered in-line, then the OP_Return will cause in-line execution to
001462  ** continue.  But if the subroutine is entered via OP_Gosub, then the
001463  ** OP_Return will cause a return to the address following the OP_Gosub.
001464  **
001465  ** This opcode is identical to OP_Null.  It has a different name
001466  ** only to make the byte code easier to read and verify.
001467  */
001468  /* Opcode: Null P1 P2 P3 * *
001469  ** Synopsis: r[P2..P3]=NULL
001470  **
001471  ** Write a NULL into registers P2.  If P3 greater than P2, then also write
001472  ** NULL into register P3 and every register in between P2 and P3.  If P3
001473  ** is less than P2 (typically P3 is zero) then only register P2 is
001474  ** set to NULL.
001475  **
001476  ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
001477  ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
001478  ** OP_Ne or OP_Eq.
001479  */
001480  case OP_BeginSubrtn:
001481  case OP_Null: {           /* out2 */
001482    int cnt;
001483    u16 nullFlag;
001484    pOut = out2Prerelease(p, pOp);
001485    cnt = pOp->p3-pOp->p2;
001486    assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001487    pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
001488    pOut->n = 0;
001489  #ifdef SQLITE_DEBUG
001490    pOut->uTemp = 0;
001491  #endif
001492    while( cnt>0 ){
001493      pOut++;
001494      memAboutToChange(p, pOut);
001495      sqlite3VdbeMemSetNull(pOut);
001496      pOut->flags = nullFlag;
001497      pOut->n = 0;
001498      cnt--;
001499    }
001500    break;
001501  }
001502  
001503  /* Opcode: SoftNull P1 * * * *
001504  ** Synopsis: r[P1]=NULL
001505  **
001506  ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
001507  ** instruction, but do not free any string or blob memory associated with
001508  ** the register, so that if the value was a string or blob that was
001509  ** previously copied using OP_SCopy, the copies will continue to be valid.
001510  */
001511  case OP_SoftNull: {
001512    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001513    pOut = &aMem[pOp->p1];
001514    pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
001515    break;
001516  }
001517  
001518  /* Opcode: Blob P1 P2 * P4 *
001519  ** Synopsis: r[P2]=P4 (len=P1)
001520  **
001521  ** P4 points to a blob of data P1 bytes long.  Store this
001522  ** blob in register P2.  If P4 is a NULL pointer, then construct
001523  ** a zero-filled blob that is P1 bytes long in P2.
001524  */
001525  case OP_Blob: {                /* out2 */
001526    assert( pOp->p1 <= SQLITE_MAX_LENGTH );
001527    pOut = out2Prerelease(p, pOp);
001528    if( pOp->p4.z==0 ){
001529      sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
001530      if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
001531    }else{
001532      sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
001533    }
001534    pOut->enc = encoding;
001535    UPDATE_MAX_BLOBSIZE(pOut);
001536    break;
001537  }
001538  
001539  /* Opcode: Variable P1 P2 * * *
001540  ** Synopsis: r[P2]=parameter(P1)
001541  **
001542  ** Transfer the values of bound parameter P1 into register P2
001543  */
001544  case OP_Variable: {            /* out2 */
001545    Mem *pVar;       /* Value being transferred */
001546  
001547    assert( pOp->p1>0 && pOp->p1<=p->nVar );
001548    pVar = &p->aVar[pOp->p1 - 1];
001549    if( sqlite3VdbeMemTooBig(pVar) ){
001550      goto too_big;
001551    }
001552    pOut = &aMem[pOp->p2];
001553    if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
001554    memcpy(pOut, pVar, MEMCELLSIZE);
001555    pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
001556    pOut->flags |= MEM_Static|MEM_FromBind;
001557    UPDATE_MAX_BLOBSIZE(pOut);
001558    break;
001559  }
001560  
001561  /* Opcode: Move P1 P2 P3 * *
001562  ** Synopsis: r[P2@P3]=r[P1@P3]
001563  **
001564  ** Move the P3 values in register P1..P1+P3-1 over into
001565  ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
001566  ** left holding a NULL.  It is an error for register ranges
001567  ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
001568  ** for P3 to be less than 1.
001569  */
001570  case OP_Move: {
001571    int n;           /* Number of registers left to copy */
001572    int p1;          /* Register to copy from */
001573    int p2;          /* Register to copy to */
001574  
001575    n = pOp->p3;
001576    p1 = pOp->p1;
001577    p2 = pOp->p2;
001578    assert( n>0 && p1>0 && p2>0 );
001579    assert( p1+n<=p2 || p2+n<=p1 );
001580  
001581    pIn1 = &aMem[p1];
001582    pOut = &aMem[p2];
001583    do{
001584      assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
001585      assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
001586      assert( memIsValid(pIn1) );
001587      memAboutToChange(p, pOut);
001588      sqlite3VdbeMemMove(pOut, pIn1);
001589  #ifdef SQLITE_DEBUG
001590      pIn1->pScopyFrom = 0;
001591      { int i;
001592        for(i=1; i<p->nMem; i++){
001593          if( aMem[i].pScopyFrom==pIn1 ){
001594            assert( aMem[i].bScopy );
001595            aMem[i].pScopyFrom = pOut;
001596          }
001597        }
001598      }
001599  #endif
001600      Deephemeralize(pOut);
001601      REGISTER_TRACE(p2++, pOut);
001602      pIn1++;
001603      pOut++;
001604    }while( --n );
001605    break;
001606  }
001607  
001608  /* Opcode: Copy P1 P2 P3 * P5
001609  ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
001610  **
001611  ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
001612  **
001613  ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
001614  ** destination.  The 0x0001 bit of P5 indicates that this Copy opcode cannot
001615  ** be merged.  The 0x0001 bit is used by the query planner and does not
001616  ** come into play during query execution.
001617  **
001618  ** This instruction makes a deep copy of the value.  A duplicate
001619  ** is made of any string or blob constant.  See also OP_SCopy.
001620  */
001621  case OP_Copy: {
001622    int n;
001623  
001624    n = pOp->p3;
001625    pIn1 = &aMem[pOp->p1];
001626    pOut = &aMem[pOp->p2];
001627    assert( pOut!=pIn1 );
001628    while( 1 ){
001629      memAboutToChange(p, pOut);
001630      sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001631      Deephemeralize(pOut);
001632      if( (pOut->flags & MEM_Subtype)!=0 &&  (pOp->p5 & 0x0002)!=0 ){
001633        pOut->flags &= ~MEM_Subtype;
001634      }
001635  #ifdef SQLITE_DEBUG
001636      pOut->pScopyFrom = 0;
001637  #endif
001638      REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
001639      if( (n--)==0 ) break;
001640      pOut++;
001641      pIn1++;
001642    }
001643    break;
001644  }
001645  
001646  /* Opcode: SCopy P1 P2 * * *
001647  ** Synopsis: r[P2]=r[P1]
001648  **
001649  ** Make a shallow copy of register P1 into register P2.
001650  **
001651  ** This instruction makes a shallow copy of the value.  If the value
001652  ** is a string or blob, then the copy is only a pointer to the
001653  ** original and hence if the original changes so will the copy.
001654  ** Worse, if the original is deallocated, the copy becomes invalid.
001655  ** Thus the program must guarantee that the original will not change
001656  ** during the lifetime of the copy.  Use OP_Copy to make a complete
001657  ** copy.
001658  */
001659  case OP_SCopy: {            /* out2 */
001660    pIn1 = &aMem[pOp->p1];
001661    pOut = &aMem[pOp->p2];
001662    assert( pOut!=pIn1 );
001663    sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001664  #ifdef SQLITE_DEBUG
001665    pOut->pScopyFrom = pIn1;
001666    pOut->mScopyFlags = pIn1->flags;
001667    pIn1->bScopy = 1;
001668  #endif
001669    break;
001670  }
001671  
001672  /* Opcode: IntCopy P1 P2 * * *
001673  ** Synopsis: r[P2]=r[P1]
001674  **
001675  ** Transfer the integer value held in register P1 into register P2.
001676  **
001677  ** This is an optimized version of SCopy that works only for integer
001678  ** values.
001679  */
001680  case OP_IntCopy: {            /* out2 */
001681    pIn1 = &aMem[pOp->p1];
001682    assert( (pIn1->flags & MEM_Int)!=0 );
001683    pOut = &aMem[pOp->p2];
001684    sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
001685    break;
001686  }
001687  
001688  /* Opcode: FkCheck * * * * *
001689  **
001690  ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
001691  ** foreign key constraint violations.  If there are no foreign key
001692  ** constraint violations, this is a no-op.
001693  **
001694  ** FK constraint violations are also checked when the prepared statement
001695  ** exits.  This opcode is used to raise foreign key constraint errors prior
001696  ** to returning results such as a row change count or the result of a
001697  ** RETURNING clause.
001698  */
001699  case OP_FkCheck: {
001700    if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
001701      goto abort_due_to_error;
001702    }
001703    break;
001704  }
001705  
001706  /* Opcode: ResultRow P1 P2 * * *
001707  ** Synopsis: output=r[P1@P2]
001708  **
001709  ** The registers P1 through P1+P2-1 contain a single row of
001710  ** results. This opcode causes the sqlite3_step() call to terminate
001711  ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
001712  ** structure to provide access to the r(P1)..r(P1+P2-1) values as
001713  ** the result row.
001714  */
001715  case OP_ResultRow: {
001716    assert( p->nResColumn==pOp->p2 );
001717    assert( pOp->p1>0 || CORRUPT_DB );
001718    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
001719  
001720    p->cacheCtr = (p->cacheCtr + 2)|1;
001721    p->pResultRow = &aMem[pOp->p1];
001722  #ifdef SQLITE_DEBUG
001723    {
001724      Mem *pMem = p->pResultRow;
001725      int i;
001726      for(i=0; i<pOp->p2; i++){
001727        assert( memIsValid(&pMem[i]) );
001728        REGISTER_TRACE(pOp->p1+i, &pMem[i]);
001729        /* The registers in the result will not be used again when the
001730        ** prepared statement restarts.  This is because sqlite3_column()
001731        ** APIs might have caused type conversions of made other changes to
001732        ** the register values.  Therefore, we can go ahead and break any
001733        ** OP_SCopy dependencies. */
001734        pMem[i].pScopyFrom = 0;
001735      }
001736    }
001737  #endif
001738    if( db->mallocFailed ) goto no_mem;
001739    if( db->mTrace & SQLITE_TRACE_ROW ){
001740      db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
001741    }
001742    p->pc = (int)(pOp - aOp) + 1;
001743    rc = SQLITE_ROW;
001744    goto vdbe_return;
001745  }
001746  
001747  /* Opcode: Concat P1 P2 P3 * *
001748  ** Synopsis: r[P3]=r[P2]+r[P1]
001749  **
001750  ** Add the text in register P1 onto the end of the text in
001751  ** register P2 and store the result in register P3.
001752  ** If either the P1 or P2 text are NULL then store NULL in P3.
001753  **
001754  **   P3 = P2 || P1
001755  **
001756  ** It is illegal for P1 and P3 to be the same register. Sometimes,
001757  ** if P3 is the same register as P2, the implementation is able
001758  ** to avoid a memcpy().
001759  */
001760  case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
001761    i64 nByte;          /* Total size of the output string or blob */
001762    u16 flags1;         /* Initial flags for P1 */
001763    u16 flags2;         /* Initial flags for P2 */
001764  
001765    pIn1 = &aMem[pOp->p1];
001766    pIn2 = &aMem[pOp->p2];
001767    pOut = &aMem[pOp->p3];
001768    testcase( pOut==pIn2 );
001769    assert( pIn1!=pOut );
001770    flags1 = pIn1->flags;
001771    testcase( flags1 & MEM_Null );
001772    testcase( pIn2->flags & MEM_Null );
001773    if( (flags1 | pIn2->flags) & MEM_Null ){
001774      sqlite3VdbeMemSetNull(pOut);
001775      break;
001776    }
001777    if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
001778      if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
001779      flags1 = pIn1->flags & ~MEM_Str;
001780    }else if( (flags1 & MEM_Zero)!=0 ){
001781      if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
001782      flags1 = pIn1->flags & ~MEM_Str;
001783    }
001784    flags2 = pIn2->flags;
001785    if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
001786      if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
001787      flags2 = pIn2->flags & ~MEM_Str;
001788    }else if( (flags2 & MEM_Zero)!=0 ){
001789      if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
001790      flags2 = pIn2->flags & ~MEM_Str;
001791    }
001792    nByte = pIn1->n + pIn2->n;
001793    if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001794      goto too_big;
001795    }
001796    if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
001797      goto no_mem;
001798    }
001799    MemSetTypeFlag(pOut, MEM_Str);
001800    if( pOut!=pIn2 ){
001801      memcpy(pOut->z, pIn2->z, pIn2->n);
001802      assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
001803      pIn2->flags = flags2;
001804    }
001805    memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
001806    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
001807    pIn1->flags = flags1;
001808    if( encoding>SQLITE_UTF8 ) nByte &= ~1;
001809    pOut->z[nByte]=0;
001810    pOut->z[nByte+1] = 0;
001811    pOut->flags |= MEM_Term;
001812    pOut->n = (int)nByte;
001813    pOut->enc = encoding;
001814    UPDATE_MAX_BLOBSIZE(pOut);
001815    break;
001816  }
001817  
001818  /* Opcode: Add P1 P2 P3 * *
001819  ** Synopsis: r[P3]=r[P1]+r[P2]
001820  **
001821  ** Add the value in register P1 to the value in register P2
001822  ** and store the result in register P3.
001823  ** If either input is NULL, the result is NULL.
001824  */
001825  /* Opcode: Multiply P1 P2 P3 * *
001826  ** Synopsis: r[P3]=r[P1]*r[P2]
001827  **
001828  **
001829  ** Multiply the value in register P1 by the value in register P2
001830  ** and store the result in register P3.
001831  ** If either input is NULL, the result is NULL.
001832  */
001833  /* Opcode: Subtract P1 P2 P3 * *
001834  ** Synopsis: r[P3]=r[P2]-r[P1]
001835  **
001836  ** Subtract the value in register P1 from the value in register P2
001837  ** and store the result in register P3.
001838  ** If either input is NULL, the result is NULL.
001839  */
001840  /* Opcode: Divide P1 P2 P3 * *
001841  ** Synopsis: r[P3]=r[P2]/r[P1]
001842  **
001843  ** Divide the value in register P1 by the value in register P2
001844  ** and store the result in register P3 (P3=P2/P1). If the value in
001845  ** register P1 is zero, then the result is NULL. If either input is
001846  ** NULL, the result is NULL.
001847  */
001848  /* Opcode: Remainder P1 P2 P3 * *
001849  ** Synopsis: r[P3]=r[P2]%r[P1]
001850  **
001851  ** Compute the remainder after integer register P2 is divided by
001852  ** register P1 and store the result in register P3.
001853  ** If the value in register P1 is zero the result is NULL.
001854  ** If either operand is NULL, the result is NULL.
001855  */
001856  case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
001857  case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
001858  case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
001859  case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
001860  case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
001861    u16 type1;      /* Numeric type of left operand */
001862    u16 type2;      /* Numeric type of right operand */
001863    i64 iA;         /* Integer value of left operand */
001864    i64 iB;         /* Integer value of right operand */
001865    double rA;      /* Real value of left operand */
001866    double rB;      /* Real value of right operand */
001867  
001868    pIn1 = &aMem[pOp->p1];
001869    type1 = pIn1->flags;
001870    pIn2 = &aMem[pOp->p2];
001871    type2 = pIn2->flags;
001872    pOut = &aMem[pOp->p3];
001873    if( (type1 & type2 & MEM_Int)!=0 ){
001874  int_math:
001875      iA = pIn1->u.i;
001876      iB = pIn2->u.i;
001877      switch( pOp->opcode ){
001878        case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
001879        case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
001880        case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
001881        case OP_Divide: {
001882          if( iA==0 ) goto arithmetic_result_is_null;
001883          if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
001884          iB /= iA;
001885          break;
001886        }
001887        default: {
001888          if( iA==0 ) goto arithmetic_result_is_null;
001889          if( iA==-1 ) iA = 1;
001890          iB %= iA;
001891          break;
001892        }
001893      }
001894      pOut->u.i = iB;
001895      MemSetTypeFlag(pOut, MEM_Int);
001896    }else if( ((type1 | type2) & MEM_Null)!=0 ){
001897      goto arithmetic_result_is_null;
001898    }else{
001899      type1 = numericType(pIn1);
001900      type2 = numericType(pIn2);
001901      if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
001902  fp_math:
001903      rA = sqlite3VdbeRealValue(pIn1);
001904      rB = sqlite3VdbeRealValue(pIn2);
001905      switch( pOp->opcode ){
001906        case OP_Add:         rB += rA;       break;
001907        case OP_Subtract:    rB -= rA;       break;
001908        case OP_Multiply:    rB *= rA;       break;
001909        case OP_Divide: {
001910          /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
001911          if( rA==(double)0 ) goto arithmetic_result_is_null;
001912          rB /= rA;
001913          break;
001914        }
001915        default: {
001916          iA = sqlite3VdbeIntValue(pIn1);
001917          iB = sqlite3VdbeIntValue(pIn2);
001918          if( iA==0 ) goto arithmetic_result_is_null;
001919          if( iA==-1 ) iA = 1;
001920          rB = (double)(iB % iA);
001921          break;
001922        }
001923      }
001924  #ifdef SQLITE_OMIT_FLOATING_POINT
001925      pOut->u.i = rB;
001926      MemSetTypeFlag(pOut, MEM_Int);
001927  #else
001928      if( sqlite3IsNaN(rB) ){
001929        goto arithmetic_result_is_null;
001930      }
001931      pOut->u.r = rB;
001932      MemSetTypeFlag(pOut, MEM_Real);
001933  #endif
001934    }
001935    break;
001936  
001937  arithmetic_result_is_null:
001938    sqlite3VdbeMemSetNull(pOut);
001939    break;
001940  }
001941  
001942  /* Opcode: CollSeq P1 * * P4
001943  **
001944  ** P4 is a pointer to a CollSeq object. If the next call to a user function
001945  ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
001946  ** be returned. This is used by the built-in min(), max() and nullif()
001947  ** functions.
001948  **
001949  ** If P1 is not zero, then it is a register that a subsequent min() or
001950  ** max() aggregate will set to 1 if the current row is not the minimum or
001951  ** maximum.  The P1 register is initialized to 0 by this instruction.
001952  **
001953  ** The interface used by the implementation of the aforementioned functions
001954  ** to retrieve the collation sequence set by this opcode is not available
001955  ** publicly.  Only built-in functions have access to this feature.
001956  */
001957  case OP_CollSeq: {
001958    assert( pOp->p4type==P4_COLLSEQ );
001959    if( pOp->p1 ){
001960      sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
001961    }
001962    break;
001963  }
001964  
001965  /* Opcode: BitAnd P1 P2 P3 * *
001966  ** Synopsis: r[P3]=r[P1]&r[P2]
001967  **
001968  ** Take the bit-wise AND of the values in register P1 and P2 and
001969  ** store the result in register P3.
001970  ** If either input is NULL, the result is NULL.
001971  */
001972  /* Opcode: BitOr P1 P2 P3 * *
001973  ** Synopsis: r[P3]=r[P1]|r[P2]
001974  **
001975  ** Take the bit-wise OR of the values in register P1 and P2 and
001976  ** store the result in register P3.
001977  ** If either input is NULL, the result is NULL.
001978  */
001979  /* Opcode: ShiftLeft P1 P2 P3 * *
001980  ** Synopsis: r[P3]=r[P2]<<r[P1]
001981  **
001982  ** Shift the integer value in register P2 to the left by the
001983  ** number of bits specified by the integer in register P1.
001984  ** Store the result in register P3.
001985  ** If either input is NULL, the result is NULL.
001986  */
001987  /* Opcode: ShiftRight P1 P2 P3 * *
001988  ** Synopsis: r[P3]=r[P2]>>r[P1]
001989  **
001990  ** Shift the integer value in register P2 to the right by the
001991  ** number of bits specified by the integer in register P1.
001992  ** Store the result in register P3.
001993  ** If either input is NULL, the result is NULL.
001994  */
001995  case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
001996  case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
001997  case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
001998  case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
001999    i64 iA;
002000    u64 uA;
002001    i64 iB;
002002    u8 op;
002003  
002004    pIn1 = &aMem[pOp->p1];
002005    pIn2 = &aMem[pOp->p2];
002006    pOut = &aMem[pOp->p3];
002007    if( (pIn1->flags | pIn2->flags) & MEM_Null ){
002008      sqlite3VdbeMemSetNull(pOut);
002009      break;
002010    }
002011    iA = sqlite3VdbeIntValue(pIn2);
002012    iB = sqlite3VdbeIntValue(pIn1);
002013    op = pOp->opcode;
002014    if( op==OP_BitAnd ){
002015      iA &= iB;
002016    }else if( op==OP_BitOr ){
002017      iA |= iB;
002018    }else if( iB!=0 ){
002019      assert( op==OP_ShiftRight || op==OP_ShiftLeft );
002020  
002021      /* If shifting by a negative amount, shift in the other direction */
002022      if( iB<0 ){
002023        assert( OP_ShiftRight==OP_ShiftLeft+1 );
002024        op = 2*OP_ShiftLeft + 1 - op;
002025        iB = iB>(-64) ? -iB : 64;
002026      }
002027  
002028      if( iB>=64 ){
002029        iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
002030      }else{
002031        memcpy(&uA, &iA, sizeof(uA));
002032        if( op==OP_ShiftLeft ){
002033          uA <<= iB;
002034        }else{
002035          uA >>= iB;
002036          /* Sign-extend on a right shift of a negative number */
002037          if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
002038        }
002039        memcpy(&iA, &uA, sizeof(iA));
002040      }
002041    }
002042    pOut->u.i = iA;
002043    MemSetTypeFlag(pOut, MEM_Int);
002044    break;
002045  }
002046  
002047  /* Opcode: AddImm  P1 P2 * * *
002048  ** Synopsis: r[P1]=r[P1]+P2
002049  **
002050  ** Add the constant P2 to the value in register P1.
002051  ** The result is always an integer.
002052  **
002053  ** To force any register to be an integer, just add 0.
002054  */
002055  case OP_AddImm: {            /* in1 */
002056    pIn1 = &aMem[pOp->p1];
002057    memAboutToChange(p, pIn1);
002058    sqlite3VdbeMemIntegerify(pIn1);
002059    *(u64*)&pIn1->u.i += (u64)pOp->p2;
002060    break;
002061  }
002062  
002063  /* Opcode: MustBeInt P1 P2 * * *
002064  **
002065  ** Force the value in register P1 to be an integer.  If the value
002066  ** in P1 is not an integer and cannot be converted into an integer
002067  ** without data loss, then jump immediately to P2, or if P2==0
002068  ** raise an SQLITE_MISMATCH exception.
002069  */
002070  case OP_MustBeInt: {            /* jump0, in1 */
002071    pIn1 = &aMem[pOp->p1];
002072    if( (pIn1->flags & MEM_Int)==0 ){
002073      applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
002074      if( (pIn1->flags & MEM_Int)==0 ){
002075        VdbeBranchTaken(1, 2);
002076        if( pOp->p2==0 ){
002077          rc = SQLITE_MISMATCH;
002078          goto abort_due_to_error;
002079        }else{
002080          goto jump_to_p2;
002081        }
002082      }
002083    }
002084    VdbeBranchTaken(0, 2);
002085    MemSetTypeFlag(pIn1, MEM_Int);
002086    break;
002087  }
002088  
002089  #ifndef SQLITE_OMIT_FLOATING_POINT
002090  /* Opcode: RealAffinity P1 * * * *
002091  **
002092  ** If register P1 holds an integer convert it to a real value.
002093  **
002094  ** This opcode is used when extracting information from a column that
002095  ** has REAL affinity.  Such column values may still be stored as
002096  ** integers, for space efficiency, but after extraction we want them
002097  ** to have only a real value.
002098  */
002099  case OP_RealAffinity: {                  /* in1 */
002100    pIn1 = &aMem[pOp->p1];
002101    if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
002102      testcase( pIn1->flags & MEM_Int );
002103      testcase( pIn1->flags & MEM_IntReal );
002104      sqlite3VdbeMemRealify(pIn1);
002105      REGISTER_TRACE(pOp->p1, pIn1);
002106    }
002107    break;
002108  }
002109  #endif
002110  
002111  #if !defined(SQLITE_OMIT_CAST) || !defined(SQLITE_OMIT_ANALYZE)
002112  /* Opcode: Cast P1 P2 * * *
002113  ** Synopsis: affinity(r[P1])
002114  **
002115  ** Force the value in register P1 to be the type defined by P2.
002116  **
002117  ** <ul>
002118  ** <li> P2=='A' &rarr; BLOB
002119  ** <li> P2=='B' &rarr; TEXT
002120  ** <li> P2=='C' &rarr; NUMERIC
002121  ** <li> P2=='D' &rarr; INTEGER
002122  ** <li> P2=='E' &rarr; REAL
002123  ** </ul>
002124  **
002125  ** A NULL value is not changed by this routine.  It remains NULL.
002126  */
002127  case OP_Cast: {                  /* in1 */
002128    assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
002129    testcase( pOp->p2==SQLITE_AFF_TEXT );
002130    testcase( pOp->p2==SQLITE_AFF_BLOB );
002131    testcase( pOp->p2==SQLITE_AFF_NUMERIC );
002132    testcase( pOp->p2==SQLITE_AFF_INTEGER );
002133    testcase( pOp->p2==SQLITE_AFF_REAL );
002134    pIn1 = &aMem[pOp->p1];
002135    memAboutToChange(p, pIn1);
002136    rc = ExpandBlob(pIn1);
002137    if( rc ) goto abort_due_to_error;
002138    rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
002139    if( rc ) goto abort_due_to_error;
002140    UPDATE_MAX_BLOBSIZE(pIn1);
002141    REGISTER_TRACE(pOp->p1, pIn1);
002142    break;
002143  }
002144  #endif /* SQLITE_OMIT_CAST */
002145  
002146  /* Opcode: Eq P1 P2 P3 P4 P5
002147  ** Synopsis: IF r[P3]==r[P1]
002148  **
002149  ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
002150  ** jump to address P2.
002151  **
002152  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
002153  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
002154  ** to coerce both inputs according to this affinity before the
002155  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
002156  ** affinity is used. Note that the affinity conversions are stored
002157  ** back into the input registers P1 and P3.  So this opcode can cause
002158  ** persistent changes to registers P1 and P3.
002159  **
002160  ** Once any conversions have taken place, and neither value is NULL,
002161  ** the values are compared. If both values are blobs then memcmp() is
002162  ** used to determine the results of the comparison.  If both values
002163  ** are text, then the appropriate collating function specified in
002164  ** P4 is used to do the comparison.  If P4 is not specified then
002165  ** memcmp() is used to compare text string.  If both values are
002166  ** numeric, then a numeric comparison is used. If the two values
002167  ** are of different types, then numbers are considered less than
002168  ** strings and strings are considered less than blobs.
002169  **
002170  ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
002171  ** true or false and is never NULL.  If both operands are NULL then the result
002172  ** of comparison is true.  If either operand is NULL then the result is false.
002173  ** If neither operand is NULL the result is the same as it would be if
002174  ** the SQLITE_NULLEQ flag were omitted from P5.
002175  **
002176  ** This opcode saves the result of comparison for use by the new
002177  ** OP_Jump opcode.
002178  */
002179  /* Opcode: Ne P1 P2 P3 P4 P5
002180  ** Synopsis: IF r[P3]!=r[P1]
002181  **
002182  ** This works just like the Eq opcode except that the jump is taken if
002183  ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
002184  ** additional information.
002185  */
002186  /* Opcode: Lt P1 P2 P3 P4 P5
002187  ** Synopsis: IF r[P3]<r[P1]
002188  **
002189  ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
002190  ** jump to address P2.
002191  **
002192  ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
002193  ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
002194  ** bit is clear then fall through if either operand is NULL.
002195  **
002196  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
002197  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
002198  ** to coerce both inputs according to this affinity before the
002199  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
002200  ** affinity is used. Note that the affinity conversions are stored
002201  ** back into the input registers P1 and P3.  So this opcode can cause
002202  ** persistent changes to registers P1 and P3.
002203  **
002204  ** Once any conversions have taken place, and neither value is NULL,
002205  ** the values are compared. If both values are blobs then memcmp() is
002206  ** used to determine the results of the comparison.  If both values
002207  ** are text, then the appropriate collating function specified in
002208  ** P4 is  used to do the comparison.  If P4 is not specified then
002209  ** memcmp() is used to compare text string.  If both values are
002210  ** numeric, then a numeric comparison is used. If the two values
002211  ** are of different types, then numbers are considered less than
002212  ** strings and strings are considered less than blobs.
002213  **
002214  ** This opcode saves the result of comparison for use by the new
002215  ** OP_Jump opcode.
002216  */
002217  /* Opcode: Le P1 P2 P3 P4 P5
002218  ** Synopsis: IF r[P3]<=r[P1]
002219  **
002220  ** This works just like the Lt opcode except that the jump is taken if
002221  ** the content of register P3 is less than or equal to the content of
002222  ** register P1.  See the Lt opcode for additional information.
002223  */
002224  /* Opcode: Gt P1 P2 P3 P4 P5
002225  ** Synopsis: IF r[P3]>r[P1]
002226  **
002227  ** This works just like the Lt opcode except that the jump is taken if
002228  ** the content of register P3 is greater than the content of
002229  ** register P1.  See the Lt opcode for additional information.
002230  */
002231  /* Opcode: Ge P1 P2 P3 P4 P5
002232  ** Synopsis: IF r[P3]>=r[P1]
002233  **
002234  ** This works just like the Lt opcode except that the jump is taken if
002235  ** the content of register P3 is greater than or equal to the content of
002236  ** register P1.  See the Lt opcode for additional information.
002237  */
002238  case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
002239  case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
002240  case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
002241  case OP_Le:               /* same as TK_LE, jump, in1, in3 */
002242  case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
002243  case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
002244    int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
002245    char affinity;      /* Affinity to use for comparison */
002246    u16 flags1;         /* Copy of initial value of pIn1->flags */
002247    u16 flags3;         /* Copy of initial value of pIn3->flags */
002248  
002249    pIn1 = &aMem[pOp->p1];
002250    pIn3 = &aMem[pOp->p3];
002251    flags1 = pIn1->flags;
002252    flags3 = pIn3->flags;
002253    if( (flags1 & flags3 & MEM_Int)!=0 ){
002254      /* Common case of comparison of two integers */
002255      if( pIn3->u.i > pIn1->u.i ){
002256        if( sqlite3aGTb[pOp->opcode] ){
002257          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002258          goto jump_to_p2;
002259        }
002260        iCompare = +1;
002261        VVA_ONLY( iCompareIsInit = 1; )
002262      }else if( pIn3->u.i < pIn1->u.i ){
002263        if( sqlite3aLTb[pOp->opcode] ){
002264          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002265          goto jump_to_p2;
002266        }
002267        iCompare = -1;
002268        VVA_ONLY( iCompareIsInit = 1; )
002269      }else{
002270        if( sqlite3aEQb[pOp->opcode] ){
002271          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002272          goto jump_to_p2;
002273        }
002274        iCompare = 0;
002275        VVA_ONLY( iCompareIsInit = 1; )
002276      }
002277      VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002278      break;
002279    }
002280    if( (flags1 | flags3)&MEM_Null ){
002281      /* One or both operands are NULL */
002282      if( pOp->p5 & SQLITE_NULLEQ ){
002283        /* If SQLITE_NULLEQ is set (which will only happen if the operator is
002284        ** OP_Eq or OP_Ne) then take the jump or not depending on whether
002285        ** or not both operands are null.
002286        */
002287        assert( (flags1 & MEM_Cleared)==0 );
002288        assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
002289        testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
002290        if( (flags1&flags3&MEM_Null)!=0
002291         && (flags3&MEM_Cleared)==0
002292        ){
002293          res = 0;  /* Operands are equal */
002294        }else{
002295          res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
002296        }
002297      }else{
002298        /* SQLITE_NULLEQ is clear and at least one operand is NULL,
002299        ** then the result is always NULL.
002300        ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
002301        */
002302        VdbeBranchTaken(2,3);
002303        if( pOp->p5 & SQLITE_JUMPIFNULL ){
002304          goto jump_to_p2;
002305        }
002306        iCompare = 1;    /* Operands are not equal */
002307        VVA_ONLY( iCompareIsInit = 1; )
002308        break;
002309      }
002310    }else{
002311      /* Neither operand is NULL and we couldn't do the special high-speed
002312      ** integer comparison case.  So do a general-case comparison. */
002313      affinity = pOp->p5 & SQLITE_AFF_MASK;
002314      if( affinity>=SQLITE_AFF_NUMERIC ){
002315        if( (flags1 | flags3)&MEM_Str ){
002316          if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
002317            applyNumericAffinity(pIn1,0);
002318            assert( flags3==pIn3->flags || CORRUPT_DB );
002319            flags3 = pIn3->flags;
002320          }
002321          if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
002322            applyNumericAffinity(pIn3,0);
002323          }
002324        }
002325      }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
002326        if( (flags1 & MEM_Str)!=0 ){
002327          pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
002328        }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
002329          testcase( pIn1->flags & MEM_Int );
002330          testcase( pIn1->flags & MEM_Real );
002331          testcase( pIn1->flags & MEM_IntReal );
002332          sqlite3VdbeMemStringify(pIn1, encoding, 1);
002333          testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
002334          flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
002335          if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
002336        }
002337        if( (flags3 & MEM_Str)!=0 ){
002338          pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
002339        }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
002340          testcase( pIn3->flags & MEM_Int );
002341          testcase( pIn3->flags & MEM_Real );
002342          testcase( pIn3->flags & MEM_IntReal );
002343          sqlite3VdbeMemStringify(pIn3, encoding, 1);
002344          testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
002345          flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
002346        }
002347      }
002348      assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
002349      res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
002350    }
002351  
002352    /* At this point, res is negative, zero, or positive if reg[P1] is
002353    ** less than, equal to, or greater than reg[P3], respectively.  Compute
002354    ** the answer to this operator in res2, depending on what the comparison
002355    ** operator actually is.  The next block of code depends on the fact
002356    ** that the 6 comparison operators are consecutive integers in this
002357    ** order:  NE, EQ, GT, LE, LT, GE */
002358    assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
002359    assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
002360    if( res<0 ){
002361      res2 = sqlite3aLTb[pOp->opcode];
002362    }else if( res==0 ){
002363      res2 = sqlite3aEQb[pOp->opcode];
002364    }else{
002365      res2 = sqlite3aGTb[pOp->opcode];
002366    }
002367    iCompare = res;
002368    VVA_ONLY( iCompareIsInit = 1; )
002369  
002370    /* Undo any changes made by applyAffinity() to the input registers. */
002371    assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
002372    pIn3->flags = flags3;
002373    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
002374    pIn1->flags = flags1;
002375  
002376    VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002377    if( res2 ){
002378      goto jump_to_p2;
002379    }
002380    break;
002381  }
002382  
002383  /* Opcode: ElseEq * P2 * * *
002384  **
002385  ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
002386  ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
002387  ** opcodes are allowed to occur between this instruction and the previous
002388  ** OP_Lt or OP_Gt.
002389  **
002390  ** If the result of an OP_Eq comparison on the same two operands as
002391  ** the prior OP_Lt or OP_Gt would have been true, then jump to P2.  If
002392  ** the result of an OP_Eq comparison on the two previous operands
002393  ** would have been false or NULL, then fall through.
002394  */
002395  case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
002396  
002397  #ifdef SQLITE_DEBUG
002398    /* Verify the preconditions of this opcode - that it follows an OP_Lt or
002399    ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
002400    int iAddr;
002401    for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
002402      if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
002403      assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
002404      break;
002405    }
002406  #endif /* SQLITE_DEBUG */
002407    assert( iCompareIsInit );
002408    VdbeBranchTaken(iCompare==0, 2);
002409    if( iCompare==0 ) goto jump_to_p2;
002410    break;
002411  }
002412  
002413  
002414  /* Opcode: Permutation * * * P4 *
002415  **
002416  ** Set the permutation used by the OP_Compare operator in the next
002417  ** instruction.  The permutation is stored in the P4 operand.
002418  **
002419  ** The permutation is only valid for the next opcode which must be
002420  ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
002421  **
002422  ** The first integer in the P4 integer array is the length of the array
002423  ** and does not become part of the permutation.
002424  */
002425  case OP_Permutation: {
002426    assert( pOp->p4type==P4_INTARRAY );
002427    assert( pOp->p4.ai );
002428    assert( pOp[1].opcode==OP_Compare );
002429    assert( pOp[1].p5 & OPFLAG_PERMUTE );
002430    break;
002431  }
002432  
002433  /* Opcode: Compare P1 P2 P3 P4 P5
002434  ** Synopsis: r[P1@P3] <-> r[P2@P3]
002435  **
002436  ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
002437  ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
002438  ** the comparison for use by the next OP_Jump instruct.
002439  **
002440  ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
002441  ** determined by the most recent OP_Permutation operator.  If the
002442  ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
002443  ** order.
002444  **
002445  ** P4 is a KeyInfo structure that defines collating sequences and sort
002446  ** orders for the comparison.  The permutation applies to registers
002447  ** only.  The KeyInfo elements are used sequentially.
002448  **
002449  ** The comparison is a sort comparison, so NULLs compare equal,
002450  ** NULLs are less than numbers, numbers are less than strings,
002451  ** and strings are less than blobs.
002452  **
002453  ** This opcode must be immediately followed by an OP_Jump opcode.
002454  */
002455  case OP_Compare: {
002456    int n;
002457    int i;
002458    int p1;
002459    int p2;
002460    const KeyInfo *pKeyInfo;
002461    u32 idx;
002462    CollSeq *pColl;    /* Collating sequence to use on this term */
002463    int bRev;          /* True for DESCENDING sort order */
002464    u32 *aPermute;     /* The permutation */
002465  
002466    if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
002467      aPermute = 0;
002468    }else{
002469      assert( pOp>aOp );
002470      assert( pOp[-1].opcode==OP_Permutation );
002471      assert( pOp[-1].p4type==P4_INTARRAY );
002472      aPermute = pOp[-1].p4.ai + 1;
002473      assert( aPermute!=0 );
002474    }
002475    n = pOp->p3;
002476    pKeyInfo = pOp->p4.pKeyInfo;
002477    assert( n>0 );
002478    assert( pKeyInfo!=0 );
002479    p1 = pOp->p1;
002480    p2 = pOp->p2;
002481  #ifdef SQLITE_DEBUG
002482    if( aPermute ){
002483      int k, mx = 0;
002484      for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
002485      assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
002486      assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
002487    }else{
002488      assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
002489      assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
002490    }
002491  #endif /* SQLITE_DEBUG */
002492    for(i=0; i<n; i++){
002493      idx = aPermute ? aPermute[i] : (u32)i;
002494      assert( memIsValid(&aMem[p1+idx]) );
002495      assert( memIsValid(&aMem[p2+idx]) );
002496      REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
002497      REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
002498      assert( i<pKeyInfo->nKeyField );
002499      pColl = pKeyInfo->aColl[i];
002500      bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
002501      iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
002502      VVA_ONLY( iCompareIsInit = 1; )
002503      if( iCompare ){
002504        if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
002505         && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
002506        ){
002507          iCompare = -iCompare;
002508        }
002509        if( bRev ) iCompare = -iCompare;
002510        break;
002511      }
002512    }
002513    assert( pOp[1].opcode==OP_Jump );
002514    break;
002515  }
002516  
002517  /* Opcode: Jump P1 P2 P3 * *
002518  **
002519  ** Jump to the instruction at address P1, P2, or P3 depending on whether
002520  ** in the most recent OP_Compare instruction the P1 vector was less than,
002521  ** equal to, or greater than the P2 vector, respectively.
002522  **
002523  ** This opcode must immediately follow an OP_Compare opcode.
002524  */
002525  case OP_Jump: {             /* jump */
002526    assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
002527    assert( iCompareIsInit );
002528    if( iCompare<0 ){
002529      VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
002530    }else if( iCompare==0 ){
002531      VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
002532    }else{
002533      VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
002534    }
002535    break;
002536  }
002537  
002538  /* Opcode: And P1 P2 P3 * *
002539  ** Synopsis: r[P3]=(r[P1] && r[P2])
002540  **
002541  ** Take the logical AND of the values in registers P1 and P2 and
002542  ** write the result into register P3.
002543  **
002544  ** If either P1 or P2 is 0 (false) then the result is 0 even if
002545  ** the other input is NULL.  A NULL and true or two NULLs give
002546  ** a NULL output.
002547  */
002548  /* Opcode: Or P1 P2 P3 * *
002549  ** Synopsis: r[P3]=(r[P1] || r[P2])
002550  **
002551  ** Take the logical OR of the values in register P1 and P2 and
002552  ** store the answer in register P3.
002553  **
002554  ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
002555  ** even if the other input is NULL.  A NULL and false or two NULLs
002556  ** give a NULL output.
002557  */
002558  case OP_And:              /* same as TK_AND, in1, in2, out3 */
002559  case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
002560    int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002561    int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002562  
002563    v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
002564    v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
002565    if( pOp->opcode==OP_And ){
002566      static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
002567      v1 = and_logic[v1*3+v2];
002568    }else{
002569      static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
002570      v1 = or_logic[v1*3+v2];
002571    }
002572    pOut = &aMem[pOp->p3];
002573    if( v1==2 ){
002574      MemSetTypeFlag(pOut, MEM_Null);
002575    }else{
002576      pOut->u.i = v1;
002577      MemSetTypeFlag(pOut, MEM_Int);
002578    }
002579    break;
002580  }
002581  
002582  /* Opcode: IsTrue P1 P2 P3 P4 *
002583  ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
002584  **
002585  ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
002586  ** IS NOT FALSE operators.
002587  **
002588  ** Interpret the value in register P1 as a boolean value.  Store that
002589  ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
002590  ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
002591  ** is 1.
002592  **
002593  ** The logic is summarized like this:
002594  **
002595  ** <ul>
002596  ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
002597  ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
002598  ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
002599  ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
002600  ** </ul>
002601  */
002602  case OP_IsTrue: {               /* in1, out2 */
002603    assert( pOp->p4type==P4_INT32 );
002604    assert( pOp->p4.i==0 || pOp->p4.i==1 );
002605    assert( pOp->p3==0 || pOp->p3==1 );
002606    sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
002607        sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
002608    break;
002609  }
002610  
002611  /* Opcode: Not P1 P2 * * *
002612  ** Synopsis: r[P2]= !r[P1]
002613  **
002614  ** Interpret the value in register P1 as a boolean value.  Store the
002615  ** boolean complement in register P2.  If the value in register P1 is
002616  ** NULL, then a NULL is stored in P2.
002617  */
002618  case OP_Not: {                /* same as TK_NOT, in1, out2 */
002619    pIn1 = &aMem[pOp->p1];
002620    pOut = &aMem[pOp->p2];
002621    if( (pIn1->flags & MEM_Null)==0 ){
002622      sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
002623    }else{
002624      sqlite3VdbeMemSetNull(pOut);
002625    }
002626    break;
002627  }
002628  
002629  /* Opcode: BitNot P1 P2 * * *
002630  ** Synopsis: r[P2]= ~r[P1]
002631  **
002632  ** Interpret the content of register P1 as an integer.  Store the
002633  ** ones-complement of the P1 value into register P2.  If P1 holds
002634  ** a NULL then store a NULL in P2.
002635  */
002636  case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
002637    pIn1 = &aMem[pOp->p1];
002638    pOut = &aMem[pOp->p2];
002639    sqlite3VdbeMemSetNull(pOut);
002640    if( (pIn1->flags & MEM_Null)==0 ){
002641      pOut->flags = MEM_Int;
002642      pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
002643    }
002644    break;
002645  }
002646  
002647  /* Opcode: Once P1 P2 * * *
002648  **
002649  ** Fall through to the next instruction the first time this opcode is
002650  ** encountered on each invocation of the byte-code program.  Jump to P2
002651  ** on the second and all subsequent encounters during the same invocation.
002652  **
002653  ** Top-level programs determine first invocation by comparing the P1
002654  ** operand against the P1 operand on the OP_Init opcode at the beginning
002655  ** of the program.  If the P1 values differ, then fall through and make
002656  ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
002657  ** the same then take the jump.
002658  **
002659  ** For subprograms, there is a bitmask in the VdbeFrame that determines
002660  ** whether or not the jump should be taken.  The bitmask is necessary
002661  ** because the self-altering code trick does not work for recursive
002662  ** triggers.
002663  */
002664  case OP_Once: {             /* jump */
002665    u32 iAddr;                /* Address of this instruction */
002666    assert( p->aOp[0].opcode==OP_Init );
002667    if( p->pFrame ){
002668      iAddr = (int)(pOp - p->aOp);
002669      if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
002670        VdbeBranchTaken(1, 2);
002671        goto jump_to_p2;
002672      }
002673      p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
002674    }else{
002675      if( p->aOp[0].p1==pOp->p1 ){
002676        VdbeBranchTaken(1, 2);
002677        goto jump_to_p2;
002678      }
002679    }
002680    VdbeBranchTaken(0, 2);
002681    pOp->p1 = p->aOp[0].p1;
002682    break;
002683  }
002684  
002685  /* Opcode: If P1 P2 P3 * *
002686  **
002687  ** Jump to P2 if the value in register P1 is true.  The value
002688  ** is considered true if it is numeric and non-zero.  If the value
002689  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002690  */
002691  case OP_If:  {               /* jump, in1 */
002692    int c;
002693    c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
002694    VdbeBranchTaken(c!=0, 2);
002695    if( c ) goto jump_to_p2;
002696    break;
002697  }
002698  
002699  /* Opcode: IfNot P1 P2 P3 * *
002700  **
002701  ** Jump to P2 if the value in register P1 is False.  The value
002702  ** is considered false if it has a numeric value of zero.  If the value
002703  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002704  */
002705  case OP_IfNot: {            /* jump, in1 */
002706    int c;
002707    c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
002708    VdbeBranchTaken(c!=0, 2);
002709    if( c ) goto jump_to_p2;
002710    break;
002711  }
002712  
002713  /* Opcode: IsNull P1 P2 * * *
002714  ** Synopsis: if r[P1]==NULL goto P2
002715  **
002716  ** Jump to P2 if the value in register P1 is NULL.
002717  */
002718  case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
002719    pIn1 = &aMem[pOp->p1];
002720    VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
002721    if( (pIn1->flags & MEM_Null)!=0 ){
002722      goto jump_to_p2;
002723    }
002724    break;
002725  }
002726  
002727  /* Opcode: IsType P1 P2 P3 P4 P5
002728  ** Synopsis: if typeof(P1.P3) in P5 goto P2
002729  **
002730  ** Jump to P2 if the type of a column in a btree is one of the types specified
002731  ** by the P5 bitmask.
002732  **
002733  ** P1 is normally a cursor on a btree for which the row decode cache is
002734  ** valid through at least column P3.  In other words, there should have been
002735  ** a prior OP_Column for column P3 or greater.  If the cursor is not valid,
002736  ** then this opcode might give spurious results.
002737  ** The the btree row has fewer than P3 columns, then use P4 as the
002738  ** datatype.
002739  **
002740  ** If P1 is -1, then P3 is a register number and the datatype is taken
002741  ** from the value in that register.
002742  **
002743  ** P5 is a bitmask of data types.  SQLITE_INTEGER is the least significant
002744  ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
002745  ** SQLITE_BLOB is 0x08.  SQLITE_NULL is 0x10.
002746  **
002747  ** WARNING: This opcode does not reliably distinguish between NULL and REAL
002748  ** when P1>=0.  If the database contains a NaN value, this opcode will think
002749  ** that the datatype is REAL when it should be NULL.  When P1<0 and the value
002750  ** is already stored in register P3, then this opcode does reliably
002751  ** distinguish between NULL and REAL.  The problem only arises then P1>=0.
002752  **
002753  ** Take the jump to address P2 if and only if the datatype of the
002754  ** value determined by P1 and P3 corresponds to one of the bits in the
002755  ** P5 bitmask.
002756  **
002757  */
002758  case OP_IsType: {        /* jump */
002759    VdbeCursor *pC;
002760    u16 typeMask;
002761    u32 serialType;
002762  
002763    assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
002764    assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
002765    if( pOp->p1>=0 ){
002766      pC = p->apCsr[pOp->p1];
002767      assert( pC!=0 );
002768      assert( pOp->p3>=0 );
002769      if( pOp->p3<pC->nHdrParsed ){
002770        serialType = pC->aType[pOp->p3];
002771        if( serialType>=12 ){
002772          if( serialType&1 ){
002773            typeMask = 0x04;   /* SQLITE_TEXT */
002774          }else{
002775            typeMask = 0x08;   /* SQLITE_BLOB */
002776          }
002777        }else{
002778          static const unsigned char aMask[] = {
002779             0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
002780             0x01, 0x01, 0x10, 0x10
002781          };
002782          testcase( serialType==0 );
002783          testcase( serialType==1 );
002784          testcase( serialType==2 );
002785          testcase( serialType==3 );
002786          testcase( serialType==4 );
002787          testcase( serialType==5 );
002788          testcase( serialType==6 );
002789          testcase( serialType==7 );
002790          testcase( serialType==8 );
002791          testcase( serialType==9 );
002792          testcase( serialType==10 );
002793          testcase( serialType==11 );
002794          typeMask = aMask[serialType];
002795        }
002796      }else{
002797        typeMask = 1 << (pOp->p4.i - 1);
002798        testcase( typeMask==0x01 );
002799        testcase( typeMask==0x02 );
002800        testcase( typeMask==0x04 );
002801        testcase( typeMask==0x08 );
002802        testcase( typeMask==0x10 );
002803      }
002804    }else{
002805      assert( memIsValid(&aMem[pOp->p3]) );
002806      typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
002807      testcase( typeMask==0x01 );
002808      testcase( typeMask==0x02 );
002809      testcase( typeMask==0x04 );
002810      testcase( typeMask==0x08 );
002811      testcase( typeMask==0x10 );
002812    }
002813    VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
002814    if( typeMask & pOp->p5 ){
002815      goto jump_to_p2;
002816    }
002817    break;
002818  }
002819  
002820  /* Opcode: ZeroOrNull P1 P2 P3 * *
002821  ** Synopsis: r[P2] = 0 OR NULL
002822  **
002823  ** If both registers P1 and P3 are NOT NULL, then store a zero in
002824  ** register P2.  If either registers P1 or P3 are NULL then put
002825  ** a NULL in register P2.
002826  */
002827  case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
002828    if( (aMem[pOp->p1].flags & MEM_Null)!=0
002829     || (aMem[pOp->p3].flags & MEM_Null)!=0
002830    ){
002831      sqlite3VdbeMemSetNull(aMem + pOp->p2);
002832    }else{
002833      sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
002834    }
002835    break;
002836  }
002837  
002838  /* Opcode: NotNull P1 P2 * * *
002839  ** Synopsis: if r[P1]!=NULL goto P2
002840  **
002841  ** Jump to P2 if the value in register P1 is not NULL. 
002842  */
002843  case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
002844    pIn1 = &aMem[pOp->p1];
002845    VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
002846    if( (pIn1->flags & MEM_Null)==0 ){
002847      goto jump_to_p2;
002848    }
002849    break;
002850  }
002851  
002852  /* Opcode: IfNullRow P1 P2 P3 * *
002853  ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
002854  **
002855  ** Check the cursor P1 to see if it is currently pointing at a NULL row.
002856  ** If it is, then set register P3 to NULL and jump immediately to P2.
002857  ** If P1 is not on a NULL row, then fall through without making any
002858  ** changes.
002859  **
002860  ** If P1 is not an open cursor, then this opcode is a no-op.
002861  */
002862  case OP_IfNullRow: {         /* jump */
002863    VdbeCursor *pC;
002864    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002865    pC = p->apCsr[pOp->p1];
002866    if( pC && pC->nullRow ){
002867      sqlite3VdbeMemSetNull(aMem + pOp->p3);
002868      goto jump_to_p2;
002869    }
002870    break;
002871  }
002872  
002873  #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
002874  /* Opcode: Offset P1 P2 P3 * *
002875  ** Synopsis: r[P3] = sqlite_offset(P1)
002876  **
002877  ** Store in register r[P3] the byte offset into the database file that is the
002878  ** start of the payload for the record at which that cursor P1 is currently
002879  ** pointing.
002880  **
002881  ** P2 is the column number for the argument to the sqlite_offset() function.
002882  ** This opcode does not use P2 itself, but the P2 value is used by the
002883  ** code generator.  The P1, P2, and P3 operands to this opcode are the
002884  ** same as for OP_Column.
002885  **
002886  ** This opcode is only available if SQLite is compiled with the
002887  ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
002888  */
002889  case OP_Offset: {          /* out3 */
002890    VdbeCursor *pC;    /* The VDBE cursor */
002891    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002892    pC = p->apCsr[pOp->p1];
002893    pOut = &p->aMem[pOp->p3];
002894    if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
002895      sqlite3VdbeMemSetNull(pOut);
002896    }else{
002897      if( pC->deferredMoveto ){
002898        rc = sqlite3VdbeFinishMoveto(pC);
002899        if( rc ) goto abort_due_to_error;
002900      }
002901      if( sqlite3BtreeEof(pC->uc.pCursor) ){
002902        sqlite3VdbeMemSetNull(pOut);
002903      }else{
002904        sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
002905      }
002906    }
002907    break;
002908  }
002909  #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
002910  
002911  /* Opcode: Column P1 P2 P3 P4 P5
002912  ** Synopsis: r[P3]=PX cursor P1 column P2
002913  **
002914  ** Interpret the data that cursor P1 points to as a structure built using
002915  ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
002916  ** information about the format of the data.)  Extract the P2-th column
002917  ** from this record.  If there are less than (P2+1)
002918  ** values in the record, extract a NULL.
002919  **
002920  ** The value extracted is stored in register P3.
002921  **
002922  ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
002923  ** if the P4 argument is a P4_MEM use the value of the P4 argument as
002924  ** the result.
002925  **
002926  ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
002927  ** to only be used by the length() function or the equivalent.  The content
002928  ** of large blobs is not loaded, thus saving CPU cycles.  If the
002929  ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
002930  ** typeof() function or the IS NULL or IS NOT NULL operators or the
002931  ** equivalent.  In this case, all content loading can be omitted.
002932  */
002933  case OP_Column: {            /* ncycle */
002934    u32 p2;            /* column number to retrieve */
002935    VdbeCursor *pC;    /* The VDBE cursor */
002936    BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
002937    u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
002938    int len;           /* The length of the serialized data for the column */
002939    int i;             /* Loop counter */
002940    Mem *pDest;        /* Where to write the extracted value */
002941    Mem sMem;          /* For storing the record being decoded */
002942    const u8 *zData;   /* Part of the record being decoded */
002943    const u8 *zHdr;    /* Next unparsed byte of the header */
002944    const u8 *zEndHdr; /* Pointer to first byte after the header */
002945    u64 offset64;      /* 64-bit offset */
002946    u32 t;             /* A type code from the record header */
002947    Mem *pReg;         /* PseudoTable input register */
002948  
002949    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002950    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
002951    pC = p->apCsr[pOp->p1];
002952    p2 = (u32)pOp->p2;
002953  
002954  op_column_restart:
002955    assert( pC!=0 );
002956    assert( p2<(u32)pC->nField
002957         || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
002958    aOffset = pC->aOffset;
002959    assert( aOffset==pC->aType+pC->nField );
002960    assert( pC->eCurType!=CURTYPE_VTAB );
002961    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
002962    assert( pC->eCurType!=CURTYPE_SORTER );
002963  
002964    if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
002965      if( pC->nullRow ){
002966        if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
002967          /* For the special case of as pseudo-cursor, the seekResult field
002968          ** identifies the register that holds the record */
002969          pReg = &aMem[pC->seekResult];
002970          assert( pReg->flags & MEM_Blob );
002971          assert( memIsValid(pReg) );
002972          pC->payloadSize = pC->szRow = pReg->n;
002973          pC->aRow = (u8*)pReg->z;
002974        }else{
002975          pDest = &aMem[pOp->p3];
002976          memAboutToChange(p, pDest);
002977          sqlite3VdbeMemSetNull(pDest);
002978          goto op_column_out;
002979        }
002980      }else{
002981        pCrsr = pC->uc.pCursor;
002982        if( pC->deferredMoveto ){
002983          u32 iMap;
002984          assert( !pC->isEphemeral );
002985          if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
002986            pC = pC->pAltCursor;
002987            p2 = iMap - 1;
002988            goto op_column_restart;
002989          }
002990          rc = sqlite3VdbeFinishMoveto(pC);
002991          if( rc ) goto abort_due_to_error;
002992        }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
002993          rc = sqlite3VdbeHandleMovedCursor(pC);
002994          if( rc ) goto abort_due_to_error;
002995          goto op_column_restart;
002996        }
002997        assert( pC->eCurType==CURTYPE_BTREE );
002998        assert( pCrsr );
002999        assert( sqlite3BtreeCursorIsValid(pCrsr) );
003000        pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
003001        pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
003002        assert( pC->szRow<=pC->payloadSize );
003003        assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
003004      }
003005      pC->cacheStatus = p->cacheCtr;
003006      if( (aOffset[0] = pC->aRow[0])<0x80 ){
003007        pC->iHdrOffset = 1;
003008      }else{
003009        pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
003010      }
003011      pC->nHdrParsed = 0;
003012  
003013      if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
003014        /* pC->aRow does not have to hold the entire row, but it does at least
003015        ** need to cover the header of the record.  If pC->aRow does not contain
003016        ** the complete header, then set it to zero, forcing the header to be
003017        ** dynamically allocated. */
003018        pC->aRow = 0;
003019        pC->szRow = 0;
003020  
003021        /* Make sure a corrupt database has not given us an oversize header.
003022        ** Do this now to avoid an oversize memory allocation.
003023        **
003024        ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
003025        ** types use so much data space that there can only be 4096 and 32 of
003026        ** them, respectively.  So the maximum header length results from a
003027        ** 3-byte type for each of the maximum of 32768 columns plus three
003028        ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
003029        */
003030        if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
003031          goto op_column_corrupt;
003032        }
003033      }else{
003034        /* This is an optimization.  By skipping over the first few tests
003035        ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
003036        ** measurable performance gain.
003037        **
003038        ** This branch is taken even if aOffset[0]==0.  Such a record is never
003039        ** generated by SQLite, and could be considered corruption, but we
003040        ** accept it for historical reasons.  When aOffset[0]==0, the code this
003041        ** branch jumps to reads past the end of the record, but never more
003042        ** than a few bytes.  Even if the record occurs at the end of the page
003043        ** content area, the "page header" comes after the page content and so
003044        ** this overread is harmless.  Similar overreads can occur for a corrupt
003045        ** database file.
003046        */
003047        zData = pC->aRow;
003048        assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
003049        testcase( aOffset[0]==0 );
003050        goto op_column_read_header;
003051      }
003052    }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
003053      rc = sqlite3VdbeHandleMovedCursor(pC);
003054      if( rc ) goto abort_due_to_error;
003055      goto op_column_restart;
003056    }
003057  
003058    /* Make sure at least the first p2+1 entries of the header have been
003059    ** parsed and valid information is in aOffset[] and pC->aType[].
003060    */
003061    if( pC->nHdrParsed<=p2 ){
003062      /* If there is more header available for parsing in the record, try
003063      ** to extract additional fields up through the p2+1-th field
003064      */
003065      if( pC->iHdrOffset<aOffset[0] ){
003066        /* Make sure zData points to enough of the record to cover the header. */
003067        if( pC->aRow==0 ){
003068          memset(&sMem, 0, sizeof(sMem));
003069          rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
003070          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003071          zData = (u8*)sMem.z;
003072        }else{
003073          zData = pC->aRow;
003074        }
003075   
003076        /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
003077      op_column_read_header:
003078        i = pC->nHdrParsed;
003079        offset64 = aOffset[i];
003080        zHdr = zData + pC->iHdrOffset;
003081        zEndHdr = zData + aOffset[0];
003082        testcase( zHdr>=zEndHdr );
003083        do{
003084          if( (pC->aType[i] = t = zHdr[0])<0x80 ){
003085            zHdr++;
003086            offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
003087          }else{
003088            zHdr += sqlite3GetVarint32(zHdr, &t);
003089            pC->aType[i] = t;
003090            offset64 += sqlite3VdbeSerialTypeLen(t);
003091          }
003092          aOffset[++i] = (u32)(offset64 & 0xffffffff);
003093        }while( (u32)i<=p2 && zHdr<zEndHdr );
003094  
003095        /* The record is corrupt if any of the following are true:
003096        ** (1) the bytes of the header extend past the declared header size
003097        ** (2) the entire header was used but not all data was used
003098        ** (3) the end of the data extends beyond the end of the record.
003099        */
003100        if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
003101         || (offset64 > pC->payloadSize)
003102        ){
003103          if( aOffset[0]==0 ){
003104            i = 0;
003105            zHdr = zEndHdr;
003106          }else{
003107            if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
003108            goto op_column_corrupt;
003109          }
003110        }
003111  
003112        pC->nHdrParsed = i;
003113        pC->iHdrOffset = (u32)(zHdr - zData);
003114        if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
003115      }else{
003116        t = 0;
003117      }
003118  
003119      /* If after trying to extract new entries from the header, nHdrParsed is
003120      ** still not up to p2, that means that the record has fewer than p2
003121      ** columns.  So the result will be either the default value or a NULL.
003122      */
003123      if( pC->nHdrParsed<=p2 ){
003124        pDest = &aMem[pOp->p3];
003125        memAboutToChange(p, pDest);
003126        if( pOp->p4type==P4_MEM ){
003127          sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
003128        }else{
003129          sqlite3VdbeMemSetNull(pDest);
003130        }
003131        goto op_column_out;
003132      }
003133    }else{
003134      t = pC->aType[p2];
003135    }
003136  
003137    /* Extract the content for the p2+1-th column.  Control can only
003138    ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
003139    ** all valid.
003140    */
003141    assert( p2<pC->nHdrParsed );
003142    assert( rc==SQLITE_OK );
003143    pDest = &aMem[pOp->p3];
003144    memAboutToChange(p, pDest);
003145    assert( sqlite3VdbeCheckMemInvariants(pDest) );
003146    if( VdbeMemDynamic(pDest) ){
003147      sqlite3VdbeMemSetNull(pDest);
003148    }
003149    assert( t==pC->aType[p2] );
003150    if( pC->szRow>=aOffset[p2+1] ){
003151      /* This is the common case where the desired content fits on the original
003152      ** page - where the content is not on an overflow page */
003153      zData = pC->aRow + aOffset[p2];
003154      if( t<12 ){
003155        sqlite3VdbeSerialGet(zData, t, pDest);
003156      }else{
003157        /* If the column value is a string, we need a persistent value, not
003158        ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
003159        ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
003160        */
003161        static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
003162        pDest->n = len = (t-12)/2;
003163        pDest->enc = encoding;
003164        if( pDest->szMalloc < len+2 ){
003165          if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
003166          pDest->flags = MEM_Null;
003167          if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
003168        }else{
003169          pDest->z = pDest->zMalloc;
003170        }
003171        memcpy(pDest->z, zData, len);
003172        pDest->z[len] = 0;
003173        pDest->z[len+1] = 0;
003174        pDest->flags = aFlag[t&1];
003175      }
003176    }else{
003177      u8 p5;
003178      pDest->enc = encoding;
003179      assert( pDest->db==db );
003180      /* This branch happens only when content is on overflow pages */
003181      if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
003182            && (p5==OPFLAG_TYPEOFARG
003183                || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
003184               )
003185          )
003186       || sqlite3VdbeSerialTypeLen(t)==0
003187      ){
003188        /* Content is irrelevant for
003189        **    1. the typeof() function,
003190        **    2. the length(X) function if X is a blob, and
003191        **    3. if the content length is zero.
003192        ** So we might as well use bogus content rather than reading
003193        ** content from disk.
003194        **
003195        ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
003196        ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
003197        ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
003198        ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
003199        ** and it begins with a bunch of zeros.
003200        */
003201        sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
003202      }else{
003203        rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
003204                  p->cacheCtr, colCacheCtr, pDest);
003205        if( rc ){
003206          if( rc==SQLITE_NOMEM ) goto no_mem;
003207          if( rc==SQLITE_TOOBIG ) goto too_big;
003208          goto abort_due_to_error;
003209        }
003210      }
003211    }
003212  
003213  op_column_out:
003214    UPDATE_MAX_BLOBSIZE(pDest);
003215    REGISTER_TRACE(pOp->p3, pDest);
003216    break;
003217  
003218  op_column_corrupt:
003219    if( aOp[0].p3>0 ){
003220      pOp = &aOp[aOp[0].p3-1];
003221      break;
003222    }else{
003223      rc = SQLITE_CORRUPT_BKPT;
003224      goto abort_due_to_error;
003225    }
003226  }
003227  
003228  /* Opcode: TypeCheck P1 P2 P3 P4 *
003229  ** Synopsis: typecheck(r[P1@P2])
003230  **
003231  ** Apply affinities to the range of P2 registers beginning with P1.
003232  ** Take the affinities from the Table object in P4.  If any value
003233  ** cannot be coerced into the correct type, then raise an error.
003234  **
003235  ** This opcode is similar to OP_Affinity except that this opcode
003236  ** forces the register type to the Table column type.  This is used
003237  ** to implement "strict affinity".
003238  **
003239  ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
003240  ** is zero.  When P3 is non-zero, no type checking occurs for
003241  ** static generated columns.  Virtual columns are computed at query time
003242  ** and so they are never checked.
003243  **
003244  ** Preconditions:
003245  **
003246  ** <ul>
003247  ** <li> P2 should be the number of non-virtual columns in the
003248  **      table of P4.
003249  ** <li> Table P4 should be a STRICT table.
003250  ** </ul>
003251  **
003252  ** If any precondition is false, an assertion fault occurs.
003253  */
003254  case OP_TypeCheck: {
003255    Table *pTab;
003256    Column *aCol;
003257    int i;
003258  
003259    assert( pOp->p4type==P4_TABLE );
003260    pTab = pOp->p4.pTab;
003261    assert( pTab->tabFlags & TF_Strict );
003262    assert( pTab->nNVCol==pOp->p2 );
003263    aCol = pTab->aCol;
003264    pIn1 = &aMem[pOp->p1];
003265    for(i=0; i<pTab->nCol; i++){
003266      if( aCol[i].colFlags & COLFLAG_GENERATED ){
003267        if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
003268        if( pOp->p3 ){ pIn1++; continue; }
003269      }
003270      assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
003271      applyAffinity(pIn1, aCol[i].affinity, encoding);
003272      if( (pIn1->flags & MEM_Null)==0 ){
003273        switch( aCol[i].eCType ){
003274          case COLTYPE_BLOB: {
003275            if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
003276            break;
003277          }
003278          case COLTYPE_INTEGER:
003279          case COLTYPE_INT: {
003280            if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
003281            break;
003282          }
003283          case COLTYPE_TEXT: {
003284            if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
003285            break;
003286          }
003287          case COLTYPE_REAL: {
003288            testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
003289            assert( (pIn1->flags & MEM_IntReal)==0 );
003290            if( pIn1->flags & MEM_Int ){
003291              /* When applying REAL affinity, if the result is still an MEM_Int
003292              ** that will fit in 6 bytes, then change the type to MEM_IntReal
003293              ** so that we keep the high-resolution integer value but know that
003294              ** the type really wants to be REAL. */
003295              testcase( pIn1->u.i==140737488355328LL );
003296              testcase( pIn1->u.i==140737488355327LL );
003297              testcase( pIn1->u.i==-140737488355328LL );
003298              testcase( pIn1->u.i==-140737488355329LL );
003299              if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
003300                pIn1->flags |= MEM_IntReal;
003301                pIn1->flags &= ~MEM_Int;
003302              }else{
003303                pIn1->u.r = (double)pIn1->u.i;
003304                pIn1->flags |= MEM_Real;
003305                pIn1->flags &= ~MEM_Int;
003306              }
003307            }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
003308              goto vdbe_type_error;
003309            }
003310            break;
003311          }
003312          default: {
003313            /* COLTYPE_ANY.  Accept anything. */
003314            break;
003315          }
003316        }
003317      }
003318      REGISTER_TRACE((int)(pIn1-aMem), pIn1);
003319      pIn1++;
003320    }
003321    assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
003322    break;
003323  
003324  vdbe_type_error:
003325    sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
003326       vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
003327       pTab->zName, aCol[i].zCnName);
003328    rc = SQLITE_CONSTRAINT_DATATYPE;
003329    goto abort_due_to_error;
003330  }
003331  
003332  /* Opcode: Affinity P1 P2 * P4 *
003333  ** Synopsis: affinity(r[P1@P2])
003334  **
003335  ** Apply affinities to a range of P2 registers starting with P1.
003336  **
003337  ** P4 is a string that is P2 characters long. The N-th character of the
003338  ** string indicates the column affinity that should be used for the N-th
003339  ** memory cell in the range.
003340  */
003341  case OP_Affinity: {
003342    const char *zAffinity;   /* The affinity to be applied */
003343  
003344    zAffinity = pOp->p4.z;
003345    assert( zAffinity!=0 );
003346    assert( pOp->p2>0 );
003347    assert( zAffinity[pOp->p2]==0 );
003348    pIn1 = &aMem[pOp->p1];
003349    while( 1 /*exit-by-break*/ ){
003350      assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
003351      assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
003352      applyAffinity(pIn1, zAffinity[0], encoding);
003353      if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
003354        /* When applying REAL affinity, if the result is still an MEM_Int
003355        ** that will fit in 6 bytes, then change the type to MEM_IntReal
003356        ** so that we keep the high-resolution integer value but know that
003357        ** the type really wants to be REAL. */
003358        testcase( pIn1->u.i==140737488355328LL );
003359        testcase( pIn1->u.i==140737488355327LL );
003360        testcase( pIn1->u.i==-140737488355328LL );
003361        testcase( pIn1->u.i==-140737488355329LL );
003362        if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
003363          pIn1->flags |= MEM_IntReal;
003364          pIn1->flags &= ~MEM_Int;
003365        }else{
003366          pIn1->u.r = (double)pIn1->u.i;
003367          pIn1->flags |= MEM_Real;
003368          pIn1->flags &= ~(MEM_Int|MEM_Str);
003369        }
003370      }
003371      REGISTER_TRACE((int)(pIn1-aMem), pIn1);
003372      zAffinity++;
003373      if( zAffinity[0]==0 ) break;
003374      pIn1++;
003375    }
003376    break;
003377  }
003378  
003379  /* Opcode: MakeRecord P1 P2 P3 P4 *
003380  ** Synopsis: r[P3]=mkrec(r[P1@P2])
003381  **
003382  ** Convert P2 registers beginning with P1 into the [record format]
003383  ** use as a data record in a database table or as a key
003384  ** in an index.  The OP_Column opcode can decode the record later.
003385  **
003386  ** P4 may be a string that is P2 characters long.  The N-th character of the
003387  ** string indicates the column affinity that should be used for the N-th
003388  ** field of the index key.
003389  **
003390  ** The mapping from character to affinity is given by the SQLITE_AFF_
003391  ** macros defined in sqliteInt.h.
003392  **
003393  ** If P4 is NULL then all index fields have the affinity BLOB.
003394  **
003395  ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
003396  ** compile-time option is enabled:
003397  **
003398  **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
003399  **     of the right-most table that can be null-trimmed.
003400  **
003401  **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
003402  **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
003403  **     accept no-change records with serial_type 10.  This value is
003404  **     only used inside an assert() and does not affect the end result.
003405  */
003406  case OP_MakeRecord: {
003407    Mem *pRec;             /* The new record */
003408    u64 nData;             /* Number of bytes of data space */
003409    int nHdr;              /* Number of bytes of header space */
003410    i64 nByte;             /* Data space required for this record */
003411    i64 nZero;             /* Number of zero bytes at the end of the record */
003412    int nVarint;           /* Number of bytes in a varint */
003413    u32 serial_type;       /* Type field */
003414    Mem *pData0;           /* First field to be combined into the record */
003415    Mem *pLast;            /* Last field of the record */
003416    int nField;            /* Number of fields in the record */
003417    char *zAffinity;       /* The affinity string for the record */
003418    u32 len;               /* Length of a field */
003419    u8 *zHdr;              /* Where to write next byte of the header */
003420    u8 *zPayload;          /* Where to write next byte of the payload */
003421  
003422    /* Assuming the record contains N fields, the record format looks
003423    ** like this:
003424    **
003425    ** ------------------------------------------------------------------------
003426    ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
003427    ** ------------------------------------------------------------------------
003428    **
003429    ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
003430    ** and so forth.
003431    **
003432    ** Each type field is a varint representing the serial type of the
003433    ** corresponding data element (see sqlite3VdbeSerialType()). The
003434    ** hdr-size field is also a varint which is the offset from the beginning
003435    ** of the record to data0.
003436    */
003437    nData = 0;         /* Number of bytes of data space */
003438    nHdr = 0;          /* Number of bytes of header space */
003439    nZero = 0;         /* Number of zero bytes at the end of the record */
003440    nField = pOp->p1;
003441    zAffinity = pOp->p4.z;
003442    assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
003443    pData0 = &aMem[nField];
003444    nField = pOp->p2;
003445    pLast = &pData0[nField-1];
003446  
003447    /* Identify the output register */
003448    assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
003449    pOut = &aMem[pOp->p3];
003450    memAboutToChange(p, pOut);
003451  
003452    /* Apply the requested affinity to all inputs
003453    */
003454    assert( pData0<=pLast );
003455    if( zAffinity ){
003456      pRec = pData0;
003457      do{
003458        applyAffinity(pRec, zAffinity[0], encoding);
003459        if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
003460          pRec->flags |= MEM_IntReal;
003461          pRec->flags &= ~(MEM_Int);
003462        }
003463        REGISTER_TRACE((int)(pRec-aMem), pRec);
003464        zAffinity++;
003465        pRec++;
003466        assert( zAffinity[0]==0 || pRec<=pLast );
003467      }while( zAffinity[0] );
003468    }
003469  
003470  #ifdef SQLITE_ENABLE_NULL_TRIM
003471    /* NULLs can be safely trimmed from the end of the record, as long as
003472    ** as the schema format is 2 or more and none of the omitted columns
003473    ** have a non-NULL default value.  Also, the record must be left with
003474    ** at least one field.  If P5>0 then it will be one more than the
003475    ** index of the right-most column with a non-NULL default value */
003476    if( pOp->p5 ){
003477      while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
003478        pLast--;
003479        nField--;
003480      }
003481    }
003482  #endif
003483  
003484    /* Loop through the elements that will make up the record to figure
003485    ** out how much space is required for the new record.  After this loop,
003486    ** the Mem.uTemp field of each term should hold the serial-type that will
003487    ** be used for that term in the generated record:
003488    **
003489    **   Mem.uTemp value    type
003490    **   ---------------    ---------------
003491    **      0               NULL
003492    **      1               1-byte signed integer
003493    **      2               2-byte signed integer
003494    **      3               3-byte signed integer
003495    **      4               4-byte signed integer
003496    **      5               6-byte signed integer
003497    **      6               8-byte signed integer
003498    **      7               IEEE float
003499    **      8               Integer constant 0
003500    **      9               Integer constant 1
003501    **     10,11            reserved for expansion
003502    **    N>=12 and even    BLOB
003503    **    N>=13 and odd     text
003504    **
003505    ** The following additional values are computed:
003506    **     nHdr        Number of bytes needed for the record header
003507    **     nData       Number of bytes of data space needed for the record
003508    **     nZero       Zero bytes at the end of the record
003509    */
003510    pRec = pLast;
003511    do{
003512      assert( memIsValid(pRec) );
003513      if( pRec->flags & MEM_Null ){
003514        if( pRec->flags & MEM_Zero ){
003515          /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
003516          ** table methods that never invoke sqlite3_result_xxxxx() while
003517          ** computing an unchanging column value in an UPDATE statement.
003518          ** Give such values a special internal-use-only serial-type of 10
003519          ** so that they can be passed through to xUpdate and have
003520          ** a true sqlite3_value_nochange(). */
003521  #ifndef SQLITE_ENABLE_NULL_TRIM
003522          assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
003523  #endif
003524          pRec->uTemp = 10;
003525        }else{
003526          pRec->uTemp = 0;
003527        }
003528        nHdr++;
003529      }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
003530        /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
003531        i64 i = pRec->u.i;
003532        u64 uu;
003533        testcase( pRec->flags & MEM_Int );
003534        testcase( pRec->flags & MEM_IntReal );
003535        if( i<0 ){
003536          uu = ~i;
003537        }else{
003538          uu = i;
003539        }
003540        nHdr++;
003541        testcase( uu==127 );               testcase( uu==128 );
003542        testcase( uu==32767 );             testcase( uu==32768 );
003543        testcase( uu==8388607 );           testcase( uu==8388608 );
003544        testcase( uu==2147483647 );        testcase( uu==2147483648LL );
003545        testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
003546        if( uu<=127 ){
003547          if( (i&1)==i && p->minWriteFileFormat>=4 ){
003548            pRec->uTemp = 8+(u32)uu;
003549          }else{
003550            nData++;
003551            pRec->uTemp = 1;
003552          }
003553        }else if( uu<=32767 ){
003554          nData += 2;
003555          pRec->uTemp = 2;
003556        }else if( uu<=8388607 ){
003557          nData += 3;
003558          pRec->uTemp = 3;
003559        }else if( uu<=2147483647 ){
003560          nData += 4;
003561          pRec->uTemp = 4;
003562        }else if( uu<=140737488355327LL ){
003563          nData += 6;
003564          pRec->uTemp = 5;
003565        }else{
003566          nData += 8;
003567          if( pRec->flags & MEM_IntReal ){
003568            /* If the value is IntReal and is going to take up 8 bytes to store
003569            ** as an integer, then we might as well make it an 8-byte floating
003570            ** point value */
003571            pRec->u.r = (double)pRec->u.i;
003572            pRec->flags &= ~MEM_IntReal;
003573            pRec->flags |= MEM_Real;
003574            pRec->uTemp = 7;
003575          }else{
003576            pRec->uTemp = 6;
003577          }
003578        }
003579      }else if( pRec->flags & MEM_Real ){
003580        nHdr++;
003581        nData += 8;
003582        pRec->uTemp = 7;
003583      }else{
003584        assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
003585        assert( pRec->n>=0 );
003586        len = (u32)pRec->n;
003587        serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
003588        if( pRec->flags & MEM_Zero ){
003589          serial_type += pRec->u.nZero*2;
003590          if( nData ){
003591            if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
003592            len += pRec->u.nZero;
003593          }else{
003594            nZero += pRec->u.nZero;
003595          }
003596        }
003597        nData += len;
003598        nHdr += sqlite3VarintLen(serial_type);
003599        pRec->uTemp = serial_type;
003600      }
003601      if( pRec==pData0 ) break;
003602      pRec--;
003603    }while(1);
003604  
003605    /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
003606    ** which determines the total number of bytes in the header. The varint
003607    ** value is the size of the header in bytes including the size varint
003608    ** itself. */
003609    testcase( nHdr==126 );
003610    testcase( nHdr==127 );
003611    if( nHdr<=126 ){
003612      /* The common case */
003613      nHdr += 1;
003614    }else{
003615      /* Rare case of a really large header */
003616      nVarint = sqlite3VarintLen(nHdr);
003617      nHdr += nVarint;
003618      if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
003619    }
003620    nByte = nHdr+nData;
003621  
003622    /* Make sure the output register has a buffer large enough to store
003623    ** the new record. The output register (pOp->p3) is not allowed to
003624    ** be one of the input registers (because the following call to
003625    ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
003626    */
003627    if( nByte+nZero<=pOut->szMalloc ){
003628      /* The output register is already large enough to hold the record.
003629      ** No error checks or buffer enlargement is required */
003630      pOut->z = pOut->zMalloc;
003631    }else{
003632      /* Need to make sure that the output is not too big and then enlarge
003633      ** the output register to hold the full result */
003634      if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
003635        goto too_big;
003636      }
003637      if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
003638        goto no_mem;
003639      }
003640    }
003641    pOut->n = (int)nByte;
003642    pOut->flags = MEM_Blob;
003643    if( nZero ){
003644      pOut->u.nZero = nZero;
003645      pOut->flags |= MEM_Zero;
003646    }
003647    UPDATE_MAX_BLOBSIZE(pOut);
003648    zHdr = (u8 *)pOut->z;
003649    zPayload = zHdr + nHdr;
003650  
003651    /* Write the record */
003652    if( nHdr<0x80 ){
003653      *(zHdr++) = nHdr;
003654    }else{
003655      zHdr += sqlite3PutVarint(zHdr,nHdr);
003656    }
003657    assert( pData0<=pLast );
003658    pRec = pData0;
003659    while( 1 /*exit-by-break*/ ){
003660      serial_type = pRec->uTemp;
003661      /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
003662      ** additional varints, one per column.
003663      ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
003664      ** immediately follow the header. */
003665      if( serial_type<=7 ){
003666        *(zHdr++) = serial_type;
003667        if( serial_type==0 ){
003668          /* NULL value.  No change in zPayload */
003669        }else{
003670          u64 v;
003671          if( serial_type==7 ){
003672            assert( sizeof(v)==sizeof(pRec->u.r) );
003673            memcpy(&v, &pRec->u.r, sizeof(v));
003674            swapMixedEndianFloat(v);
003675          }else{
003676            v = pRec->u.i;
003677          }
003678          len = sqlite3SmallTypeSizes[serial_type];
003679          assert( len>=1 && len<=8 && len!=5 && len!=7 );
003680          switch( len ){
003681            default: zPayload[7] = (u8)(v&0xff); v >>= 8;
003682                     zPayload[6] = (u8)(v&0xff); v >>= 8;
003683                     /* no break */ deliberate_fall_through
003684            case 6:  zPayload[5] = (u8)(v&0xff); v >>= 8;
003685                     zPayload[4] = (u8)(v&0xff); v >>= 8;
003686                     /* no break */ deliberate_fall_through
003687            case 4:  zPayload[3] = (u8)(v&0xff); v >>= 8;
003688                     /* no break */ deliberate_fall_through
003689            case 3:  zPayload[2] = (u8)(v&0xff); v >>= 8;
003690                     /* no break */ deliberate_fall_through
003691            case 2:  zPayload[1] = (u8)(v&0xff); v >>= 8;
003692                     /* no break */ deliberate_fall_through
003693            case 1:  zPayload[0] = (u8)(v&0xff);
003694          }
003695          zPayload += len;
003696        }
003697      }else if( serial_type<0x80 ){
003698        *(zHdr++) = serial_type;
003699        if( serial_type>=14 && pRec->n>0 ){
003700          assert( pRec->z!=0 );
003701          memcpy(zPayload, pRec->z, pRec->n);
003702          zPayload += pRec->n;
003703        }
003704      }else{
003705        zHdr += sqlite3PutVarint(zHdr, serial_type);
003706        if( pRec->n ){
003707          assert( pRec->z!=0 );
003708          memcpy(zPayload, pRec->z, pRec->n);
003709          zPayload += pRec->n;
003710        }
003711      }
003712      if( pRec==pLast ) break;
003713      pRec++;
003714    }
003715    assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
003716    assert( nByte==(int)(zPayload - (u8*)pOut->z) );
003717  
003718    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
003719    REGISTER_TRACE(pOp->p3, pOut);
003720    break;
003721  }
003722  
003723  /* Opcode: Count P1 P2 P3 * *
003724  ** Synopsis: r[P2]=count()
003725  **
003726  ** Store the number of entries (an integer value) in the table or index
003727  ** opened by cursor P1 in register P2.
003728  **
003729  ** If P3==0, then an exact count is obtained, which involves visiting
003730  ** every btree page of the table.  But if P3 is non-zero, an estimate
003731  ** is returned based on the current cursor position. 
003732  */
003733  case OP_Count: {         /* out2 */
003734    i64 nEntry;
003735    BtCursor *pCrsr;
003736  
003737    assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
003738    pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
003739    assert( pCrsr );
003740    if( pOp->p3 ){
003741      nEntry = sqlite3BtreeRowCountEst(pCrsr);
003742    }else{
003743      nEntry = 0;  /* Not needed.  Only used to silence a warning. */
003744      rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
003745      if( rc ) goto abort_due_to_error;
003746    }
003747    pOut = out2Prerelease(p, pOp);
003748    pOut->u.i = nEntry;
003749    goto check_for_interrupt;
003750  }
003751  
003752  /* Opcode: Savepoint P1 * * P4 *
003753  **
003754  ** Open, release or rollback the savepoint named by parameter P4, depending
003755  ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
003756  ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
003757  ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
003758  */
003759  case OP_Savepoint: {
003760    int p1;                         /* Value of P1 operand */
003761    char *zName;                    /* Name of savepoint */
003762    int nName;
003763    Savepoint *pNew;
003764    Savepoint *pSavepoint;
003765    Savepoint *pTmp;
003766    int iSavepoint;
003767    int ii;
003768  
003769    p1 = pOp->p1;
003770    zName = pOp->p4.z;
003771  
003772    /* Assert that the p1 parameter is valid. Also that if there is no open
003773    ** transaction, then there cannot be any savepoints.
003774    */
003775    assert( db->pSavepoint==0 || db->autoCommit==0 );
003776    assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
003777    assert( db->pSavepoint || db->isTransactionSavepoint==0 );
003778    assert( checkSavepointCount(db) );
003779    assert( p->bIsReader );
003780  
003781    if( p1==SAVEPOINT_BEGIN ){
003782      if( db->nVdbeWrite>0 ){
003783        /* A new savepoint cannot be created if there are active write
003784        ** statements (i.e. open read/write incremental blob handles).
003785        */
003786        sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
003787        rc = SQLITE_BUSY;
003788      }else{
003789        nName = sqlite3Strlen30(zName);
003790  
003791  #ifndef SQLITE_OMIT_VIRTUALTABLE
003792        /* This call is Ok even if this savepoint is actually a transaction
003793        ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
003794        ** If this is a transaction savepoint being opened, it is guaranteed
003795        ** that the db->aVTrans[] array is empty.  */
003796        assert( db->autoCommit==0 || db->nVTrans==0 );
003797        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
003798                                  db->nStatement+db->nSavepoint);
003799        if( rc!=SQLITE_OK ) goto abort_due_to_error;
003800  #endif
003801  
003802        /* Create a new savepoint structure. */
003803        pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
003804        if( pNew ){
003805          pNew->zName = (char *)&pNew[1];
003806          memcpy(pNew->zName, zName, nName+1);
003807     
003808          /* If there is no open transaction, then mark this as a special
003809          ** "transaction savepoint". */
003810          if( db->autoCommit ){
003811            db->autoCommit = 0;
003812            db->isTransactionSavepoint = 1;
003813          }else{
003814            db->nSavepoint++;
003815          }
003816  
003817          /* Link the new savepoint into the database handle's list. */
003818          pNew->pNext = db->pSavepoint;
003819          db->pSavepoint = pNew;
003820          pNew->nDeferredCons = db->nDeferredCons;
003821          pNew->nDeferredImmCons = db->nDeferredImmCons;
003822        }
003823      }
003824    }else{
003825      assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
003826      iSavepoint = 0;
003827  
003828      /* Find the named savepoint. If there is no such savepoint, then an
003829      ** an error is returned to the user.  */
003830      for(
003831        pSavepoint = db->pSavepoint;
003832        pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
003833        pSavepoint = pSavepoint->pNext
003834      ){
003835        iSavepoint++;
003836      }
003837      if( !pSavepoint ){
003838        sqlite3VdbeError(p, "no such savepoint: %s", zName);
003839        rc = SQLITE_ERROR;
003840      }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
003841        /* It is not possible to release (commit) a savepoint if there are
003842        ** active write statements.
003843        */
003844        sqlite3VdbeError(p, "cannot release savepoint - "
003845                            "SQL statements in progress");
003846        rc = SQLITE_BUSY;
003847      }else{
003848  
003849        /* Determine whether or not this is a transaction savepoint. If so,
003850        ** and this is a RELEASE command, then the current transaction
003851        ** is committed.
003852        */
003853        int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
003854        if( isTransaction && p1==SAVEPOINT_RELEASE ){
003855          if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003856            goto vdbe_return;
003857          }
003858          db->autoCommit = 1;
003859          if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003860            p->pc = (int)(pOp - aOp);
003861            db->autoCommit = 0;
003862            p->rc = rc = SQLITE_BUSY;
003863            goto vdbe_return;
003864          }
003865          rc = p->rc;
003866          if( rc ){
003867            db->autoCommit = 0;
003868          }else{
003869            db->isTransactionSavepoint = 0;
003870          }
003871        }else{
003872          int isSchemaChange;
003873          iSavepoint = db->nSavepoint - iSavepoint - 1;
003874          if( p1==SAVEPOINT_ROLLBACK ){
003875            isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
003876            for(ii=0; ii<db->nDb; ii++){
003877              rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
003878                                         SQLITE_ABORT_ROLLBACK,
003879                                         isSchemaChange==0);
003880              if( rc!=SQLITE_OK ) goto abort_due_to_error;
003881            }
003882          }else{
003883            assert( p1==SAVEPOINT_RELEASE );
003884            isSchemaChange = 0;
003885          }
003886          for(ii=0; ii<db->nDb; ii++){
003887            rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
003888            if( rc!=SQLITE_OK ){
003889              goto abort_due_to_error;
003890            }
003891          }
003892          if( isSchemaChange ){
003893            sqlite3ExpirePreparedStatements(db, 0);
003894            sqlite3ResetAllSchemasOfConnection(db);
003895            db->mDbFlags |= DBFLAG_SchemaChange;
003896          }
003897        }
003898        if( rc ) goto abort_due_to_error;
003899   
003900        /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
003901        ** savepoints nested inside of the savepoint being operated on. */
003902        while( db->pSavepoint!=pSavepoint ){
003903          pTmp = db->pSavepoint;
003904          db->pSavepoint = pTmp->pNext;
003905          sqlite3DbFree(db, pTmp);
003906          db->nSavepoint--;
003907        }
003908  
003909        /* If it is a RELEASE, then destroy the savepoint being operated on
003910        ** too. If it is a ROLLBACK TO, then set the number of deferred
003911        ** constraint violations present in the database to the value stored
003912        ** when the savepoint was created.  */
003913        if( p1==SAVEPOINT_RELEASE ){
003914          assert( pSavepoint==db->pSavepoint );
003915          db->pSavepoint = pSavepoint->pNext;
003916          sqlite3DbFree(db, pSavepoint);
003917          if( !isTransaction ){
003918            db->nSavepoint--;
003919          }
003920        }else{
003921          assert( p1==SAVEPOINT_ROLLBACK );
003922          db->nDeferredCons = pSavepoint->nDeferredCons;
003923          db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
003924        }
003925  
003926        if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
003927          rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
003928          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003929        }
003930      }
003931    }
003932    if( rc ) goto abort_due_to_error;
003933    if( p->eVdbeState==VDBE_HALT_STATE ){
003934      rc = SQLITE_DONE;
003935      goto vdbe_return;
003936    }
003937    break;
003938  }
003939  
003940  /* Opcode: AutoCommit P1 P2 * * *
003941  **
003942  ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
003943  ** back any currently active btree transactions. If there are any active
003944  ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
003945  ** there are active writing VMs or active VMs that use shared cache.
003946  **
003947  ** This instruction causes the VM to halt.
003948  */
003949  case OP_AutoCommit: {
003950    int desiredAutoCommit;
003951    int iRollback;
003952  
003953    desiredAutoCommit = pOp->p1;
003954    iRollback = pOp->p2;
003955    assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
003956    assert( desiredAutoCommit==1 || iRollback==0 );
003957    assert( db->nVdbeActive>0 );  /* At least this one VM is active */
003958    assert( p->bIsReader );
003959  
003960    if( desiredAutoCommit!=db->autoCommit ){
003961      if( iRollback ){
003962        assert( desiredAutoCommit==1 );
003963        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
003964        db->autoCommit = 1;
003965      }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
003966        /* If this instruction implements a COMMIT and other VMs are writing
003967        ** return an error indicating that the other VMs must complete first.
003968        */
003969        sqlite3VdbeError(p, "cannot commit transaction - "
003970                            "SQL statements in progress");
003971        rc = SQLITE_BUSY;
003972        goto abort_due_to_error;
003973      }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003974        goto vdbe_return;
003975      }else{
003976        db->autoCommit = (u8)desiredAutoCommit;
003977      }
003978      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003979        p->pc = (int)(pOp - aOp);
003980        db->autoCommit = (u8)(1-desiredAutoCommit);
003981        p->rc = rc = SQLITE_BUSY;
003982        goto vdbe_return;
003983      }
003984      sqlite3CloseSavepoints(db);
003985      if( p->rc==SQLITE_OK ){
003986        rc = SQLITE_DONE;
003987      }else{
003988        rc = SQLITE_ERROR;
003989      }
003990      goto vdbe_return;
003991    }else{
003992      sqlite3VdbeError(p,
003993          (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
003994          (iRollback)?"cannot rollback - no transaction is active":
003995                     "cannot commit - no transaction is active"));
003996          
003997      rc = SQLITE_ERROR;
003998      goto abort_due_to_error;
003999    }
004000    /*NOTREACHED*/ assert(0);
004001  }
004002  
004003  /* Opcode: Transaction P1 P2 P3 P4 P5
004004  **
004005  ** Begin a transaction on database P1 if a transaction is not already
004006  ** active.
004007  ** If P2 is non-zero, then a write-transaction is started, or if a
004008  ** read-transaction is already active, it is upgraded to a write-transaction.
004009  ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
004010  ** then an exclusive transaction is started.
004011  **
004012  ** P1 is the index of the database file on which the transaction is
004013  ** started.  Index 0 is the main database file and index 1 is the
004014  ** file used for temporary tables.  Indices of 2 or more are used for
004015  ** attached databases.
004016  **
004017  ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
004018  ** true (this flag is set if the Vdbe may modify more than one row and may
004019  ** throw an ABORT exception), a statement transaction may also be opened.
004020  ** More specifically, a statement transaction is opened iff the database
004021  ** connection is currently not in autocommit mode, or if there are other
004022  ** active statements. A statement transaction allows the changes made by this
004023  ** VDBE to be rolled back after an error without having to roll back the
004024  ** entire transaction. If no error is encountered, the statement transaction
004025  ** will automatically commit when the VDBE halts.
004026  **
004027  ** If P5!=0 then this opcode also checks the schema cookie against P3
004028  ** and the schema generation counter against P4.
004029  ** The cookie changes its value whenever the database schema changes.
004030  ** This operation is used to detect when that the cookie has changed
004031  ** and that the current process needs to reread the schema.  If the schema
004032  ** cookie in P3 differs from the schema cookie in the database header or
004033  ** if the schema generation counter in P4 differs from the current
004034  ** generation counter, then an SQLITE_SCHEMA error is raised and execution
004035  ** halts.  The sqlite3_step() wrapper function might then reprepare the
004036  ** statement and rerun it from the beginning.
004037  */
004038  case OP_Transaction: {
004039    Btree *pBt;
004040    Db *pDb;
004041    int iMeta = 0;
004042  
004043    assert( p->bIsReader );
004044    assert( p->readOnly==0 || pOp->p2==0 );
004045    assert( pOp->p2>=0 && pOp->p2<=2 );
004046    assert( pOp->p1>=0 && pOp->p1<db->nDb );
004047    assert( DbMaskTest(p->btreeMask, pOp->p1) );
004048    assert( rc==SQLITE_OK );
004049    if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
004050      if( db->flags & SQLITE_QueryOnly ){
004051        /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
004052        rc = SQLITE_READONLY;
004053      }else{
004054        /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
004055        ** transaction */
004056        rc = SQLITE_CORRUPT;
004057      }
004058      goto abort_due_to_error;
004059    }
004060    pDb = &db->aDb[pOp->p1];
004061    pBt = pDb->pBt;
004062  
004063    if( pBt ){
004064      rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
004065      testcase( rc==SQLITE_BUSY_SNAPSHOT );
004066      testcase( rc==SQLITE_BUSY_RECOVERY );
004067      if( rc!=SQLITE_OK ){
004068        if( (rc&0xff)==SQLITE_BUSY ){
004069          p->pc = (int)(pOp - aOp);
004070          p->rc = rc;
004071          goto vdbe_return;
004072        }
004073        goto abort_due_to_error;
004074      }
004075  
004076      if( p->usesStmtJournal
004077       && pOp->p2
004078       && (db->autoCommit==0 || db->nVdbeRead>1)
004079      ){
004080        assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
004081        if( p->iStatement==0 ){
004082          assert( db->nStatement>=0 && db->nSavepoint>=0 );
004083          db->nStatement++;
004084          p->iStatement = db->nSavepoint + db->nStatement;
004085        }
004086  
004087        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
004088        if( rc==SQLITE_OK ){
004089          rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
004090        }
004091  
004092        /* Store the current value of the database handles deferred constraint
004093        ** counter. If the statement transaction needs to be rolled back,
004094        ** the value of this counter needs to be restored too.  */
004095        p->nStmtDefCons = db->nDeferredCons;
004096        p->nStmtDefImmCons = db->nDeferredImmCons;
004097      }
004098    }
004099    assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
004100    if( rc==SQLITE_OK
004101     && pOp->p5
004102     && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
004103    ){
004104      /*
004105      ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
004106      ** version is checked to ensure that the schema has not changed since the
004107      ** SQL statement was prepared.
004108      */
004109      sqlite3DbFree(db, p->zErrMsg);
004110      p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
004111      /* If the schema-cookie from the database file matches the cookie
004112      ** stored with the in-memory representation of the schema, do
004113      ** not reload the schema from the database file.
004114      **
004115      ** If virtual-tables are in use, this is not just an optimization.
004116      ** Often, v-tables store their data in other SQLite tables, which
004117      ** are queried from within xNext() and other v-table methods using
004118      ** prepared queries. If such a query is out-of-date, we do not want to
004119      ** discard the database schema, as the user code implementing the
004120      ** v-table would have to be ready for the sqlite3_vtab structure itself
004121      ** to be invalidated whenever sqlite3_step() is called from within
004122      ** a v-table method.
004123      */
004124      if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
004125        sqlite3ResetOneSchema(db, pOp->p1);
004126      }
004127      p->expired = 1;
004128      rc = SQLITE_SCHEMA;
004129  
004130      /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
004131      ** from being modified in sqlite3VdbeHalt(). If this statement is
004132      ** reprepared, changeCntOn will be set again. */
004133      p->changeCntOn = 0;
004134    }
004135    if( rc ) goto abort_due_to_error;
004136    break;
004137  }
004138  
004139  /* Opcode: ReadCookie P1 P2 P3 * *
004140  **
004141  ** Read cookie number P3 from database P1 and write it into register P2.
004142  ** P3==1 is the schema version.  P3==2 is the database format.
004143  ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
004144  ** the main database file and P1==1 is the database file used to store
004145  ** temporary tables.
004146  **
004147  ** There must be a read-lock on the database (either a transaction
004148  ** must be started or there must be an open cursor) before
004149  ** executing this instruction.
004150  */
004151  case OP_ReadCookie: {               /* out2 */
004152    int iMeta;
004153    int iDb;
004154    int iCookie;
004155  
004156    assert( p->bIsReader );
004157    iDb = pOp->p1;
004158    iCookie = pOp->p3;
004159    assert( pOp->p3<SQLITE_N_BTREE_META );
004160    assert( iDb>=0 && iDb<db->nDb );
004161    assert( db->aDb[iDb].pBt!=0 );
004162    assert( DbMaskTest(p->btreeMask, iDb) );
004163  
004164    sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
004165    pOut = out2Prerelease(p, pOp);
004166    pOut->u.i = iMeta;
004167    break;
004168  }
004169  
004170  /* Opcode: SetCookie P1 P2 P3 * P5
004171  **
004172  ** Write the integer value P3 into cookie number P2 of database P1.
004173  ** P2==1 is the schema version.  P2==2 is the database format.
004174  ** P2==3 is the recommended pager cache
004175  ** size, and so forth.  P1==0 is the main database file and P1==1 is the
004176  ** database file used to store temporary tables.
004177  **
004178  ** A transaction must be started before executing this opcode.
004179  **
004180  ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
004181  ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
004182  ** has P5 set to 1, so that the internal schema version will be different
004183  ** from the database schema version, resulting in a schema reset.
004184  */
004185  case OP_SetCookie: {
004186    Db *pDb;
004187  
004188    sqlite3VdbeIncrWriteCounter(p, 0);
004189    assert( pOp->p2<SQLITE_N_BTREE_META );
004190    assert( pOp->p1>=0 && pOp->p1<db->nDb );
004191    assert( DbMaskTest(p->btreeMask, pOp->p1) );
004192    assert( p->readOnly==0 );
004193    pDb = &db->aDb[pOp->p1];
004194    assert( pDb->pBt!=0 );
004195    assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
004196    /* See note about index shifting on OP_ReadCookie */
004197    rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
004198    if( pOp->p2==BTREE_SCHEMA_VERSION ){
004199      /* When the schema cookie changes, record the new cookie internally */
004200      *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
004201      db->mDbFlags |= DBFLAG_SchemaChange;
004202      sqlite3FkClearTriggerCache(db, pOp->p1);
004203    }else if( pOp->p2==BTREE_FILE_FORMAT ){
004204      /* Record changes in the file format */
004205      pDb->pSchema->file_format = pOp->p3;
004206    }
004207    if( pOp->p1==1 ){
004208      /* Invalidate all prepared statements whenever the TEMP database
004209      ** schema is changed.  Ticket #1644 */
004210      sqlite3ExpirePreparedStatements(db, 0);
004211      p->expired = 0;
004212    }
004213    if( rc ) goto abort_due_to_error;
004214    break;
004215  }
004216  
004217  /* Opcode: OpenRead P1 P2 P3 P4 P5
004218  ** Synopsis: root=P2 iDb=P3
004219  **
004220  ** Open a read-only cursor for the database table whose root page is
004221  ** P2 in a database file.  The database file is determined by P3.
004222  ** P3==0 means the main database, P3==1 means the database used for
004223  ** temporary tables, and P3>1 means used the corresponding attached
004224  ** database.  Give the new cursor an identifier of P1.  The P1
004225  ** values need not be contiguous but all P1 values should be small integers.
004226  ** It is an error for P1 to be negative.
004227  **
004228  ** Allowed P5 bits:
004229  ** <ul>
004230  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004231  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004232  **       of OP_SeekLE/OP_IdxLT)
004233  ** </ul>
004234  **
004235  ** The P4 value may be either an integer (P4_INT32) or a pointer to
004236  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
004237  ** object, then table being opened must be an [index b-tree] where the
004238  ** KeyInfo object defines the content and collating
004239  ** sequence of that index b-tree. Otherwise, if P4 is an integer
004240  ** value, then the table being opened must be a [table b-tree] with a
004241  ** number of columns no less than the value of P4.
004242  **
004243  ** See also: OpenWrite, ReopenIdx
004244  */
004245  /* Opcode: ReopenIdx P1 P2 P3 P4 P5
004246  ** Synopsis: root=P2 iDb=P3
004247  **
004248  ** The ReopenIdx opcode works like OP_OpenRead except that it first
004249  ** checks to see if the cursor on P1 is already open on the same
004250  ** b-tree and if it is this opcode becomes a no-op.  In other words,
004251  ** if the cursor is already open, do not reopen it.
004252  **
004253  ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
004254  ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
004255  ** be the same as every other ReopenIdx or OpenRead for the same cursor
004256  ** number.
004257  **
004258  ** Allowed P5 bits:
004259  ** <ul>
004260  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004261  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004262  **       of OP_SeekLE/OP_IdxLT)
004263  ** </ul>
004264  **
004265  ** See also: OP_OpenRead, OP_OpenWrite
004266  */
004267  /* Opcode: OpenWrite P1 P2 P3 P4 P5
004268  ** Synopsis: root=P2 iDb=P3
004269  **
004270  ** Open a read/write cursor named P1 on the table or index whose root
004271  ** page is P2 (or whose root page is held in register P2 if the
004272  ** OPFLAG_P2ISREG bit is set in P5 - see below).
004273  **
004274  ** The P4 value may be either an integer (P4_INT32) or a pointer to
004275  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
004276  ** object, then table being opened must be an [index b-tree] where the
004277  ** KeyInfo object defines the content and collating
004278  ** sequence of that index b-tree. Otherwise, if P4 is an integer
004279  ** value, then the table being opened must be a [table b-tree] with a
004280  ** number of columns no less than the value of P4.
004281  **
004282  ** Allowed P5 bits:
004283  ** <ul>
004284  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004285  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004286  **       of OP_SeekLE/OP_IdxLT)
004287  ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
004288  **       and subsequently delete entries in an index btree.  This is a
004289  **       hint to the storage engine that the storage engine is allowed to
004290  **       ignore.  The hint is not used by the official SQLite b*tree storage
004291  **       engine, but is used by COMDB2.
004292  ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
004293  **       as the root page, not the value of P2 itself.
004294  ** </ul>
004295  **
004296  ** This instruction works like OpenRead except that it opens the cursor
004297  ** in read/write mode.
004298  **
004299  ** See also: OP_OpenRead, OP_ReopenIdx
004300  */
004301  case OP_ReopenIdx: {         /* ncycle */
004302    int nField;
004303    KeyInfo *pKeyInfo;
004304    u32 p2;
004305    int iDb;
004306    int wrFlag;
004307    Btree *pX;
004308    VdbeCursor *pCur;
004309    Db *pDb;
004310  
004311    assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
004312    assert( pOp->p4type==P4_KEYINFO );
004313    pCur = p->apCsr[pOp->p1];
004314    if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
004315      assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
004316      assert( pCur->eCurType==CURTYPE_BTREE );
004317      sqlite3BtreeClearCursor(pCur->uc.pCursor);
004318      goto open_cursor_set_hints;
004319    }
004320    /* If the cursor is not currently open or is open on a different
004321    ** index, then fall through into OP_OpenRead to force a reopen */
004322  case OP_OpenRead:            /* ncycle */
004323  case OP_OpenWrite:
004324  
004325    assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
004326    assert( p->bIsReader );
004327    assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
004328            || p->readOnly==0 );
004329  
004330    if( p->expired==1 ){
004331      rc = SQLITE_ABORT_ROLLBACK;
004332      goto abort_due_to_error;
004333    }
004334  
004335    nField = 0;
004336    pKeyInfo = 0;
004337    p2 = (u32)pOp->p2;
004338    iDb = pOp->p3;
004339    assert( iDb>=0 && iDb<db->nDb );
004340    assert( DbMaskTest(p->btreeMask, iDb) );
004341    pDb = &db->aDb[iDb];
004342    pX = pDb->pBt;
004343    assert( pX!=0 );
004344    if( pOp->opcode==OP_OpenWrite ){
004345      assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
004346      wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
004347      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
004348      if( pDb->pSchema->file_format < p->minWriteFileFormat ){
004349        p->minWriteFileFormat = pDb->pSchema->file_format;
004350      }
004351      if( pOp->p5 & OPFLAG_P2ISREG ){
004352        assert( p2>0 );
004353        assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
004354        pIn2 = &aMem[p2];
004355        assert( memIsValid(pIn2) );
004356        assert( (pIn2->flags & MEM_Int)!=0 );
004357        sqlite3VdbeMemIntegerify(pIn2);
004358        p2 = (int)pIn2->u.i;
004359        /* The p2 value always comes from a prior OP_CreateBtree opcode and
004360        ** that opcode will always set the p2 value to 2 or more or else fail.
004361        ** If there were a failure, the prepared statement would have halted
004362        ** before reaching this instruction. */
004363        assert( p2>=2 );
004364      }
004365    }else{
004366      wrFlag = 0;
004367      assert( (pOp->p5 & OPFLAG_P2ISREG)==0 );
004368    }
004369    if( pOp->p4type==P4_KEYINFO ){
004370      pKeyInfo = pOp->p4.pKeyInfo;
004371      assert( pKeyInfo->enc==ENC(db) );
004372      assert( pKeyInfo->db==db );
004373      nField = pKeyInfo->nAllField;
004374    }else if( pOp->p4type==P4_INT32 ){
004375      nField = pOp->p4.i;
004376    }
004377    assert( pOp->p1>=0 );
004378    assert( nField>=0 );
004379    testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
004380    pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
004381    if( pCur==0 ) goto no_mem;
004382    pCur->iDb = iDb;
004383    pCur->nullRow = 1;
004384    pCur->isOrdered = 1;
004385    pCur->pgnoRoot = p2;
004386  #ifdef SQLITE_DEBUG
004387    pCur->wrFlag = wrFlag;
004388  #endif
004389    rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
004390    pCur->pKeyInfo = pKeyInfo;
004391    /* Set the VdbeCursor.isTable variable. Previous versions of
004392    ** SQLite used to check if the root-page flags were sane at this point
004393    ** and report database corruption if they were not, but this check has
004394    ** since moved into the btree layer.  */ 
004395    pCur->isTable = pOp->p4type!=P4_KEYINFO;
004396  
004397  open_cursor_set_hints:
004398    assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
004399    assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
004400    testcase( pOp->p5 & OPFLAG_BULKCSR );
004401    testcase( pOp->p2 & OPFLAG_SEEKEQ );
004402    sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
004403                                 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
004404    if( rc ) goto abort_due_to_error;
004405    break;
004406  }
004407  
004408  /* Opcode: OpenDup P1 P2 * * *
004409  **
004410  ** Open a new cursor P1 that points to the same ephemeral table as
004411  ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
004412  ** opcode.  Only ephemeral cursors may be duplicated.
004413  **
004414  ** Duplicate ephemeral cursors are used for self-joins of materialized views.
004415  */
004416  case OP_OpenDup: {           /* ncycle */
004417    VdbeCursor *pOrig;    /* The original cursor to be duplicated */
004418    VdbeCursor *pCx;      /* The new cursor */
004419  
004420    pOrig = p->apCsr[pOp->p2];
004421    assert( pOrig );
004422    assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
004423  
004424    pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
004425    if( pCx==0 ) goto no_mem;
004426    pCx->nullRow = 1;
004427    pCx->isEphemeral = 1;
004428    pCx->pKeyInfo = pOrig->pKeyInfo;
004429    pCx->isTable = pOrig->isTable;
004430    pCx->pgnoRoot = pOrig->pgnoRoot;
004431    pCx->isOrdered = pOrig->isOrdered;
004432    pCx->ub.pBtx = pOrig->ub.pBtx;
004433    pCx->noReuse = 1;
004434    pOrig->noReuse = 1;
004435    rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
004436                            pCx->pKeyInfo, pCx->uc.pCursor);
004437    /* The sqlite3BtreeCursor() routine can only fail for the first cursor
004438    ** opened for a database.  Since there is already an open cursor when this
004439    ** opcode is run, the sqlite3BtreeCursor() cannot fail */
004440    assert( rc==SQLITE_OK );
004441    break;
004442  }
004443  
004444  
004445  /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
004446  ** Synopsis: nColumn=P2
004447  **
004448  ** Open a new cursor P1 to a transient table.
004449  ** The cursor is always opened read/write even if
004450  ** the main database is read-only.  The ephemeral
004451  ** table is deleted automatically when the cursor is closed.
004452  **
004453  ** If the cursor P1 is already opened on an ephemeral table, the table
004454  ** is cleared (all content is erased).
004455  **
004456  ** P2 is the number of columns in the ephemeral table.
004457  ** The cursor points to a BTree table if P4==0 and to a BTree index
004458  ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
004459  ** that defines the format of keys in the index.
004460  **
004461  ** The P5 parameter can be a mask of the BTREE_* flags defined
004462  ** in btree.h.  These flags control aspects of the operation of
004463  ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
004464  ** added automatically.
004465  **
004466  ** If P3 is positive, then reg[P3] is modified slightly so that it
004467  ** can be used as zero-length data for OP_Insert.  This is an optimization
004468  ** that avoids an extra OP_Blob opcode to initialize that register.
004469  */
004470  /* Opcode: OpenAutoindex P1 P2 * P4 *
004471  ** Synopsis: nColumn=P2
004472  **
004473  ** This opcode works the same as OP_OpenEphemeral.  It has a
004474  ** different name to distinguish its use.  Tables created using
004475  ** by this opcode will be used for automatically created transient
004476  ** indices in joins.
004477  */
004478  case OP_OpenAutoindex:       /* ncycle */
004479  case OP_OpenEphemeral: {     /* ncycle */
004480    VdbeCursor *pCx;
004481    KeyInfo *pKeyInfo;
004482  
004483    static const int vfsFlags =
004484        SQLITE_OPEN_READWRITE |
004485        SQLITE_OPEN_CREATE |
004486        SQLITE_OPEN_EXCLUSIVE |
004487        SQLITE_OPEN_DELETEONCLOSE |
004488        SQLITE_OPEN_TRANSIENT_DB;
004489    assert( pOp->p1>=0 );
004490    assert( pOp->p2>=0 );
004491    if( pOp->p3>0 ){
004492      /* Make register reg[P3] into a value that can be used as the data
004493      ** form sqlite3BtreeInsert() where the length of the data is zero. */
004494      assert( pOp->p2==0 ); /* Only used when number of columns is zero */
004495      assert( pOp->opcode==OP_OpenEphemeral );
004496      assert( aMem[pOp->p3].flags & MEM_Null );
004497      aMem[pOp->p3].n = 0;
004498      aMem[pOp->p3].z = "";
004499    }
004500    pCx = p->apCsr[pOp->p1];
004501    if( pCx && !pCx->noReuse &&  ALWAYS(pOp->p2<=pCx->nField) ){
004502      /* If the ephemeral table is already open and has no duplicates from
004503      ** OP_OpenDup, then erase all existing content so that the table is
004504      ** empty again, rather than creating a new table. */
004505      assert( pCx->isEphemeral );
004506      pCx->seqCount = 0;
004507      pCx->cacheStatus = CACHE_STALE;
004508      rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
004509    }else{
004510      pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
004511      if( pCx==0 ) goto no_mem;
004512      pCx->isEphemeral = 1;
004513      rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
004514                            BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
004515                            vfsFlags);
004516      if( rc==SQLITE_OK ){
004517        rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
004518        if( rc==SQLITE_OK ){
004519          /* If a transient index is required, create it by calling
004520          ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
004521          ** opening it. If a transient table is required, just use the
004522          ** automatically created table with root-page 1 (an BLOB_INTKEY table).
004523          */
004524          if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
004525            assert( pOp->p4type==P4_KEYINFO );
004526            rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
004527                BTREE_BLOBKEY | pOp->p5);
004528            if( rc==SQLITE_OK ){
004529              assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
004530              assert( pKeyInfo->db==db );
004531              assert( pKeyInfo->enc==ENC(db) );
004532              rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
004533                  pKeyInfo, pCx->uc.pCursor);
004534            }
004535            pCx->isTable = 0;
004536          }else{
004537            pCx->pgnoRoot = SCHEMA_ROOT;
004538            rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
004539                0, pCx->uc.pCursor);
004540            pCx->isTable = 1;
004541          }
004542        }
004543        pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
004544        assert( p->apCsr[pOp->p1]==pCx );
004545        if( rc ){
004546          assert( !sqlite3BtreeClosesWithCursor(pCx->ub.pBtx, pCx->uc.pCursor) );
004547          sqlite3BtreeClose(pCx->ub.pBtx);
004548          p->apCsr[pOp->p1] = 0;  /* Not required; helps with static analysis */
004549        }else{
004550          assert( sqlite3BtreeClosesWithCursor(pCx->ub.pBtx, pCx->uc.pCursor) );
004551        }
004552      }
004553    }
004554    if( rc ) goto abort_due_to_error;
004555    pCx->nullRow = 1;
004556    break;
004557  }
004558  
004559  /* Opcode: SorterOpen P1 P2 P3 P4 *
004560  **
004561  ** This opcode works like OP_OpenEphemeral except that it opens
004562  ** a transient index that is specifically designed to sort large
004563  ** tables using an external merge-sort algorithm.
004564  **
004565  ** If argument P3 is non-zero, then it indicates that the sorter may
004566  ** assume that a stable sort considering the first P3 fields of each
004567  ** key is sufficient to produce the required results.
004568  */
004569  case OP_SorterOpen: {
004570    VdbeCursor *pCx;
004571  
004572    assert( pOp->p1>=0 );
004573    assert( pOp->p2>=0 );
004574    pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
004575    if( pCx==0 ) goto no_mem;
004576    pCx->pKeyInfo = pOp->p4.pKeyInfo;
004577    assert( pCx->pKeyInfo->db==db );
004578    assert( pCx->pKeyInfo->enc==ENC(db) );
004579    rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
004580    if( rc ) goto abort_due_to_error;
004581    break;
004582  }
004583  
004584  /* Opcode: SequenceTest P1 P2 * * *
004585  ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
004586  **
004587  ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
004588  ** to P2. Regardless of whether or not the jump is taken, increment the
004589  ** the sequence value.
004590  */
004591  case OP_SequenceTest: {
004592    VdbeCursor *pC;
004593    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004594    pC = p->apCsr[pOp->p1];
004595    assert( isSorter(pC) );
004596    if( (pC->seqCount++)==0 ){
004597      goto jump_to_p2;
004598    }
004599    break;
004600  }
004601  
004602  /* Opcode: OpenPseudo P1 P2 P3 * *
004603  ** Synopsis: P3 columns in r[P2]
004604  **
004605  ** Open a new cursor that points to a fake table that contains a single
004606  ** row of data.  The content of that one row is the content of memory
004607  ** register P2.  In other words, cursor P1 becomes an alias for the
004608  ** MEM_Blob content contained in register P2.
004609  **
004610  ** A pseudo-table created by this opcode is used to hold a single
004611  ** row output from the sorter so that the row can be decomposed into
004612  ** individual columns using the OP_Column opcode.  The OP_Column opcode
004613  ** is the only cursor opcode that works with a pseudo-table.
004614  **
004615  ** P3 is the number of fields in the records that will be stored by
004616  ** the pseudo-table.  If P2 is 0 or negative then the pseudo-cursor
004617  ** will return NULL for every column.
004618  */
004619  case OP_OpenPseudo: {
004620    VdbeCursor *pCx;
004621  
004622    assert( pOp->p1>=0 );
004623    assert( pOp->p3>=0 );
004624    pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
004625    if( pCx==0 ) goto no_mem;
004626    pCx->nullRow = 1;
004627    pCx->seekResult = pOp->p2;
004628    pCx->isTable = 1;
004629    /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
004630    ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
004631    ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
004632    ** which is a performance optimization */
004633    pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
004634    assert( pOp->p5==0 );
004635    break;
004636  }
004637  
004638  /* Opcode: Close P1 * * * *
004639  **
004640  ** Close a cursor previously opened as P1.  If P1 is not
004641  ** currently open, this instruction is a no-op.
004642  */
004643  case OP_Close: {             /* ncycle */
004644    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004645    sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
004646    p->apCsr[pOp->p1] = 0;
004647    break;
004648  }
004649  
004650  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
004651  /* Opcode: ColumnsUsed P1 * * P4 *
004652  **
004653  ** This opcode (which only exists if SQLite was compiled with
004654  ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
004655  ** table or index for cursor P1 are used.  P4 is a 64-bit integer
004656  ** (P4_INT64) in which the first 63 bits are one for each of the
004657  ** first 63 columns of the table or index that are actually used
004658  ** by the cursor.  The high-order bit is set if any column after
004659  ** the 64th is used.
004660  */
004661  case OP_ColumnsUsed: {
004662    VdbeCursor *pC;
004663    pC = p->apCsr[pOp->p1];
004664    assert( pC->eCurType==CURTYPE_BTREE );
004665    pC->maskUsed = *(u64*)pOp->p4.pI64;
004666    break;
004667  }
004668  #endif
004669  
004670  /* Opcode: SeekGE P1 P2 P3 P4 *
004671  ** Synopsis: key=r[P3@P4]
004672  **
004673  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004674  ** use the value in register P3 as the key.  If cursor P1 refers
004675  ** to an SQL index, then P3 is the first in an array of P4 registers
004676  ** that are used as an unpacked index key.
004677  **
004678  ** Reposition cursor P1 so that  it points to the smallest entry that
004679  ** is greater than or equal to the key value. If there are no records
004680  ** greater than or equal to the key and P2 is not zero, then jump to P2.
004681  **
004682  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
004683  ** opcode will either land on a record that exactly matches the key, or
004684  ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
004685  ** this opcode must be followed by an IdxLE opcode with the same arguments.
004686  ** The IdxGT opcode will be skipped if this opcode succeeds, but the
004687  ** IdxGT opcode will be used on subsequent loop iterations.  The
004688  ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
004689  ** is an equality search.
004690  **
004691  ** This opcode leaves the cursor configured to move in forward order,
004692  ** from the beginning toward the end.  In other words, the cursor is
004693  ** configured to use Next, not Prev.
004694  **
004695  ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
004696  */
004697  /* Opcode: SeekGT P1 P2 P3 P4 *
004698  ** Synopsis: key=r[P3@P4]
004699  **
004700  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004701  ** use the value in register P3 as a key. If cursor P1 refers
004702  ** to an SQL index, then P3 is the first in an array of P4 registers
004703  ** that are used as an unpacked index key.
004704  **
004705  ** Reposition cursor P1 so that it points to the smallest entry that
004706  ** is greater than the key value. If there are no records greater than
004707  ** the key and P2 is not zero, then jump to P2.
004708  **
004709  ** This opcode leaves the cursor configured to move in forward order,
004710  ** from the beginning toward the end.  In other words, the cursor is
004711  ** configured to use Next, not Prev.
004712  **
004713  ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
004714  */
004715  /* Opcode: SeekLT P1 P2 P3 P4 *
004716  ** Synopsis: key=r[P3@P4]
004717  **
004718  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004719  ** use the value in register P3 as a key. If cursor P1 refers
004720  ** to an SQL index, then P3 is the first in an array of P4 registers
004721  ** that are used as an unpacked index key.
004722  **
004723  ** Reposition cursor P1 so that  it points to the largest entry that
004724  ** is less than the key value. If there are no records less than
004725  ** the key and P2 is not zero, then jump to P2.
004726  **
004727  ** This opcode leaves the cursor configured to move in reverse order,
004728  ** from the end toward the beginning.  In other words, the cursor is
004729  ** configured to use Prev, not Next.
004730  **
004731  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
004732  */
004733  /* Opcode: SeekLE P1 P2 P3 P4 *
004734  ** Synopsis: key=r[P3@P4]
004735  **
004736  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004737  ** use the value in register P3 as a key. If cursor P1 refers
004738  ** to an SQL index, then P3 is the first in an array of P4 registers
004739  ** that are used as an unpacked index key.
004740  **
004741  ** Reposition cursor P1 so that it points to the largest entry that
004742  ** is less than or equal to the key value. If there are no records
004743  ** less than or equal to the key and P2 is not zero, then jump to P2.
004744  **
004745  ** This opcode leaves the cursor configured to move in reverse order,
004746  ** from the end toward the beginning.  In other words, the cursor is
004747  ** configured to use Prev, not Next.
004748  **
004749  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
004750  ** opcode will either land on a record that exactly matches the key, or
004751  ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
004752  ** this opcode must be followed by an IdxLE opcode with the same arguments.
004753  ** The IdxGE opcode will be skipped if this opcode succeeds, but the
004754  ** IdxGE opcode will be used on subsequent loop iterations.  The
004755  ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
004756  ** is an equality search.
004757  **
004758  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
004759  */
004760  case OP_SeekLT:         /* jump0, in3, group, ncycle */
004761  case OP_SeekLE:         /* jump0, in3, group, ncycle */
004762  case OP_SeekGE:         /* jump0, in3, group, ncycle */
004763  case OP_SeekGT: {       /* jump0, in3, group, ncycle */
004764    int res;           /* Comparison result */
004765    int oc;            /* Opcode */
004766    VdbeCursor *pC;    /* The cursor to seek */
004767    UnpackedRecord r;  /* The key to seek for */
004768    int nField;        /* Number of columns or fields in the key */
004769    i64 iKey;          /* The rowid we are to seek to */
004770    int eqOnly;        /* Only interested in == results */
004771  
004772    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004773    assert( pOp->p2!=0 );
004774    pC = p->apCsr[pOp->p1];
004775    assert( pC!=0 );
004776    assert( pC->eCurType==CURTYPE_BTREE );
004777    assert( OP_SeekLE == OP_SeekLT+1 );
004778    assert( OP_SeekGE == OP_SeekLT+2 );
004779    assert( OP_SeekGT == OP_SeekLT+3 );
004780    assert( pC->isOrdered );
004781    assert( pC->uc.pCursor!=0 );
004782    oc = pOp->opcode;
004783    eqOnly = 0;
004784    pC->nullRow = 0;
004785  #ifdef SQLITE_DEBUG
004786    pC->seekOp = pOp->opcode;
004787  #endif
004788  
004789    pC->deferredMoveto = 0;
004790    pC->cacheStatus = CACHE_STALE;
004791    if( pC->isTable ){
004792      u16 flags3, newType;
004793      /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
004794      assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
004795                || CORRUPT_DB );
004796  
004797      /* The input value in P3 might be of any type: integer, real, string,
004798      ** blob, or NULL.  But it needs to be an integer before we can do
004799      ** the seek, so convert it. */
004800      pIn3 = &aMem[pOp->p3];
004801      flags3 = pIn3->flags;
004802      if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
004803        applyNumericAffinity(pIn3, 0);
004804      }
004805      iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
004806      newType = pIn3->flags; /* Record the type after applying numeric affinity */
004807      pIn3->flags = flags3;  /* But convert the type back to its original */
004808  
004809      /* If the P3 value could not be converted into an integer without
004810      ** loss of information, then special processing is required... */
004811      if( (newType & (MEM_Int|MEM_IntReal))==0 ){
004812        int c;
004813        if( (newType & MEM_Real)==0 ){
004814          if( (newType & MEM_Null) || oc>=OP_SeekGE ){
004815            VdbeBranchTaken(1,2);
004816            goto jump_to_p2;
004817          }else{
004818            rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
004819            if( rc!=SQLITE_OK ) goto abort_due_to_error;
004820            goto seek_not_found;
004821          }
004822        }
004823        c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
004824  
004825        /* If the approximation iKey is larger than the actual real search
004826        ** term, substitute >= for > and < for <=. e.g. if the search term
004827        ** is 4.9 and the integer approximation 5:
004828        **
004829        **        (x >  4.9)    ->     (x >= 5)
004830        **        (x <= 4.9)    ->     (x <  5)
004831        */
004832        if( c>0 ){
004833          assert( OP_SeekGE==(OP_SeekGT-1) );
004834          assert( OP_SeekLT==(OP_SeekLE-1) );
004835          assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
004836          if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
004837        }
004838  
004839        /* If the approximation iKey is smaller than the actual real search
004840        ** term, substitute <= for < and > for >=.  */
004841        else if( c<0 ){
004842          assert( OP_SeekLE==(OP_SeekLT+1) );
004843          assert( OP_SeekGT==(OP_SeekGE+1) );
004844          assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
004845          if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
004846        }
004847      }
004848      rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
004849      pC->movetoTarget = iKey;  /* Used by OP_Delete */
004850      if( rc!=SQLITE_OK ){
004851        goto abort_due_to_error;
004852      }
004853    }else{
004854      /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
004855      ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
004856      ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
004857      ** with the same key.
004858      */
004859      if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
004860        eqOnly = 1;
004861        assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
004862        assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
004863        assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
004864        assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
004865        assert( pOp[1].p1==pOp[0].p1 );
004866        assert( pOp[1].p2==pOp[0].p2 );
004867        assert( pOp[1].p3==pOp[0].p3 );
004868        assert( pOp[1].p4.i==pOp[0].p4.i );
004869      }
004870  
004871      nField = pOp->p4.i;
004872      assert( pOp->p4type==P4_INT32 );
004873      assert( nField>0 );
004874      r.pKeyInfo = pC->pKeyInfo;
004875      r.nField = (u16)nField;
004876  
004877      /* The next line of code computes as follows, only faster:
004878      **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
004879      **     r.default_rc = -1;
004880      **   }else{
004881      **     r.default_rc = +1;
004882      **   }
004883      */
004884      r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
004885      assert( oc!=OP_SeekGT || r.default_rc==-1 );
004886      assert( oc!=OP_SeekLE || r.default_rc==-1 );
004887      assert( oc!=OP_SeekGE || r.default_rc==+1 );
004888      assert( oc!=OP_SeekLT || r.default_rc==+1 );
004889  
004890      r.aMem = &aMem[pOp->p3];
004891  #ifdef SQLITE_DEBUG
004892      {
004893        int i;
004894        for(i=0; i<r.nField; i++){
004895          assert( memIsValid(&r.aMem[i]) );
004896          if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
004897        }
004898      }
004899  #endif
004900      r.eqSeen = 0;
004901      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
004902      if( rc!=SQLITE_OK ){
004903        goto abort_due_to_error;
004904      }
004905      if( eqOnly && r.eqSeen==0 ){
004906        assert( res!=0 );
004907        goto seek_not_found;
004908      }
004909    }
004910  #ifdef SQLITE_TEST
004911    sqlite3_search_count++;
004912  #endif
004913    if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
004914      if( res<0 || (res==0 && oc==OP_SeekGT) ){
004915        res = 0;
004916        rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
004917        if( rc!=SQLITE_OK ){
004918          if( rc==SQLITE_DONE ){
004919            rc = SQLITE_OK;
004920            res = 1;
004921          }else{
004922            goto abort_due_to_error;
004923          }
004924        }
004925      }else{
004926        res = 0;
004927      }
004928    }else{
004929      assert( oc==OP_SeekLT || oc==OP_SeekLE );
004930      if( res>0 || (res==0 && oc==OP_SeekLT) ){
004931        res = 0;
004932        rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
004933        if( rc!=SQLITE_OK ){
004934          if( rc==SQLITE_DONE ){
004935            rc = SQLITE_OK;
004936            res = 1;
004937          }else{
004938            goto abort_due_to_error;
004939          }
004940        }
004941      }else{
004942        /* res might be negative because the table is empty.  Check to
004943        ** see if this is the case.
004944        */
004945        res = sqlite3BtreeEof(pC->uc.pCursor);
004946      }
004947    }
004948  seek_not_found:
004949    assert( pOp->p2>0 );
004950    VdbeBranchTaken(res!=0,2);
004951    if( res ){
004952      goto jump_to_p2;
004953    }else if( eqOnly ){
004954      assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
004955      pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
004956    }
004957    break;
004958  }
004959  
004960  
004961  /* Opcode: SeekScan  P1 P2 * * P5
004962  ** Synopsis: Scan-ahead up to P1 rows
004963  **
004964  ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
004965  ** opcode must be immediately followed by OP_SeekGE. This constraint is
004966  ** checked by assert() statements.
004967  **
004968  ** This opcode uses the P1 through P4 operands of the subsequent
004969  ** OP_SeekGE.  In the text that follows, the operands of the subsequent
004970  ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
004971  ** the P1, P2 and P5 operands of this opcode are also used, and  are called
004972  ** This.P1, This.P2 and This.P5.
004973  **
004974  ** This opcode helps to optimize IN operators on a multi-column index
004975  ** where the IN operator is on the later terms of the index by avoiding
004976  ** unnecessary seeks on the btree, substituting steps to the next row
004977  ** of the b-tree instead.  A correct answer is obtained if this opcode
004978  ** is omitted or is a no-op.
004979  **
004980  ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
004981  ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
004982  ** to.  Call this SeekGE.P3/P4 row the "target".
004983  **
004984  ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
004985  ** then this opcode is a no-op and control passes through into the OP_SeekGE.
004986  **
004987  ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
004988  ** might be the target row, or it might be near and slightly before the
004989  ** target row, or it might be after the target row.  If the cursor is
004990  ** currently before the target row, then this opcode attempts to position
004991  ** the cursor on or after the target row by invoking sqlite3BtreeStep()
004992  ** on the cursor between 1 and This.P1 times.
004993  **
004994  ** The This.P5 parameter is a flag that indicates what to do if the
004995  ** cursor ends up pointing at a valid row that is past the target
004996  ** row.  If This.P5 is false (0) then a jump is made to SeekGE.P2.  If
004997  ** This.P5 is true (non-zero) then a jump is made to This.P2.  The P5==0
004998  ** case occurs when there are no inequality constraints to the right of
004999  ** the IN constraint.  The jump to SeekGE.P2 ends the loop.  The P5!=0 case
005000  ** occurs when there are inequality constraints to the right of the IN
005001  ** operator.  In that case, the This.P2 will point either directly to or
005002  ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
005003  ** loop terminate.
005004  **
005005  ** Possible outcomes from this opcode:<ol>
005006  **
005007  ** <li> If the cursor is initially not pointed to any valid row, then
005008  **      fall through into the subsequent OP_SeekGE opcode.
005009  **
005010  ** <li> If the cursor is left pointing to a row that is before the target
005011  **      row, even after making as many as This.P1 calls to
005012  **      sqlite3BtreeNext(), then also fall through into OP_SeekGE.
005013  **
005014  ** <li> If the cursor is left pointing at the target row, either because it
005015  **      was at the target row to begin with or because one or more
005016  **      sqlite3BtreeNext() calls moved the cursor to the target row,
005017  **      then jump to This.P2..,
005018  **
005019  ** <li> If the cursor started out before the target row and a call to
005020  **      to sqlite3BtreeNext() moved the cursor off the end of the index
005021  **      (indicating that the target row definitely does not exist in the
005022  **      btree) then jump to SeekGE.P2, ending the loop.
005023  **
005024  ** <li> If the cursor ends up on a valid row that is past the target row
005025  **      (indicating that the target row does not exist in the btree) then
005026  **      jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
005027  ** </ol>
005028  */
005029  case OP_SeekScan: {          /* ncycle */
005030    VdbeCursor *pC;
005031    int res;
005032    int nStep;
005033    UnpackedRecord r;
005034  
005035    assert( pOp[1].opcode==OP_SeekGE );
005036  
005037    /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
005038    ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
005039    ** opcode past the OP_SeekGE itself.  */
005040    assert( pOp->p2>=(int)(pOp-aOp)+2 );
005041  #ifdef SQLITE_DEBUG
005042    if( pOp->p5==0 ){
005043      /* There are no inequality constraints following the IN constraint. */
005044      assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
005045      assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
005046      assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
005047      assert( aOp[pOp->p2-1].opcode==OP_IdxGT
005048           || aOp[pOp->p2-1].opcode==OP_IdxGE );
005049      testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
005050    }else{
005051      /* There are inequality constraints.  */
005052      assert( pOp->p2==(int)(pOp-aOp)+2 );
005053      assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
005054    }
005055  #endif
005056  
005057    assert( pOp->p1>0 );
005058    pC = p->apCsr[pOp[1].p1];
005059    assert( pC!=0 );
005060    assert( pC->eCurType==CURTYPE_BTREE );
005061    assert( !pC->isTable );
005062    if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
005063  #ifdef SQLITE_DEBUG
005064       if( db->flags&SQLITE_VdbeTrace ){
005065         printf("... cursor not valid - fall through\n");
005066       }       
005067  #endif
005068      break;
005069    }
005070    nStep = pOp->p1;
005071    assert( nStep>=1 );
005072    r.pKeyInfo = pC->pKeyInfo;
005073    r.nField = (u16)pOp[1].p4.i;
005074    r.default_rc = 0;
005075    r.aMem = &aMem[pOp[1].p3];
005076  #ifdef SQLITE_DEBUG
005077    {
005078      int i;
005079      for(i=0; i<r.nField; i++){
005080        assert( memIsValid(&r.aMem[i]) );
005081        REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
005082      }
005083    }
005084  #endif
005085    res = 0;  /* Not needed.  Only used to silence a warning. */
005086    while(1){
005087      rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
005088      if( rc ) goto abort_due_to_error;
005089      if( res>0 && pOp->p5==0 ){
005090        seekscan_search_fail:
005091        /* Jump to SeekGE.P2, ending the loop */
005092  #ifdef SQLITE_DEBUG
005093        if( db->flags&SQLITE_VdbeTrace ){
005094          printf("... %d steps and then skip\n", pOp->p1 - nStep);
005095        }       
005096  #endif
005097        VdbeBranchTaken(1,3);
005098        pOp++;
005099        goto jump_to_p2;
005100      }
005101      if( res>=0 ){
005102        /* Jump to This.P2, bypassing the OP_SeekGE opcode */
005103  #ifdef SQLITE_DEBUG
005104        if( db->flags&SQLITE_VdbeTrace ){
005105          printf("... %d steps and then success\n", pOp->p1 - nStep);
005106        }       
005107  #endif
005108        VdbeBranchTaken(2,3);
005109        goto jump_to_p2;
005110        break;
005111      }
005112      if( nStep<=0 ){
005113  #ifdef SQLITE_DEBUG
005114        if( db->flags&SQLITE_VdbeTrace ){
005115          printf("... fall through after %d steps\n", pOp->p1);
005116        }       
005117  #endif
005118        VdbeBranchTaken(0,3);
005119        break;
005120      }
005121      nStep--;
005122      pC->cacheStatus = CACHE_STALE;
005123      rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
005124      if( rc ){
005125        if( rc==SQLITE_DONE ){
005126          rc = SQLITE_OK;
005127          goto seekscan_search_fail;
005128        }else{
005129          goto abort_due_to_error;
005130        }
005131      }
005132    }
005133   
005134    break;
005135  }
005136  
005137  
005138  /* Opcode: SeekHit P1 P2 P3 * *
005139  ** Synopsis: set P2<=seekHit<=P3
005140  **
005141  ** Increase or decrease the seekHit value for cursor P1, if necessary,
005142  ** so that it is no less than P2 and no greater than P3.
005143  **
005144  ** The seekHit integer represents the maximum of terms in an index for which
005145  ** there is known to be at least one match.  If the seekHit value is smaller
005146  ** than the total number of equality terms in an index lookup, then the
005147  ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
005148  ** early, thus saving work.  This is part of the IN-early-out optimization.
005149  **
005150  ** P1 must be a valid b-tree cursor.
005151  */
005152  case OP_SeekHit: {           /* ncycle */
005153    VdbeCursor *pC;
005154    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005155    pC = p->apCsr[pOp->p1];
005156    assert( pC!=0 );
005157    assert( pOp->p3>=pOp->p2 );
005158    if( pC->seekHit<pOp->p2 ){
005159  #ifdef SQLITE_DEBUG
005160      if( db->flags&SQLITE_VdbeTrace ){
005161        printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
005162      }       
005163  #endif
005164      pC->seekHit = pOp->p2;
005165    }else if( pC->seekHit>pOp->p3 ){
005166  #ifdef SQLITE_DEBUG
005167      if( db->flags&SQLITE_VdbeTrace ){
005168        printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
005169      }       
005170  #endif
005171      pC->seekHit = pOp->p3;
005172    }
005173    break;
005174  }
005175  
005176  /* Opcode: IfNotOpen P1 P2 * * *
005177  ** Synopsis: if( !csr[P1] ) goto P2
005178  **
005179  ** If cursor P1 is not open or if P1 is set to a NULL row using the
005180  ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
005181  */
005182  case OP_IfNotOpen: {        /* jump */
005183    VdbeCursor *pCur;
005184  
005185    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005186    pCur = p->apCsr[pOp->p1];
005187    VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
005188    if( pCur==0 || pCur->nullRow ){
005189      goto jump_to_p2_and_check_for_interrupt;
005190    }
005191    break;
005192  }
005193  
005194  /* Opcode: Found P1 P2 P3 P4 *
005195  ** Synopsis: key=r[P3@P4]
005196  **
005197  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005198  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005199  ** record.
005200  **
005201  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005202  ** is a prefix of any entry in P1 then a jump is made to P2 and
005203  ** P1 is left pointing at the matching entry.
005204  **
005205  ** This operation leaves the cursor in a state where it can be
005206  ** advanced in the forward direction.  The Next instruction will work,
005207  ** but not the Prev instruction.
005208  **
005209  ** See also: NotFound, NoConflict, NotExists. SeekGe
005210  */
005211  /* Opcode: NotFound P1 P2 P3 P4 *
005212  ** Synopsis: key=r[P3@P4]
005213  **
005214  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005215  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005216  ** record.
005217  **
005218  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005219  ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
005220  ** does contain an entry whose prefix matches the P3/P4 record then control
005221  ** falls through to the next instruction and P1 is left pointing at the
005222  ** matching entry.
005223  **
005224  ** This operation leaves the cursor in a state where it cannot be
005225  ** advanced in either direction.  In other words, the Next and Prev
005226  ** opcodes do not work after this operation.
005227  **
005228  ** See also: Found, NotExists, NoConflict, IfNoHope
005229  */
005230  /* Opcode: IfNoHope P1 P2 P3 P4 *
005231  ** Synopsis: key=r[P3@P4]
005232  **
005233  ** Register P3 is the first of P4 registers that form an unpacked
005234  ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
005235  ** In other words, the operands to this opcode are the same as the
005236  ** operands to OP_NotFound and OP_IdxGT.
005237  **
005238  ** This opcode is an optimization attempt only.  If this opcode always
005239  ** falls through, the correct answer is still obtained, but extra work
005240  ** is performed.
005241  **
005242  ** A value of N in the seekHit flag of cursor P1 means that there exists
005243  ** a key P3:N that will match some record in the index.  We want to know
005244  ** if it is possible for a record P3:P4 to match some record in the
005245  ** index.  If it is not possible, we can skip some work.  So if seekHit
005246  ** is less than P4, attempt to find out if a match is possible by running
005247  ** OP_NotFound.
005248  **
005249  ** This opcode is used in IN clause processing for a multi-column key.
005250  ** If an IN clause is attached to an element of the key other than the
005251  ** left-most element, and if there are no matches on the most recent
005252  ** seek over the whole key, then it might be that one of the key element
005253  ** to the left is prohibiting a match, and hence there is "no hope" of
005254  ** any match regardless of how many IN clause elements are checked.
005255  ** In such a case, we abandon the IN clause search early, using this
005256  ** opcode.  The opcode name comes from the fact that the
005257  ** jump is taken if there is "no hope" of achieving a match.
005258  **
005259  ** See also: NotFound, SeekHit
005260  */
005261  /* Opcode: NoConflict P1 P2 P3 P4 *
005262  ** Synopsis: key=r[P3@P4]
005263  **
005264  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005265  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005266  ** record.
005267  **
005268  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005269  ** contains any NULL value, jump immediately to P2.  If all terms of the
005270  ** record are not-NULL then a check is done to determine if any row in the
005271  ** P1 index btree has a matching key prefix.  If there are no matches, jump
005272  ** immediately to P2.  If there is a match, fall through and leave the P1
005273  ** cursor pointing to the matching row.
005274  **
005275  ** This opcode is similar to OP_NotFound with the exceptions that the
005276  ** branch is always taken if any part of the search key input is NULL.
005277  **
005278  ** This operation leaves the cursor in a state where it cannot be
005279  ** advanced in either direction.  In other words, the Next and Prev
005280  ** opcodes do not work after this operation.
005281  **
005282  ** See also: NotFound, Found, NotExists
005283  */
005284  case OP_IfNoHope: {     /* jump, in3, ncycle */
005285    VdbeCursor *pC;
005286    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005287    pC = p->apCsr[pOp->p1];
005288    assert( pC!=0 );
005289  #ifdef SQLITE_DEBUG
005290    if( db->flags&SQLITE_VdbeTrace ){
005291      printf("seekHit is %d\n", pC->seekHit);
005292    }       
005293  #endif
005294    if( pC->seekHit>=pOp->p4.i ) break;
005295    /* Fall through into OP_NotFound */
005296    /* no break */ deliberate_fall_through
005297  }
005298  case OP_NoConflict:     /* jump, in3, ncycle */
005299  case OP_NotFound:       /* jump, in3, ncycle */
005300  case OP_Found: {        /* jump, in3, ncycle */
005301    int alreadyExists;
005302    int ii;
005303    VdbeCursor *pC;
005304    UnpackedRecord *pIdxKey;
005305    UnpackedRecord r;
005306  
005307  #ifdef SQLITE_TEST
005308    if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
005309  #endif
005310  
005311    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005312    assert( pOp->p4type==P4_INT32 );
005313    pC = p->apCsr[pOp->p1];
005314    assert( pC!=0 );
005315  #ifdef SQLITE_DEBUG
005316    pC->seekOp = pOp->opcode;
005317  #endif
005318    r.aMem = &aMem[pOp->p3];
005319    assert( pC->eCurType==CURTYPE_BTREE );
005320    assert( pC->uc.pCursor!=0 );
005321    assert( pC->isTable==0 );
005322    r.nField = (u16)pOp->p4.i;
005323    if( r.nField>0 ){
005324      /* Key values in an array of registers */
005325      r.pKeyInfo = pC->pKeyInfo;
005326      r.default_rc = 0;
005327  #ifdef SQLITE_DEBUG
005328      (void)sqlite3FaultSim(50);  /* For use by --counter in TH3 */
005329      for(ii=0; ii<r.nField; ii++){
005330        assert( memIsValid(&r.aMem[ii]) );
005331        assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
005332        if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
005333      }
005334  #endif
005335      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
005336    }else{
005337      /* Composite key generated by OP_MakeRecord */
005338      assert( r.aMem->flags & MEM_Blob );
005339      assert( pOp->opcode!=OP_NoConflict );
005340      rc = ExpandBlob(r.aMem);
005341      assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
005342      if( rc ) goto no_mem;
005343      pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
005344      if( pIdxKey==0 ) goto no_mem;
005345      sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
005346      pIdxKey->default_rc = 0;
005347      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
005348      sqlite3DbFreeNN(db, pIdxKey);
005349    }
005350    if( rc!=SQLITE_OK ){
005351      goto abort_due_to_error;
005352    }
005353    alreadyExists = (pC->seekResult==0);
005354    pC->nullRow = 1-alreadyExists;
005355    pC->deferredMoveto = 0;
005356    pC->cacheStatus = CACHE_STALE;
005357    if( pOp->opcode==OP_Found ){
005358      VdbeBranchTaken(alreadyExists!=0,2);
005359      if( alreadyExists ) goto jump_to_p2;
005360    }else{
005361      if( !alreadyExists ){
005362        VdbeBranchTaken(1,2);
005363        goto jump_to_p2;
005364      }
005365      if( pOp->opcode==OP_NoConflict ){
005366        /* For the OP_NoConflict opcode, take the jump if any of the
005367        ** input fields are NULL, since any key with a NULL will not
005368        ** conflict */
005369        for(ii=0; ii<r.nField; ii++){
005370          if( r.aMem[ii].flags & MEM_Null ){
005371            VdbeBranchTaken(1,2);
005372            goto jump_to_p2;
005373          }
005374        }
005375      }
005376      VdbeBranchTaken(0,2);
005377      if( pOp->opcode==OP_IfNoHope ){
005378        pC->seekHit = pOp->p4.i;
005379      }
005380    }
005381    break;
005382  }
005383  
005384  /* Opcode: SeekRowid P1 P2 P3 * *
005385  ** Synopsis: intkey=r[P3]
005386  **
005387  ** P1 is the index of a cursor open on an SQL table btree (with integer
005388  ** keys).  If register P3 does not contain an integer or if P1 does not
005389  ** contain a record with rowid P3 then jump immediately to P2. 
005390  ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
005391  ** a record with rowid P3 then
005392  ** leave the cursor pointing at that record and fall through to the next
005393  ** instruction.
005394  **
005395  ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
005396  ** the P3 register must be guaranteed to contain an integer value.  With this
005397  ** opcode, register P3 might not contain an integer.
005398  **
005399  ** The OP_NotFound opcode performs the same operation on index btrees
005400  ** (with arbitrary multi-value keys).
005401  **
005402  ** This opcode leaves the cursor in a state where it cannot be advanced
005403  ** in either direction.  In other words, the Next and Prev opcodes will
005404  ** not work following this opcode.
005405  **
005406  ** See also: Found, NotFound, NoConflict, SeekRowid
005407  */
005408  /* Opcode: NotExists P1 P2 P3 * *
005409  ** Synopsis: intkey=r[P3]
005410  **
005411  ** P1 is the index of a cursor open on an SQL table btree (with integer
005412  ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
005413  ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
005414  ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
005415  ** leave the cursor pointing at that record and fall through to the next
005416  ** instruction.
005417  **
005418  ** The OP_SeekRowid opcode performs the same operation but also allows the
005419  ** P3 register to contain a non-integer value, in which case the jump is
005420  ** always taken.  This opcode requires that P3 always contain an integer.
005421  **
005422  ** The OP_NotFound opcode performs the same operation on index btrees
005423  ** (with arbitrary multi-value keys).
005424  **
005425  ** This opcode leaves the cursor in a state where it cannot be advanced
005426  ** in either direction.  In other words, the Next and Prev opcodes will
005427  ** not work following this opcode.
005428  **
005429  ** See also: Found, NotFound, NoConflict, SeekRowid
005430  */
005431  case OP_SeekRowid: {        /* jump0, in3, ncycle */
005432    VdbeCursor *pC;
005433    BtCursor *pCrsr;
005434    int res;
005435    u64 iKey;
005436  
005437    pIn3 = &aMem[pOp->p3];
005438    testcase( pIn3->flags & MEM_Int );
005439    testcase( pIn3->flags & MEM_IntReal );
005440    testcase( pIn3->flags & MEM_Real );
005441    testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
005442    if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
005443      /* If pIn3->u.i does not contain an integer, compute iKey as the
005444      ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
005445      ** into an integer without loss of information.  Take care to avoid
005446      ** changing the datatype of pIn3, however, as it is used by other
005447      ** parts of the prepared statement. */
005448      Mem x = pIn3[0];
005449      applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
005450      if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
005451      iKey = x.u.i;
005452      goto notExistsWithKey;
005453    }
005454    /* Fall through into OP_NotExists */
005455    /* no break */ deliberate_fall_through
005456  case OP_NotExists:          /* jump, in3, ncycle */
005457    pIn3 = &aMem[pOp->p3];
005458    assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
005459    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005460    iKey = pIn3->u.i;
005461  notExistsWithKey:
005462    pC = p->apCsr[pOp->p1];
005463    assert( pC!=0 );
005464  #ifdef SQLITE_DEBUG
005465    if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
005466  #endif
005467    assert( pC->isTable );
005468    assert( pC->eCurType==CURTYPE_BTREE );
005469    pCrsr = pC->uc.pCursor;
005470    assert( pCrsr!=0 );
005471    res = 0;
005472    rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
005473    assert( rc==SQLITE_OK || res==0 );
005474    pC->movetoTarget = iKey;  /* Used by OP_Delete */
005475    pC->nullRow = 0;
005476    pC->cacheStatus = CACHE_STALE;
005477    pC->deferredMoveto = 0;
005478    VdbeBranchTaken(res!=0,2);
005479    pC->seekResult = res;
005480    if( res!=0 ){
005481      assert( rc==SQLITE_OK );
005482      if( pOp->p2==0 ){
005483        rc = SQLITE_CORRUPT_BKPT;
005484      }else{
005485        goto jump_to_p2;
005486      }
005487    }
005488    if( rc ) goto abort_due_to_error;
005489    break;
005490  }
005491  
005492  /* Opcode: Sequence P1 P2 * * *
005493  ** Synopsis: r[P2]=cursor[P1].ctr++
005494  **
005495  ** Find the next available sequence number for cursor P1.
005496  ** Write the sequence number into register P2.
005497  ** The sequence number on the cursor is incremented after this
005498  ** instruction. 
005499  */
005500  case OP_Sequence: {           /* out2 */
005501    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005502    assert( p->apCsr[pOp->p1]!=0 );
005503    assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
005504    pOut = out2Prerelease(p, pOp);
005505    pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
005506    break;
005507  }
005508  
005509  
005510  /* Opcode: NewRowid P1 P2 P3 * *
005511  ** Synopsis: r[P2]=rowid
005512  **
005513  ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
005514  ** The record number is not previously used as a key in the database
005515  ** table that cursor P1 points to.  The new record number is written
005516  ** written to register P2.
005517  **
005518  ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
005519  ** the largest previously generated record number. No new record numbers are
005520  ** allowed to be less than this value. When this value reaches its maximum,
005521  ** an SQLITE_FULL error is generated. The P3 register is updated with the '
005522  ** generated record number. This P3 mechanism is used to help implement the
005523  ** AUTOINCREMENT feature.
005524  */
005525  case OP_NewRowid: {           /* out2 */
005526    i64 v;                 /* The new rowid */
005527    VdbeCursor *pC;        /* Cursor of table to get the new rowid */
005528    int res;               /* Result of an sqlite3BtreeLast() */
005529    int cnt;               /* Counter to limit the number of searches */
005530  #ifndef SQLITE_OMIT_AUTOINCREMENT
005531    Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
005532    VdbeFrame *pFrame;     /* Root frame of VDBE */
005533  #endif
005534  
005535    v = 0;
005536    res = 0;
005537    pOut = out2Prerelease(p, pOp);
005538    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005539    pC = p->apCsr[pOp->p1];
005540    assert( pC!=0 );
005541    assert( pC->isTable );
005542    assert( pC->eCurType==CURTYPE_BTREE );
005543    assert( pC->uc.pCursor!=0 );
005544    {
005545      /* The next rowid or record number (different terms for the same
005546      ** thing) is obtained in a two-step algorithm.
005547      **
005548      ** First we attempt to find the largest existing rowid and add one
005549      ** to that.  But if the largest existing rowid is already the maximum
005550      ** positive integer, we have to fall through to the second
005551      ** probabilistic algorithm
005552      **
005553      ** The second algorithm is to select a rowid at random and see if
005554      ** it already exists in the table.  If it does not exist, we have
005555      ** succeeded.  If the random rowid does exist, we select a new one
005556      ** and try again, up to 100 times.
005557      */
005558      assert( pC->isTable );
005559  
005560  #ifdef SQLITE_32BIT_ROWID
005561  #   define MAX_ROWID 0x7fffffff
005562  #else
005563      /* Some compilers complain about constants of the form 0x7fffffffffffffff.
005564      ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
005565      ** to provide the constant while making all compilers happy.
005566      */
005567  #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
005568  #endif
005569  
005570      if( !pC->useRandomRowid ){
005571        rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
005572        if( rc!=SQLITE_OK ){
005573          goto abort_due_to_error;
005574        }
005575        if( res ){
005576          v = 1;   /* IMP: R-61914-48074 */
005577        }else{
005578          assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
005579          v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005580          if( v>=MAX_ROWID ){
005581            pC->useRandomRowid = 1;
005582          }else{
005583            v++;   /* IMP: R-29538-34987 */
005584          }
005585        }
005586      }
005587  
005588  #ifndef SQLITE_OMIT_AUTOINCREMENT
005589      if( pOp->p3 ){
005590        /* Assert that P3 is a valid memory cell. */
005591        assert( pOp->p3>0 );
005592        if( p->pFrame ){
005593          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
005594          /* Assert that P3 is a valid memory cell. */
005595          assert( pOp->p3<=pFrame->nMem );
005596          pMem = &pFrame->aMem[pOp->p3];
005597        }else{
005598          /* Assert that P3 is a valid memory cell. */
005599          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
005600          pMem = &aMem[pOp->p3];
005601          memAboutToChange(p, pMem);
005602        }
005603        assert( memIsValid(pMem) );
005604  
005605        REGISTER_TRACE(pOp->p3, pMem);
005606        sqlite3VdbeMemIntegerify(pMem);
005607        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
005608        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
005609          rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
005610          goto abort_due_to_error;
005611        }
005612        if( v<pMem->u.i+1 ){
005613          v = pMem->u.i + 1;
005614        }
005615        pMem->u.i = v;
005616      }
005617  #endif
005618      if( pC->useRandomRowid ){
005619        /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
005620        ** largest possible integer (9223372036854775807) then the database
005621        ** engine starts picking positive candidate ROWIDs at random until
005622        ** it finds one that is not previously used. */
005623        assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
005624                               ** an AUTOINCREMENT table. */
005625        cnt = 0;
005626        do{
005627          sqlite3_randomness(sizeof(v), &v);
005628          v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
005629        }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
005630                                                   0, &res))==SQLITE_OK)
005631              && (res==0)
005632              && (++cnt<100));
005633        if( rc ) goto abort_due_to_error;
005634        if( res==0 ){
005635          rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
005636          goto abort_due_to_error;
005637        }
005638        assert( v>0 );  /* EV: R-40812-03570 */
005639      }
005640      pC->deferredMoveto = 0;
005641      pC->cacheStatus = CACHE_STALE;
005642    }
005643    pOut->u.i = v;
005644    break;
005645  }
005646  
005647  /* Opcode: Insert P1 P2 P3 P4 P5
005648  ** Synopsis: intkey=r[P3] data=r[P2]
005649  **
005650  ** Write an entry into the table of cursor P1.  A new entry is
005651  ** created if it doesn't already exist or the data for an existing
005652  ** entry is overwritten.  The data is the value MEM_Blob stored in register
005653  ** number P2. The key is stored in register P3. The key must
005654  ** be a MEM_Int.
005655  **
005656  ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
005657  ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
005658  ** then rowid is stored for subsequent return by the
005659  ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
005660  **
005661  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
005662  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
005663  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
005664  ** seeks on the cursor or if the most recent seek used a key equal to P3.
005665  **
005666  ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
005667  ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
005668  ** is part of an INSERT operation.  The difference is only important to
005669  ** the update hook.
005670  **
005671  ** Parameter P4 may point to a Table structure, or may be NULL. If it is
005672  ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
005673  ** following a successful insert.
005674  **
005675  ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
005676  ** allocated, then ownership of P2 is transferred to the pseudo-cursor
005677  ** and register P2 becomes ephemeral.  If the cursor is changed, the
005678  ** value of register P2 will then change.  Make sure this does not
005679  ** cause any problems.)
005680  **
005681  ** This instruction only works on tables.  The equivalent instruction
005682  ** for indices is OP_IdxInsert.
005683  */
005684  case OP_Insert: {
005685    Mem *pData;       /* MEM cell holding data for the record to be inserted */
005686    Mem *pKey;        /* MEM cell holding key  for the record */
005687    VdbeCursor *pC;   /* Cursor to table into which insert is written */
005688    int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
005689    const char *zDb;  /* database name - used by the update hook */
005690    Table *pTab;      /* Table structure - used by update and pre-update hooks */
005691    BtreePayload x;   /* Payload to be inserted */
005692  
005693    pData = &aMem[pOp->p2];
005694    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005695    assert( memIsValid(pData) );
005696    pC = p->apCsr[pOp->p1];
005697    assert( pC!=0 );
005698    assert( pC->eCurType==CURTYPE_BTREE );
005699    assert( pC->deferredMoveto==0 );
005700    assert( pC->uc.pCursor!=0 );
005701    assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
005702    assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
005703    REGISTER_TRACE(pOp->p2, pData);
005704    sqlite3VdbeIncrWriteCounter(p, pC);
005705  
005706    pKey = &aMem[pOp->p3];
005707    assert( pKey->flags & MEM_Int );
005708    assert( memIsValid(pKey) );
005709    REGISTER_TRACE(pOp->p3, pKey);
005710    x.nKey = pKey->u.i;
005711  
005712    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
005713      assert( pC->iDb>=0 );
005714      zDb = db->aDb[pC->iDb].zDbSName;
005715      pTab = pOp->p4.pTab;
005716      assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
005717    }else{
005718      pTab = 0;
005719      zDb = 0;
005720    }
005721  
005722  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
005723    /* Invoke the pre-update hook, if any */
005724    if( pTab ){
005725      if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
005726        sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
005727      }
005728      if( db->xUpdateCallback==0 || pTab->aCol==0 ){
005729        /* Prevent post-update hook from running in cases when it should not */
005730        pTab = 0;
005731      }
005732    }
005733    if( pOp->p5 & OPFLAG_ISNOOP ) break;
005734  #endif
005735  
005736    assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
005737    if( pOp->p5 & OPFLAG_NCHANGE ){
005738      p->nChange++;
005739      if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
005740    }
005741    assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
005742    x.pData = pData->z;
005743    x.nData = pData->n;
005744    seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
005745    if( pData->flags & MEM_Zero ){
005746      x.nZero = pData->u.nZero;
005747    }else{
005748      x.nZero = 0;
005749    }
005750    x.pKey = 0;
005751    assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
005752    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
005753        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
005754        seekResult
005755    );
005756    pC->deferredMoveto = 0;
005757    pC->cacheStatus = CACHE_STALE;
005758    colCacheCtr++;
005759  
005760    /* Invoke the update-hook if required. */
005761    if( rc ) goto abort_due_to_error;
005762    if( pTab ){
005763      assert( db->xUpdateCallback!=0 );
005764      assert( pTab->aCol!=0 );
005765      db->xUpdateCallback(db->pUpdateArg,
005766             (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
005767             zDb, pTab->zName, x.nKey);
005768    }
005769    break;
005770  }
005771  
005772  /* Opcode: RowCell P1 P2 P3 * *
005773  **
005774  ** P1 and P2 are both open cursors. Both must be opened on the same type
005775  ** of table - intkey or index. This opcode is used as part of copying
005776  ** the current row from P2 into P1. If the cursors are opened on intkey
005777  ** tables, register P3 contains the rowid to use with the new record in
005778  ** P1. If they are opened on index tables, P3 is not used.
005779  **
005780  ** This opcode must be followed by either an Insert or InsertIdx opcode
005781  ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
005782  */
005783  case OP_RowCell: {
005784    VdbeCursor *pDest;              /* Cursor to write to */
005785    VdbeCursor *pSrc;               /* Cursor to read from */
005786    i64 iKey;                       /* Rowid value to insert with */
005787    assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
005788    assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
005789    assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
005790    assert( pOp[1].p5 & OPFLAG_PREFORMAT );
005791    pDest = p->apCsr[pOp->p1];
005792    pSrc = p->apCsr[pOp->p2];
005793    iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
005794    rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
005795    if( rc!=SQLITE_OK ) goto abort_due_to_error;
005796    break;
005797  };
005798  
005799  /* Opcode: Delete P1 P2 P3 P4 P5
005800  **
005801  ** Delete the record at which the P1 cursor is currently pointing.
005802  **
005803  ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
005804  ** the cursor will be left pointing at  either the next or the previous
005805  ** record in the table. If it is left pointing at the next record, then
005806  ** the next Next instruction will be a no-op. As a result, in this case
005807  ** it is ok to delete a record from within a Next loop. If
005808  ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
005809  ** left in an undefined state.
005810  **
005811  ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
005812  ** delete is one of several associated with deleting a table row and
005813  ** all its associated index entries.  Exactly one of those deletes is
005814  ** the "primary" delete.  The others are all on OPFLAG_FORDELETE
005815  ** cursors or else are marked with the AUXDELETE flag.
005816  **
005817  ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
005818  ** the row change count is incremented (otherwise not).
005819  **
005820  ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
005821  ** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
005822  ** This happens when the OP_Delete is to be shortly followed by an OP_Insert
005823  ** with the same key, causing the btree entry to be overwritten.
005824  **
005825  ** P1 must not be pseudo-table.  It has to be a real table with
005826  ** multiple rows.
005827  **
005828  ** If P4 is not NULL then it points to a Table object. In this case either
005829  ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
005830  ** have been positioned using OP_NotFound prior to invoking this opcode in
005831  ** this case. Specifically, if one is configured, the pre-update hook is
005832  ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
005833  ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
005834  **
005835  ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
005836  ** of the memory cell that contains the value that the rowid of the row will
005837  ** be set to by the update.
005838  */
005839  case OP_Delete: {
005840    VdbeCursor *pC;
005841    const char *zDb;
005842    Table *pTab;
005843    int opflags;
005844  
005845    opflags = pOp->p2;
005846    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005847    pC = p->apCsr[pOp->p1];
005848    assert( pC!=0 );
005849    assert( pC->eCurType==CURTYPE_BTREE );
005850    assert( pC->uc.pCursor!=0 );
005851    assert( pC->deferredMoveto==0 );
005852    sqlite3VdbeIncrWriteCounter(p, pC);
005853  
005854  #ifdef SQLITE_DEBUG
005855    if( pOp->p4type==P4_TABLE
005856     && HasRowid(pOp->p4.pTab)
005857     && pOp->p5==0
005858     && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
005859    ){
005860      /* If p5 is zero, the seek operation that positioned the cursor prior to
005861      ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
005862      ** the row that is being deleted */
005863      i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005864      assert( CORRUPT_DB || pC->movetoTarget==iKey );
005865    }
005866  #endif
005867  
005868    /* If the update-hook or pre-update-hook will be invoked, set zDb to
005869    ** the name of the db to pass as to it. Also set local pTab to a copy
005870    ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
005871    ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
005872    ** VdbeCursor.movetoTarget to the current rowid.  */
005873    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
005874      assert( pC->iDb>=0 );
005875      assert( pOp->p4.pTab!=0 );
005876      zDb = db->aDb[pC->iDb].zDbSName;
005877      pTab = pOp->p4.pTab;
005878      if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
005879        pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005880      }
005881    }else{
005882      zDb = 0;
005883      pTab = 0;
005884    }
005885  
005886  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
005887    /* Invoke the pre-update-hook if required. */
005888    assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
005889    if( db->xPreUpdateCallback && pTab ){
005890      assert( !(opflags & OPFLAG_ISUPDATE)
005891           || HasRowid(pTab)==0
005892           || (aMem[pOp->p3].flags & MEM_Int)
005893      );
005894      sqlite3VdbePreUpdateHook(p, pC,
005895          (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
005896          zDb, pTab, pC->movetoTarget,
005897          pOp->p3, -1
005898      );
005899    }
005900    if( opflags & OPFLAG_ISNOOP ) break;
005901  #endif
005902  
005903    /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
005904    assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
005905    assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
005906    assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
005907  
005908  #ifdef SQLITE_DEBUG
005909    if( p->pFrame==0 ){
005910      if( pC->isEphemeral==0
005911          && (pOp->p5 & OPFLAG_AUXDELETE)==0
005912          && (pC->wrFlag & OPFLAG_FORDELETE)==0
005913        ){
005914        nExtraDelete++;
005915      }
005916      if( pOp->p2 & OPFLAG_NCHANGE ){
005917        nExtraDelete--;
005918      }
005919    }
005920  #endif
005921  
005922    rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
005923    pC->cacheStatus = CACHE_STALE;
005924    colCacheCtr++;
005925    pC->seekResult = 0;
005926    if( rc ) goto abort_due_to_error;
005927  
005928    /* Invoke the update-hook if required. */
005929    if( opflags & OPFLAG_NCHANGE ){
005930      p->nChange++;
005931      if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
005932        db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
005933            pC->movetoTarget);
005934        assert( pC->iDb>=0 );
005935      }
005936    }
005937  
005938    break;
005939  }
005940  /* Opcode: ResetCount * * * * *
005941  **
005942  ** The value of the change counter is copied to the database handle
005943  ** change counter (returned by subsequent calls to sqlite3_changes()).
005944  ** Then the VMs internal change counter resets to 0.
005945  ** This is used by trigger programs.
005946  */
005947  case OP_ResetCount: {
005948    sqlite3VdbeSetChanges(db, p->nChange);
005949    p->nChange = 0;
005950    break;
005951  }
005952  
005953  /* Opcode: SorterCompare P1 P2 P3 P4
005954  ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
005955  **
005956  ** P1 is a sorter cursor. This instruction compares a prefix of the
005957  ** record blob in register P3 against a prefix of the entry that
005958  ** the sorter cursor currently points to.  Only the first P4 fields
005959  ** of r[P3] and the sorter record are compared.
005960  **
005961  ** If either P3 or the sorter contains a NULL in one of their significant
005962  ** fields (not counting the P4 fields at the end which are ignored) then
005963  ** the comparison is assumed to be equal.
005964  **
005965  ** Fall through to next instruction if the two records compare equal to
005966  ** each other.  Jump to P2 if they are different.
005967  */
005968  case OP_SorterCompare: {
005969    VdbeCursor *pC;
005970    int res;
005971    int nKeyCol;
005972  
005973    pC = p->apCsr[pOp->p1];
005974    assert( isSorter(pC) );
005975    assert( pOp->p4type==P4_INT32 );
005976    pIn3 = &aMem[pOp->p3];
005977    nKeyCol = pOp->p4.i;
005978    res = 0;
005979    rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
005980    VdbeBranchTaken(res!=0,2);
005981    if( rc ) goto abort_due_to_error;
005982    if( res ) goto jump_to_p2;
005983    break;
005984  };
005985  
005986  /* Opcode: SorterData P1 P2 P3 * *
005987  ** Synopsis: r[P2]=data
005988  **
005989  ** Write into register P2 the current sorter data for sorter cursor P1.
005990  ** Then clear the column header cache on cursor P3.
005991  **
005992  ** This opcode is normally used to move a record out of the sorter and into
005993  ** a register that is the source for a pseudo-table cursor created using
005994  ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
005995  ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
005996  ** us from having to issue a separate NullRow instruction to clear that cache.
005997  */
005998  case OP_SorterData: {       /* ncycle */
005999    VdbeCursor *pC;
006000  
006001    pOut = &aMem[pOp->p2];
006002    pC = p->apCsr[pOp->p1];
006003    assert( isSorter(pC) );
006004    rc = sqlite3VdbeSorterRowkey(pC, pOut);
006005    assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
006006    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006007    if( rc ) goto abort_due_to_error;
006008    p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
006009    break;
006010  }
006011  
006012  /* Opcode: RowData P1 P2 P3 * *
006013  ** Synopsis: r[P2]=data
006014  **
006015  ** Write into register P2 the complete row content for the row at
006016  ** which cursor P1 is currently pointing.
006017  ** There is no interpretation of the data. 
006018  ** It is just copied onto the P2 register exactly as
006019  ** it is found in the database file.
006020  **
006021  ** If cursor P1 is an index, then the content is the key of the row.
006022  ** If cursor P2 is a table, then the content extracted is the data.
006023  **
006024  ** If the P1 cursor must be pointing to a valid row (not a NULL row)
006025  ** of a real table, not a pseudo-table.
006026  **
006027  ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
006028  ** into the database page.  That means that the content of the output
006029  ** register will be invalidated as soon as the cursor moves - including
006030  ** moves caused by other cursors that "save" the current cursors
006031  ** position in order that they can write to the same table.  If P3==0
006032  ** then a copy of the data is made into memory.  P3!=0 is faster, but
006033  ** P3==0 is safer.
006034  **
006035  ** If P3!=0 then the content of the P2 register is unsuitable for use
006036  ** in OP_Result and any OP_Result will invalidate the P2 register content.
006037  ** The P2 register content is invalidated by opcodes like OP_Function or
006038  ** by any use of another cursor pointing to the same table.
006039  */
006040  case OP_RowData: {
006041    VdbeCursor *pC;
006042    BtCursor *pCrsr;
006043    u32 n;
006044  
006045    pOut = out2Prerelease(p, pOp);
006046  
006047    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006048    pC = p->apCsr[pOp->p1];
006049    assert( pC!=0 );
006050    assert( pC->eCurType==CURTYPE_BTREE );
006051    assert( isSorter(pC)==0 );
006052    assert( pC->nullRow==0 );
006053    assert( pC->uc.pCursor!=0 );
006054    pCrsr = pC->uc.pCursor;
006055  
006056    /* The OP_RowData opcodes always follow OP_NotExists or
006057    ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
006058    ** that might invalidate the cursor.
006059    ** If this where not the case, on of the following assert()s
006060    ** would fail.  Should this ever change (because of changes in the code
006061    ** generator) then the fix would be to insert a call to
006062    ** sqlite3VdbeCursorMoveto().
006063    */
006064    assert( pC->deferredMoveto==0 );
006065    assert( sqlite3BtreeCursorIsValid(pCrsr) );
006066  
006067    n = sqlite3BtreePayloadSize(pCrsr);
006068    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
006069      goto too_big;
006070    }
006071    testcase( n==0 );
006072    rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
006073    if( rc ) goto abort_due_to_error;
006074    if( !pOp->p3 ) Deephemeralize(pOut);
006075    UPDATE_MAX_BLOBSIZE(pOut);
006076    REGISTER_TRACE(pOp->p2, pOut);
006077    break;
006078  }
006079  
006080  /* Opcode: Rowid P1 P2 * * *
006081  ** Synopsis: r[P2]=PX rowid of P1
006082  **
006083  ** Store in register P2 an integer which is the key of the table entry that
006084  ** P1 is currently point to.
006085  **
006086  ** P1 can be either an ordinary table or a virtual table.  There used to
006087  ** be a separate OP_VRowid opcode for use with virtual tables, but this
006088  ** one opcode now works for both table types.
006089  */
006090  case OP_Rowid: {                 /* out2, ncycle */
006091    VdbeCursor *pC;
006092    i64 v;
006093    sqlite3_vtab *pVtab;
006094    const sqlite3_module *pModule;
006095  
006096    pOut = out2Prerelease(p, pOp);
006097    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006098    pC = p->apCsr[pOp->p1];
006099    assert( pC!=0 );
006100    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
006101    if( pC->nullRow ){
006102      pOut->flags = MEM_Null;
006103      break;
006104    }else if( pC->deferredMoveto ){
006105      v = pC->movetoTarget;
006106  #ifndef SQLITE_OMIT_VIRTUALTABLE
006107    }else if( pC->eCurType==CURTYPE_VTAB ){
006108      assert( pC->uc.pVCur!=0 );
006109      pVtab = pC->uc.pVCur->pVtab;
006110      pModule = pVtab->pModule;
006111      assert( pModule->xRowid );
006112      rc = pModule->xRowid(pC->uc.pVCur, &v);
006113      sqlite3VtabImportErrmsg(p, pVtab);
006114      if( rc ) goto abort_due_to_error;
006115  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006116    }else{
006117      assert( pC->eCurType==CURTYPE_BTREE );
006118      assert( pC->uc.pCursor!=0 );
006119      rc = sqlite3VdbeCursorRestore(pC);
006120      if( rc ) goto abort_due_to_error;
006121      if( pC->nullRow ){
006122        pOut->flags = MEM_Null;
006123        break;
006124      }
006125      v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
006126    }
006127    pOut->u.i = v;
006128    break;
006129  }
006130  
006131  /* Opcode: NullRow P1 * * * *
006132  **
006133  ** Move the cursor P1 to a null row.  Any OP_Column operations
006134  ** that occur while the cursor is on the null row will always
006135  ** write a NULL.
006136  **
006137  ** If cursor P1 is not previously opened, open it now to a special
006138  ** pseudo-cursor that always returns NULL for every column.
006139  */
006140  case OP_NullRow: {
006141    VdbeCursor *pC;
006142  
006143    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006144    pC = p->apCsr[pOp->p1];
006145    if( pC==0 ){
006146      /* If the cursor is not already open, create a special kind of
006147      ** pseudo-cursor that always gives null rows. */
006148      pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
006149      if( pC==0 ) goto no_mem;
006150      pC->seekResult = 0;
006151      pC->isTable = 1;
006152      pC->noReuse = 1;
006153      pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
006154    }
006155    pC->nullRow = 1;
006156    pC->cacheStatus = CACHE_STALE;
006157    if( pC->eCurType==CURTYPE_BTREE ){
006158      assert( pC->uc.pCursor!=0 );
006159      sqlite3BtreeClearCursor(pC->uc.pCursor);
006160    }
006161  #ifdef SQLITE_DEBUG
006162    if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
006163  #endif
006164    break;
006165  }
006166  
006167  /* Opcode: SeekEnd P1 * * * *
006168  **
006169  ** Position cursor P1 at the end of the btree for the purpose of
006170  ** appending a new entry onto the btree.
006171  **
006172  ** It is assumed that the cursor is used only for appending and so
006173  ** if the cursor is valid, then the cursor must already be pointing
006174  ** at the end of the btree and so no changes are made to
006175  ** the cursor.
006176  */
006177  /* Opcode: Last P1 P2 * * *
006178  **
006179  ** The next use of the Rowid or Column or Prev instruction for P1
006180  ** will refer to the last entry in the database table or index.
006181  ** If the table or index is empty and P2>0, then jump immediately to P2.
006182  ** If P2 is 0 or if the table or index is not empty, fall through
006183  ** to the following instruction.
006184  **
006185  ** This opcode leaves the cursor configured to move in reverse order,
006186  ** from the end toward the beginning.  In other words, the cursor is
006187  ** configured to use Prev, not Next.
006188  */
006189  case OP_SeekEnd:             /* ncycle */
006190  case OP_Last: {              /* jump0, ncycle */
006191    VdbeCursor *pC;
006192    BtCursor *pCrsr;
006193    int res;
006194  
006195    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006196    pC = p->apCsr[pOp->p1];
006197    assert( pC!=0 );
006198    assert( pC->eCurType==CURTYPE_BTREE );
006199    pCrsr = pC->uc.pCursor;
006200    res = 0;
006201    assert( pCrsr!=0 );
006202  #ifdef SQLITE_DEBUG
006203    pC->seekOp = pOp->opcode;
006204  #endif
006205    if( pOp->opcode==OP_SeekEnd ){
006206      assert( pOp->p2==0 );
006207      pC->seekResult = -1;
006208      if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
006209        break;
006210      }
006211    }
006212    rc = sqlite3BtreeLast(pCrsr, &res);
006213    pC->nullRow = (u8)res;
006214    pC->deferredMoveto = 0;
006215    pC->cacheStatus = CACHE_STALE;
006216    if( rc ) goto abort_due_to_error;
006217    if( pOp->p2>0 ){
006218      VdbeBranchTaken(res!=0,2);
006219      if( res ) goto jump_to_p2;
006220    }
006221    break;
006222  }
006223  
006224  /* Opcode: IfSizeBetween P1 P2 P3 P4 *
006225  **
006226  ** Let N be the approximate number of rows in the table or index
006227  ** with cursor P1 and let X be 10*log2(N) if N is positive or -1
006228  ** if N is zero.
006229  **
006230  ** Jump to P2 if X is in between P3 and P4, inclusive.
006231  */
006232  case OP_IfSizeBetween: {        /* jump */
006233    VdbeCursor *pC;
006234    BtCursor *pCrsr;
006235    int res;
006236    i64 sz;
006237  
006238    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006239    assert( pOp->p4type==P4_INT32 );
006240    assert( pOp->p3>=-1 && pOp->p3<=640*2 );
006241    assert( pOp->p4.i>=-1 && pOp->p4.i<=640*2 );
006242    pC = p->apCsr[pOp->p1];
006243    assert( pC!=0 );
006244    pCrsr = pC->uc.pCursor;
006245    assert( pCrsr );
006246    rc = sqlite3BtreeFirst(pCrsr, &res);
006247    if( rc ) goto abort_due_to_error;
006248    if( res!=0 ){
006249      sz = -1;  /* -Infinity encoding */
006250    }else{
006251      sz = sqlite3BtreeRowCountEst(pCrsr);
006252      assert( sz>0 );
006253      sz = sqlite3LogEst((u64)sz);
006254    }
006255    res = sz>=pOp->p3 && sz<=pOp->p4.i;
006256    VdbeBranchTaken(res!=0,2);
006257    if( res ) goto jump_to_p2;
006258    break;
006259  }
006260  
006261  
006262  /* Opcode: SorterSort P1 P2 * * *
006263  **
006264  ** After all records have been inserted into the Sorter object
006265  ** identified by P1, invoke this opcode to actually do the sorting.
006266  ** Jump to P2 if there are no records to be sorted.
006267  **
006268  ** This opcode is an alias for OP_Sort and OP_Rewind that is used
006269  ** for Sorter objects.
006270  */
006271  /* Opcode: Sort P1 P2 * * *
006272  **
006273  ** This opcode does exactly the same thing as OP_Rewind except that
006274  ** it increments an undocumented global variable used for testing.
006275  **
006276  ** Sorting is accomplished by writing records into a sorting index,
006277  ** then rewinding that index and playing it back from beginning to
006278  ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
006279  ** rewinding so that the global variable will be incremented and
006280  ** regression tests can determine whether or not the optimizer is
006281  ** correctly optimizing out sorts.
006282  */
006283  case OP_SorterSort:    /* jump ncycle */
006284  case OP_Sort: {        /* jump ncycle */
006285  #ifdef SQLITE_TEST
006286    sqlite3_sort_count++;
006287    sqlite3_search_count--;
006288  #endif
006289    p->aCounter[SQLITE_STMTSTATUS_SORT]++;
006290    /* Fall through into OP_Rewind */
006291    /* no break */ deliberate_fall_through
006292  }
006293  /* Opcode: Rewind P1 P2 * * *
006294  **
006295  ** The next use of the Rowid or Column or Next instruction for P1
006296  ** will refer to the first entry in the database table or index.
006297  ** If the table or index is empty, jump immediately to P2.
006298  ** If the table or index is not empty, fall through to the following
006299  ** instruction.
006300  **
006301  ** If P2 is zero, that is an assertion that the P1 table is never
006302  ** empty and hence the jump will never be taken.
006303  **
006304  ** This opcode leaves the cursor configured to move in forward order,
006305  ** from the beginning toward the end.  In other words, the cursor is
006306  ** configured to use Next, not Prev.
006307  */
006308  case OP_Rewind: {        /* jump0, ncycle */
006309    VdbeCursor *pC;
006310    BtCursor *pCrsr;
006311    int res;
006312  
006313    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006314    assert( pOp->p5==0 );
006315    assert( pOp->p2>=0 && pOp->p2<p->nOp );
006316  
006317    pC = p->apCsr[pOp->p1];
006318    assert( pC!=0 );
006319    assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
006320    res = 1;
006321  #ifdef SQLITE_DEBUG
006322    pC->seekOp = OP_Rewind;
006323  #endif
006324    if( isSorter(pC) ){
006325      rc = sqlite3VdbeSorterRewind(pC, &res);
006326    }else{
006327      assert( pC->eCurType==CURTYPE_BTREE );
006328      pCrsr = pC->uc.pCursor;
006329      assert( pCrsr );
006330      rc = sqlite3BtreeFirst(pCrsr, &res);
006331      pC->deferredMoveto = 0;
006332      pC->cacheStatus = CACHE_STALE;
006333    }
006334    if( rc ) goto abort_due_to_error;
006335    pC->nullRow = (u8)res;
006336    if( pOp->p2>0 ){
006337      VdbeBranchTaken(res!=0,2);
006338      if( res ) goto jump_to_p2;
006339    }
006340    break;
006341  }
006342  
006343  /* Opcode: Next P1 P2 P3 * P5
006344  **
006345  ** Advance cursor P1 so that it points to the next key/data pair in its
006346  ** table or index.  If there are no more key/value pairs then fall through
006347  ** to the following instruction.  But if the cursor advance was successful,
006348  ** jump immediately to P2.
006349  **
006350  ** The Next opcode is only valid following an SeekGT, SeekGE, or
006351  ** OP_Rewind opcode used to position the cursor.  Next is not allowed
006352  ** to follow SeekLT, SeekLE, or OP_Last.
006353  **
006354  ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
006355  ** been opened prior to this opcode or the program will segfault.
006356  **
006357  ** The P3 value is a hint to the btree implementation. If P3==1, that
006358  ** means P1 is an SQL index and that this instruction could have been
006359  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
006360  ** always either 0 or 1.
006361  **
006362  ** If P5 is positive and the jump is taken, then event counter
006363  ** number P5-1 in the prepared statement is incremented.
006364  **
006365  ** See also: Prev
006366  */
006367  /* Opcode: Prev P1 P2 P3 * P5
006368  **
006369  ** Back up cursor P1 so that it points to the previous key/data pair in its
006370  ** table or index.  If there is no previous key/value pairs then fall through
006371  ** to the following instruction.  But if the cursor backup was successful,
006372  ** jump immediately to P2.
006373  **
006374  **
006375  ** The Prev opcode is only valid following an SeekLT, SeekLE, or
006376  ** OP_Last opcode used to position the cursor.  Prev is not allowed
006377  ** to follow SeekGT, SeekGE, or OP_Rewind.
006378  **
006379  ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
006380  ** not open then the behavior is undefined.
006381  **
006382  ** The P3 value is a hint to the btree implementation. If P3==1, that
006383  ** means P1 is an SQL index and that this instruction could have been
006384  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
006385  ** always either 0 or 1.
006386  **
006387  ** If P5 is positive and the jump is taken, then event counter
006388  ** number P5-1 in the prepared statement is incremented.
006389  */
006390  /* Opcode: SorterNext P1 P2 * * P5
006391  **
006392  ** This opcode works just like OP_Next except that P1 must be a
006393  ** sorter object for which the OP_SorterSort opcode has been
006394  ** invoked.  This opcode advances the cursor to the next sorted
006395  ** record, or jumps to P2 if there are no more sorted records.
006396  */
006397  case OP_SorterNext: {  /* jump */
006398    VdbeCursor *pC;
006399  
006400    pC = p->apCsr[pOp->p1];
006401    assert( isSorter(pC) );
006402    rc = sqlite3VdbeSorterNext(db, pC);
006403    goto next_tail;
006404  
006405  case OP_Prev:          /* jump, ncycle */
006406    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006407    assert( pOp->p5==0
006408         || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
006409         || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
006410    pC = p->apCsr[pOp->p1];
006411    assert( pC!=0 );
006412    assert( pC->deferredMoveto==0 );
006413    assert( pC->eCurType==CURTYPE_BTREE );
006414    assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
006415         || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
006416         || pC->seekOp==OP_NullRow);
006417    rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
006418    goto next_tail;
006419  
006420  case OP_Next:          /* jump, ncycle */
006421    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006422    assert( pOp->p5==0
006423         || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
006424         || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
006425    pC = p->apCsr[pOp->p1];
006426    assert( pC!=0 );
006427    assert( pC->deferredMoveto==0 );
006428    assert( pC->eCurType==CURTYPE_BTREE );
006429    assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
006430         || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
006431         || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
006432         || pC->seekOp==OP_IfNoHope);
006433    rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
006434  
006435  next_tail:
006436    pC->cacheStatus = CACHE_STALE;
006437    VdbeBranchTaken(rc==SQLITE_OK,2);
006438    if( rc==SQLITE_OK ){
006439      pC->nullRow = 0;
006440      p->aCounter[pOp->p5]++;
006441  #ifdef SQLITE_TEST
006442      sqlite3_search_count++;
006443  #endif
006444      goto jump_to_p2_and_check_for_interrupt;
006445    }
006446    if( rc!=SQLITE_DONE ) goto abort_due_to_error;
006447    rc = SQLITE_OK;
006448    pC->nullRow = 1;
006449    goto check_for_interrupt;
006450  }
006451  
006452  /* Opcode: IdxInsert P1 P2 P3 P4 P5
006453  ** Synopsis: key=r[P2]
006454  **
006455  ** Register P2 holds an SQL index key made using the
006456  ** MakeRecord instructions.  This opcode writes that key
006457  ** into the index P1.  Data for the entry is nil.
006458  **
006459  ** If P4 is not zero, then it is the number of values in the unpacked
006460  ** key of reg(P2).  In that case, P3 is the index of the first register
006461  ** for the unpacked key.  The availability of the unpacked key can sometimes
006462  ** be an optimization.
006463  **
006464  ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
006465  ** that this insert is likely to be an append.
006466  **
006467  ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
006468  ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
006469  ** then the change counter is unchanged.
006470  **
006471  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
006472  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
006473  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
006474  ** seeks on the cursor or if the most recent seek used a key equivalent
006475  ** to P2.
006476  **
006477  ** This instruction only works for indices.  The equivalent instruction
006478  ** for tables is OP_Insert.
006479  */
006480  case OP_IdxInsert: {        /* in2 */
006481    VdbeCursor *pC;
006482    BtreePayload x;
006483  
006484    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006485    pC = p->apCsr[pOp->p1];
006486    sqlite3VdbeIncrWriteCounter(p, pC);
006487    assert( pC!=0 );
006488    assert( !isSorter(pC) );
006489    pIn2 = &aMem[pOp->p2];
006490    assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
006491    if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
006492    assert( pC->eCurType==CURTYPE_BTREE );
006493    assert( pC->isTable==0 );
006494    rc = ExpandBlob(pIn2);
006495    if( rc ) goto abort_due_to_error;
006496    x.nKey = pIn2->n;
006497    x.pKey = pIn2->z;
006498    x.aMem = aMem + pOp->p3;
006499    x.nMem = (u16)pOp->p4.i;
006500    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
006501         (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
006502        ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
006503        );
006504    assert( pC->deferredMoveto==0 );
006505    pC->cacheStatus = CACHE_STALE;
006506    if( rc) goto abort_due_to_error;
006507    break;
006508  }
006509  
006510  /* Opcode: SorterInsert P1 P2 * * *
006511  ** Synopsis: key=r[P2]
006512  **
006513  ** Register P2 holds an SQL index key made using the
006514  ** MakeRecord instructions.  This opcode writes that key
006515  ** into the sorter P1.  Data for the entry is nil.
006516  */
006517  case OP_SorterInsert: {     /* in2 */
006518    VdbeCursor *pC;
006519  
006520    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006521    pC = p->apCsr[pOp->p1];
006522    sqlite3VdbeIncrWriteCounter(p, pC);
006523    assert( pC!=0 );
006524    assert( isSorter(pC) );
006525    pIn2 = &aMem[pOp->p2];
006526    assert( pIn2->flags & MEM_Blob );
006527    assert( pC->isTable==0 );
006528    rc = ExpandBlob(pIn2);
006529    if( rc ) goto abort_due_to_error;
006530    rc = sqlite3VdbeSorterWrite(pC, pIn2);
006531    if( rc) goto abort_due_to_error;
006532    break;
006533  }
006534  
006535  /* Opcode: IdxDelete P1 P2 P3 * P5
006536  ** Synopsis: key=r[P2@P3]
006537  **
006538  ** The content of P3 registers starting at register P2 form
006539  ** an unpacked index key. This opcode removes that entry from the
006540  ** index opened by cursor P1.
006541  **
006542  ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
006543  ** if no matching index entry is found.  This happens when running
006544  ** an UPDATE or DELETE statement and the index entry to be updated
006545  ** or deleted is not found.  For some uses of IdxDelete
006546  ** (example:  the EXCEPT operator) it does not matter that no matching
006547  ** entry is found.  For those cases, P5 is zero.  Also, do not raise
006548  ** this (self-correcting and non-critical) error if in writable_schema mode.
006549  */
006550  case OP_IdxDelete: {
006551    VdbeCursor *pC;
006552    BtCursor *pCrsr;
006553    int res;
006554    UnpackedRecord r;
006555  
006556    assert( pOp->p3>0 );
006557    assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
006558    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006559    pC = p->apCsr[pOp->p1];
006560    assert( pC!=0 );
006561    assert( pC->eCurType==CURTYPE_BTREE );
006562    sqlite3VdbeIncrWriteCounter(p, pC);
006563    pCrsr = pC->uc.pCursor;
006564    assert( pCrsr!=0 );
006565    r.pKeyInfo = pC->pKeyInfo;
006566    r.nField = (u16)pOp->p3;
006567    r.default_rc = 0;
006568    r.aMem = &aMem[pOp->p2];
006569    rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
006570    if( rc ) goto abort_due_to_error;
006571    if( res==0 ){
006572      rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
006573      if( rc ) goto abort_due_to_error;
006574    }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
006575      rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
006576      goto abort_due_to_error;
006577    }
006578    assert( pC->deferredMoveto==0 );
006579    pC->cacheStatus = CACHE_STALE;
006580    pC->seekResult = 0;
006581    break;
006582  }
006583  
006584  /* Opcode: DeferredSeek P1 * P3 P4 *
006585  ** Synopsis: Move P3 to P1.rowid if needed
006586  **
006587  ** P1 is an open index cursor and P3 is a cursor on the corresponding
006588  ** table.  This opcode does a deferred seek of the P3 table cursor
006589  ** to the row that corresponds to the current row of P1.
006590  **
006591  ** This is a deferred seek.  Nothing actually happens until
006592  ** the cursor is used to read a record.  That way, if no reads
006593  ** occur, no unnecessary I/O happens.
006594  **
006595  ** P4 may be an array of integers (type P4_INTARRAY) containing
006596  ** one entry for each column in the P3 table.  If array entry a(i)
006597  ** is non-zero, then reading column a(i)-1 from cursor P3 is
006598  ** equivalent to performing the deferred seek and then reading column i
006599  ** from P1.  This information is stored in P3 and used to redirect
006600  ** reads against P3 over to P1, thus possibly avoiding the need to
006601  ** seek and read cursor P3.
006602  */
006603  /* Opcode: IdxRowid P1 P2 * * *
006604  ** Synopsis: r[P2]=rowid
006605  **
006606  ** Write into register P2 an integer which is the last entry in the record at
006607  ** the end of the index key pointed to by cursor P1.  This integer should be
006608  ** the rowid of the table entry to which this index entry points.
006609  **
006610  ** See also: Rowid, MakeRecord.
006611  */
006612  case OP_DeferredSeek:         /* ncycle */
006613  case OP_IdxRowid: {           /* out2, ncycle */
006614    VdbeCursor *pC;             /* The P1 index cursor */
006615    VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
006616    i64 rowid;                  /* Rowid that P1 current points to */
006617  
006618    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006619    pC = p->apCsr[pOp->p1];
006620    assert( pC!=0 );
006621    assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
006622    assert( pC->uc.pCursor!=0 );
006623    assert( pC->isTable==0 || IsNullCursor(pC) );
006624    assert( pC->deferredMoveto==0 );
006625    assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
006626  
006627    /* The IdxRowid and Seek opcodes are combined because of the commonality
006628    ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
006629    rc = sqlite3VdbeCursorRestore(pC);
006630  
006631    /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
006632    ** since it was last positioned and an error (e.g. OOM or an IO error)
006633    ** occurs while trying to reposition it. */
006634    if( rc!=SQLITE_OK ) goto abort_due_to_error;
006635  
006636    if( !pC->nullRow ){
006637      rowid = 0;  /* Not needed.  Only used to silence a warning. */
006638      rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
006639      if( rc!=SQLITE_OK ){
006640        goto abort_due_to_error;
006641      }
006642      if( pOp->opcode==OP_DeferredSeek ){
006643        assert( pOp->p3>=0 && pOp->p3<p->nCursor );
006644        pTabCur = p->apCsr[pOp->p3];
006645        assert( pTabCur!=0 );
006646        assert( pTabCur->eCurType==CURTYPE_BTREE );
006647        assert( pTabCur->uc.pCursor!=0 );
006648        assert( pTabCur->isTable );
006649        pTabCur->nullRow = 0;
006650        pTabCur->movetoTarget = rowid;
006651        pTabCur->deferredMoveto = 1;
006652        pTabCur->cacheStatus = CACHE_STALE;
006653        assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
006654        assert( !pTabCur->isEphemeral );
006655        pTabCur->ub.aAltMap = pOp->p4.ai;
006656        assert( !pC->isEphemeral );
006657        pTabCur->pAltCursor = pC;
006658      }else{
006659        pOut = out2Prerelease(p, pOp);
006660        pOut->u.i = rowid;
006661      }
006662    }else{
006663      assert( pOp->opcode==OP_IdxRowid );
006664      sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
006665    }
006666    break;
006667  }
006668  
006669  /* Opcode: FinishSeek P1 * * * *
006670  **
006671  ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
006672  ** seek operation now, without further delay.  If the cursor seek has
006673  ** already occurred, this instruction is a no-op.
006674  */
006675  case OP_FinishSeek: {        /* ncycle */
006676    VdbeCursor *pC;            /* The P1 index cursor */
006677  
006678    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006679    pC = p->apCsr[pOp->p1];
006680    if( pC->deferredMoveto ){
006681      rc = sqlite3VdbeFinishMoveto(pC);
006682      if( rc ) goto abort_due_to_error;
006683    }
006684    break;
006685  }
006686  
006687  /* Opcode: IdxGE P1 P2 P3 P4 *
006688  ** Synopsis: key=r[P3@P4]
006689  **
006690  ** The P4 register values beginning with P3 form an unpacked index
006691  ** key that omits the PRIMARY KEY.  Compare this key value against the index
006692  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
006693  ** fields at the end.
006694  **
006695  ** If the P1 index entry is greater than or equal to the key value
006696  ** then jump to P2.  Otherwise fall through to the next instruction.
006697  */
006698  /* Opcode: IdxGT P1 P2 P3 P4 *
006699  ** Synopsis: key=r[P3@P4]
006700  **
006701  ** The P4 register values beginning with P3 form an unpacked index
006702  ** key that omits the PRIMARY KEY.  Compare this key value against the index
006703  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
006704  ** fields at the end.
006705  **
006706  ** If the P1 index entry is greater than the key value
006707  ** then jump to P2.  Otherwise fall through to the next instruction.
006708  */
006709  /* Opcode: IdxLT P1 P2 P3 P4 *
006710  ** Synopsis: key=r[P3@P4]
006711  **
006712  ** The P4 register values beginning with P3 form an unpacked index
006713  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
006714  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
006715  ** ROWID on the P1 index.
006716  **
006717  ** If the P1 index entry is less than the key value then jump to P2.
006718  ** Otherwise fall through to the next instruction.
006719  */
006720  /* Opcode: IdxLE P1 P2 P3 P4 *
006721  ** Synopsis: key=r[P3@P4]
006722  **
006723  ** The P4 register values beginning with P3 form an unpacked index
006724  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
006725  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
006726  ** ROWID on the P1 index.
006727  **
006728  ** If the P1 index entry is less than or equal to the key value then jump
006729  ** to P2. Otherwise fall through to the next instruction.
006730  */
006731  case OP_IdxLE:          /* jump, ncycle */
006732  case OP_IdxGT:          /* jump, ncycle */
006733  case OP_IdxLT:          /* jump, ncycle */
006734  case OP_IdxGE:  {       /* jump, ncycle */
006735    VdbeCursor *pC;
006736    int res;
006737    UnpackedRecord r;
006738  
006739    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006740    pC = p->apCsr[pOp->p1];
006741    assert( pC!=0 );
006742    assert( pC->isOrdered );
006743    assert( pC->eCurType==CURTYPE_BTREE );
006744    assert( pC->uc.pCursor!=0);
006745    assert( pC->deferredMoveto==0 );
006746    assert( pOp->p4type==P4_INT32 );
006747    r.pKeyInfo = pC->pKeyInfo;
006748    r.nField = (u16)pOp->p4.i;
006749    if( pOp->opcode<OP_IdxLT ){
006750      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
006751      r.default_rc = -1;
006752    }else{
006753      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
006754      r.default_rc = 0;
006755    }
006756    r.aMem = &aMem[pOp->p3];
006757  #ifdef SQLITE_DEBUG
006758    {
006759      int i;
006760      for(i=0; i<r.nField; i++){
006761        assert( memIsValid(&r.aMem[i]) );
006762        REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
006763      }
006764    }
006765  #endif
006766  
006767    /* Inlined version of sqlite3VdbeIdxKeyCompare() */
006768    {
006769      i64 nCellKey = 0;
006770      BtCursor *pCur;
006771      Mem m;
006772  
006773      assert( pC->eCurType==CURTYPE_BTREE );
006774      pCur = pC->uc.pCursor;
006775      assert( sqlite3BtreeCursorIsValid(pCur) );
006776      nCellKey = sqlite3BtreePayloadSize(pCur);
006777      /* nCellKey will always be between 0 and 0xffffffff because of the way
006778      ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
006779      if( nCellKey<=0 || nCellKey>0x7fffffff ){
006780        rc = SQLITE_CORRUPT_BKPT;
006781        goto abort_due_to_error;
006782      }
006783      sqlite3VdbeMemInit(&m, db, 0);
006784      rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
006785      if( rc ) goto abort_due_to_error;
006786      res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
006787      sqlite3VdbeMemReleaseMalloc(&m);
006788    }
006789    /* End of inlined sqlite3VdbeIdxKeyCompare() */
006790  
006791    assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
006792    if( (pOp->opcode&1)==(OP_IdxLT&1) ){
006793      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
006794      res = -res;
006795    }else{
006796      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
006797      res++;
006798    }
006799    VdbeBranchTaken(res>0,2);
006800    assert( rc==SQLITE_OK );
006801    if( res>0 ) goto jump_to_p2;
006802    break;
006803  }
006804  
006805  /* Opcode: Destroy P1 P2 P3 * *
006806  **
006807  ** Delete an entire database table or index whose root page in the database
006808  ** file is given by P1.
006809  **
006810  ** The table being destroyed is in the main database file if P3==0.  If
006811  ** P3==1 then the table to be destroyed is in the auxiliary database file
006812  ** that is used to store tables create using CREATE TEMPORARY TABLE.
006813  **
006814  ** If AUTOVACUUM is enabled then it is possible that another root page
006815  ** might be moved into the newly deleted root page in order to keep all
006816  ** root pages contiguous at the beginning of the database.  The former
006817  ** value of the root page that moved - its value before the move occurred -
006818  ** is stored in register P2. If no page movement was required (because the
006819  ** table being dropped was already the last one in the database) then a
006820  ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
006821  ** is stored in register P2.
006822  **
006823  ** This opcode throws an error if there are any active reader VMs when
006824  ** it is invoked. This is done to avoid the difficulty associated with
006825  ** updating existing cursors when a root page is moved in an AUTOVACUUM
006826  ** database. This error is thrown even if the database is not an AUTOVACUUM
006827  ** db in order to avoid introducing an incompatibility between autovacuum
006828  ** and non-autovacuum modes.
006829  **
006830  ** See also: Clear
006831  */
006832  case OP_Destroy: {     /* out2 */
006833    int iMoved;
006834    int iDb;
006835  
006836    sqlite3VdbeIncrWriteCounter(p, 0);
006837    assert( p->readOnly==0 );
006838    assert( pOp->p1>1 );
006839    pOut = out2Prerelease(p, pOp);
006840    pOut->flags = MEM_Null;
006841    if( db->nVdbeRead > db->nVDestroy+1 ){
006842      rc = SQLITE_LOCKED;
006843      p->errorAction = OE_Abort;
006844      goto abort_due_to_error;
006845    }else{
006846      iDb = pOp->p3;
006847      assert( DbMaskTest(p->btreeMask, iDb) );
006848      iMoved = 0;  /* Not needed.  Only to silence a warning. */
006849      rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
006850      pOut->flags = MEM_Int;
006851      pOut->u.i = iMoved;
006852      if( rc ) goto abort_due_to_error;
006853  #ifndef SQLITE_OMIT_AUTOVACUUM
006854      if( iMoved!=0 ){
006855        sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
006856        /* All OP_Destroy operations occur on the same btree */
006857        assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
006858        resetSchemaOnFault = iDb+1;
006859      }
006860  #endif
006861    }
006862    break;
006863  }
006864  
006865  /* Opcode: Clear P1 P2 P3
006866  **
006867  ** Delete all contents of the database table or index whose root page
006868  ** in the database file is given by P1.  But, unlike Destroy, do not
006869  ** remove the table or index from the database file.
006870  **
006871  ** The table being cleared is in the main database file if P2==0.  If
006872  ** P2==1 then the table to be cleared is in the auxiliary database file
006873  ** that is used to store tables create using CREATE TEMPORARY TABLE.
006874  **
006875  ** If the P3 value is non-zero, then the row change count is incremented
006876  ** by the number of rows in the table being cleared. If P3 is greater
006877  ** than zero, then the value stored in register P3 is also incremented
006878  ** by the number of rows in the table being cleared.
006879  **
006880  ** See also: Destroy
006881  */
006882  case OP_Clear: {
006883    i64 nChange;
006884  
006885    sqlite3VdbeIncrWriteCounter(p, 0);
006886    nChange = 0;
006887    assert( p->readOnly==0 );
006888    assert( DbMaskTest(p->btreeMask, pOp->p2) );
006889    rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
006890    if( pOp->p3 ){
006891      p->nChange += nChange;
006892      if( pOp->p3>0 ){
006893        assert( memIsValid(&aMem[pOp->p3]) );
006894        memAboutToChange(p, &aMem[pOp->p3]);
006895        aMem[pOp->p3].u.i += nChange;
006896      }
006897    }
006898    if( rc ) goto abort_due_to_error;
006899    break;
006900  }
006901  
006902  /* Opcode: ResetSorter P1 * * * *
006903  **
006904  ** Delete all contents from the ephemeral table or sorter
006905  ** that is open on cursor P1.
006906  **
006907  ** This opcode only works for cursors used for sorting and
006908  ** opened with OP_OpenEphemeral or OP_SorterOpen.
006909  */
006910  case OP_ResetSorter: {
006911    VdbeCursor *pC;
006912  
006913    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006914    pC = p->apCsr[pOp->p1];
006915    assert( pC!=0 );
006916    if( isSorter(pC) ){
006917      sqlite3VdbeSorterReset(db, pC->uc.pSorter);
006918    }else{
006919      assert( pC->eCurType==CURTYPE_BTREE );
006920      assert( pC->isEphemeral );
006921      rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
006922      if( rc ) goto abort_due_to_error;
006923    }
006924    break;
006925  }
006926  
006927  /* Opcode: CreateBtree P1 P2 P3 * *
006928  ** Synopsis: r[P2]=root iDb=P1 flags=P3
006929  **
006930  ** Allocate a new b-tree in the main database file if P1==0 or in the
006931  ** TEMP database file if P1==1 or in an attached database if
006932  ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
006933  ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
006934  ** The root page number of the new b-tree is stored in register P2.
006935  */
006936  case OP_CreateBtree: {          /* out2 */
006937    Pgno pgno;
006938    Db *pDb;
006939  
006940    sqlite3VdbeIncrWriteCounter(p, 0);
006941    pOut = out2Prerelease(p, pOp);
006942    pgno = 0;
006943    assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
006944    assert( pOp->p1>=0 && pOp->p1<db->nDb );
006945    assert( DbMaskTest(p->btreeMask, pOp->p1) );
006946    assert( p->readOnly==0 );
006947    pDb = &db->aDb[pOp->p1];
006948    assert( pDb->pBt!=0 );
006949    rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
006950    if( rc ) goto abort_due_to_error;
006951    pOut->u.i = pgno;
006952    break;
006953  }
006954  
006955  /* Opcode: SqlExec P1 P2 * P4 *
006956  **
006957  ** Run the SQL statement or statements specified in the P4 string.
006958  **
006959  ** The P1 parameter is a bitmask of options:
006960  **
006961  **    0x0001     Disable Auth and Trace callbacks while the statements
006962  **               in P4 are running.
006963  **
006964  **    0x0002     Set db->nAnalysisLimit to P2 while the statements in
006965  **               P4 are running.
006966  **
006967  */
006968  case OP_SqlExec: {
006969    char *zErr;
006970  #ifndef SQLITE_OMIT_AUTHORIZATION
006971    sqlite3_xauth xAuth;
006972  #endif
006973    u8 mTrace;
006974    int savedAnalysisLimit;
006975  
006976    sqlite3VdbeIncrWriteCounter(p, 0);
006977    db->nSqlExec++;
006978    zErr = 0;
006979  #ifndef SQLITE_OMIT_AUTHORIZATION
006980    xAuth = db->xAuth;
006981  #endif
006982    mTrace = db->mTrace;
006983    savedAnalysisLimit = db->nAnalysisLimit;
006984    if( pOp->p1 & 0x0001 ){
006985  #ifndef SQLITE_OMIT_AUTHORIZATION
006986      db->xAuth = 0;
006987  #endif
006988      db->mTrace = 0;
006989    }
006990    if( pOp->p1 & 0x0002 ){
006991      db->nAnalysisLimit = pOp->p2;
006992    }
006993    rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
006994    db->nSqlExec--;
006995  #ifndef SQLITE_OMIT_AUTHORIZATION
006996    db->xAuth = xAuth;
006997  #endif
006998    db->mTrace = mTrace;
006999    db->nAnalysisLimit = savedAnalysisLimit;
007000    if( zErr || rc ){
007001      sqlite3VdbeError(p, "%s", zErr);
007002      sqlite3_free(zErr);
007003      if( rc==SQLITE_NOMEM ) goto no_mem;
007004      goto abort_due_to_error;
007005    }
007006    break;
007007  }
007008  
007009  /* Opcode: ParseSchema P1 * * P4 *
007010  **
007011  ** Read and parse all entries from the schema table of database P1
007012  ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
007013  ** entire schema for P1 is reparsed.
007014  **
007015  ** This opcode invokes the parser to create a new virtual machine,
007016  ** then runs the new virtual machine.  It is thus a re-entrant opcode.
007017  */
007018  case OP_ParseSchema: {
007019    int iDb;
007020    const char *zSchema;
007021    char *zSql;
007022    InitData initData;
007023  
007024    /* Any prepared statement that invokes this opcode will hold mutexes
007025    ** on every btree.  This is a prerequisite for invoking
007026    ** sqlite3InitCallback().
007027    */
007028  #ifdef SQLITE_DEBUG
007029    for(iDb=0; iDb<db->nDb; iDb++){
007030      assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
007031    }
007032  #endif
007033  
007034    iDb = pOp->p1;
007035    assert( iDb>=0 && iDb<db->nDb );
007036    assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
007037             || db->mallocFailed
007038             || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
007039  
007040  #ifndef SQLITE_OMIT_ALTERTABLE
007041    if( pOp->p4.z==0 ){
007042      sqlite3SchemaClear(db->aDb[iDb].pSchema);
007043      db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
007044      rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
007045      db->mDbFlags |= DBFLAG_SchemaChange;
007046      p->expired = 0;
007047    }else
007048  #endif
007049    {
007050      zSchema = LEGACY_SCHEMA_TABLE;
007051      initData.db = db;
007052      initData.iDb = iDb;
007053      initData.pzErrMsg = &p->zErrMsg;
007054      initData.mInitFlags = 0;
007055      initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
007056      zSql = sqlite3MPrintf(db,
007057         "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
007058         db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
007059      if( zSql==0 ){
007060        rc = SQLITE_NOMEM_BKPT;
007061      }else{
007062        assert( db->init.busy==0 );
007063        db->init.busy = 1;
007064        initData.rc = SQLITE_OK;
007065        initData.nInitRow = 0;
007066        assert( !db->mallocFailed );
007067        rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
007068        if( rc==SQLITE_OK ) rc = initData.rc;
007069        if( rc==SQLITE_OK && initData.nInitRow==0 ){
007070          /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
007071          ** at least one SQL statement. Any less than that indicates that
007072          ** the sqlite_schema table is corrupt. */
007073          rc = SQLITE_CORRUPT_BKPT;
007074        }
007075        sqlite3DbFreeNN(db, zSql);
007076        db->init.busy = 0;
007077      }
007078    }
007079    if( rc ){
007080      sqlite3ResetAllSchemasOfConnection(db);
007081      if( rc==SQLITE_NOMEM ){
007082        goto no_mem;
007083      }
007084      goto abort_due_to_error;
007085    }
007086    break; 
007087  }
007088  
007089  #if !defined(SQLITE_OMIT_ANALYZE)
007090  /* Opcode: LoadAnalysis P1 * * * *
007091  **
007092  ** Read the sqlite_stat1 table for database P1 and load the content
007093  ** of that table into the internal index hash table.  This will cause
007094  ** the analysis to be used when preparing all subsequent queries.
007095  */
007096  case OP_LoadAnalysis: {
007097    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007098    rc = sqlite3AnalysisLoad(db, pOp->p1);
007099    if( rc ) goto abort_due_to_error;
007100    break; 
007101  }
007102  #endif /* !defined(SQLITE_OMIT_ANALYZE) */
007103  
007104  /* Opcode: DropTable P1 * * P4 *
007105  **
007106  ** Remove the internal (in-memory) data structures that describe
007107  ** the table named P4 in database P1.  This is called after a table
007108  ** is dropped from disk (using the Destroy opcode) in order to keep
007109  ** the internal representation of the
007110  ** schema consistent with what is on disk.
007111  */
007112  case OP_DropTable: {
007113    sqlite3VdbeIncrWriteCounter(p, 0);
007114    sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
007115    break;
007116  }
007117  
007118  /* Opcode: DropIndex P1 * * P4 *
007119  **
007120  ** Remove the internal (in-memory) data structures that describe
007121  ** the index named P4 in database P1.  This is called after an index
007122  ** is dropped from disk (using the Destroy opcode)
007123  ** in order to keep the internal representation of the
007124  ** schema consistent with what is on disk.
007125  */
007126  case OP_DropIndex: {
007127    sqlite3VdbeIncrWriteCounter(p, 0);
007128    sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
007129    break;
007130  }
007131  
007132  /* Opcode: DropTrigger P1 * * P4 *
007133  **
007134  ** Remove the internal (in-memory) data structures that describe
007135  ** the trigger named P4 in database P1.  This is called after a trigger
007136  ** is dropped from disk (using the Destroy opcode) in order to keep
007137  ** the internal representation of the
007138  ** schema consistent with what is on disk.
007139  */
007140  case OP_DropTrigger: {
007141    sqlite3VdbeIncrWriteCounter(p, 0);
007142    sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
007143    break;
007144  }
007145  
007146  
007147  #ifndef SQLITE_OMIT_INTEGRITY_CHECK
007148  /* Opcode: IntegrityCk P1 P2 P3 P4 P5
007149  **
007150  ** Do an analysis of the currently open database.  Store in
007151  ** register (P1+1) the text of an error message describing any problems.
007152  ** If no problems are found, store a NULL in register (P1+1).
007153  **
007154  ** The register (P1) contains one less than the maximum number of allowed
007155  ** errors.  At most reg(P1) errors will be reported.
007156  ** In other words, the analysis stops as soon as reg(P1) errors are
007157  ** seen.  Reg(P1) is updated with the number of errors remaining.
007158  **
007159  ** The root page numbers of all tables in the database are integers
007160  ** stored in P4_INTARRAY argument.
007161  **
007162  ** If P5 is not zero, the check is done on the auxiliary database
007163  ** file, not the main database file.
007164  **
007165  ** This opcode is used to implement the integrity_check pragma.
007166  */
007167  case OP_IntegrityCk: {
007168    int nRoot;      /* Number of tables to check.  (Number of root pages.) */
007169    Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
007170    int nErr;       /* Number of errors reported */
007171    char *z;        /* Text of the error report */
007172    Mem *pnErr;     /* Register keeping track of errors remaining */
007173  
007174    assert( p->bIsReader );
007175    assert( pOp->p4type==P4_INTARRAY );
007176    nRoot = pOp->p2;
007177    aRoot = pOp->p4.ai;
007178    assert( nRoot>0 );
007179    assert( aRoot!=0 );
007180    assert( aRoot[0]==(Pgno)nRoot );
007181    assert( pOp->p1>0 && (pOp->p1+1)<=(p->nMem+1 - p->nCursor) );
007182    pnErr = &aMem[pOp->p1];
007183    assert( (pnErr->flags & MEM_Int)!=0 );
007184    assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
007185    pIn1 = &aMem[pOp->p1+1];
007186    assert( pOp->p5<db->nDb );
007187    assert( DbMaskTest(p->btreeMask, pOp->p5) );
007188    rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], 
007189        &aMem[pOp->p3], nRoot, (int)pnErr->u.i+1, &nErr, &z);
007190    sqlite3VdbeMemSetNull(pIn1);
007191    if( nErr==0 ){
007192      assert( z==0 );
007193    }else if( rc ){
007194      sqlite3_free(z);
007195      goto abort_due_to_error;
007196    }else{
007197      pnErr->u.i -= nErr-1;
007198      sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
007199    }
007200    UPDATE_MAX_BLOBSIZE(pIn1);
007201    sqlite3VdbeChangeEncoding(pIn1, encoding);
007202    goto check_for_interrupt;
007203  }
007204  #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
007205  
007206  /* Opcode: RowSetAdd P1 P2 * * *
007207  ** Synopsis: rowset(P1)=r[P2]
007208  **
007209  ** Insert the integer value held by register P2 into a RowSet object
007210  ** held in register P1.
007211  **
007212  ** An assertion fails if P2 is not an integer.
007213  */
007214  case OP_RowSetAdd: {       /* in1, in2 */
007215    pIn1 = &aMem[pOp->p1];
007216    pIn2 = &aMem[pOp->p2];
007217    assert( (pIn2->flags & MEM_Int)!=0 );
007218    if( (pIn1->flags & MEM_Blob)==0 ){
007219      if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
007220    }
007221    assert( sqlite3VdbeMemIsRowSet(pIn1) );
007222    sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
007223    break;
007224  }
007225  
007226  /* Opcode: RowSetRead P1 P2 P3 * *
007227  ** Synopsis: r[P3]=rowset(P1)
007228  **
007229  ** Extract the smallest value from the RowSet object in P1
007230  ** and put that value into register P3.
007231  ** Or, if RowSet object P1 is initially empty, leave P3
007232  ** unchanged and jump to instruction P2.
007233  */
007234  case OP_RowSetRead: {       /* jump, in1, out3 */
007235    i64 val;
007236  
007237    pIn1 = &aMem[pOp->p1];
007238    assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
007239    if( (pIn1->flags & MEM_Blob)==0
007240     || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
007241    ){
007242      /* The boolean index is empty */
007243      sqlite3VdbeMemSetNull(pIn1);
007244      VdbeBranchTaken(1,2);
007245      goto jump_to_p2_and_check_for_interrupt;
007246    }else{
007247      /* A value was pulled from the index */
007248      VdbeBranchTaken(0,2);
007249      sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
007250    }
007251    goto check_for_interrupt;
007252  }
007253  
007254  /* Opcode: RowSetTest P1 P2 P3 P4
007255  ** Synopsis: if r[P3] in rowset(P1) goto P2
007256  **
007257  ** Register P3 is assumed to hold a 64-bit integer value. If register P1
007258  ** contains a RowSet object and that RowSet object contains
007259  ** the value held in P3, jump to register P2. Otherwise, insert the
007260  ** integer in P3 into the RowSet and continue on to the
007261  ** next opcode.
007262  **
007263  ** The RowSet object is optimized for the case where sets of integers
007264  ** are inserted in distinct phases, which each set contains no duplicates.
007265  ** Each set is identified by a unique P4 value. The first set
007266  ** must have P4==0, the final set must have P4==-1, and for all other sets
007267  ** must have P4>0.
007268  **
007269  ** This allows optimizations: (a) when P4==0 there is no need to test
007270  ** the RowSet object for P3, as it is guaranteed not to contain it,
007271  ** (b) when P4==-1 there is no need to insert the value, as it will
007272  ** never be tested for, and (c) when a value that is part of set X is
007273  ** inserted, there is no need to search to see if the same value was
007274  ** previously inserted as part of set X (only if it was previously
007275  ** inserted as part of some other set).
007276  */
007277  case OP_RowSetTest: {                     /* jump, in1, in3 */
007278    int iSet;
007279    int exists;
007280  
007281    pIn1 = &aMem[pOp->p1];
007282    pIn3 = &aMem[pOp->p3];
007283    iSet = pOp->p4.i;
007284    assert( pIn3->flags&MEM_Int );
007285  
007286    /* If there is anything other than a rowset object in memory cell P1,
007287    ** delete it now and initialize P1 with an empty rowset
007288    */
007289    if( (pIn1->flags & MEM_Blob)==0 ){
007290      if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
007291    }
007292    assert( sqlite3VdbeMemIsRowSet(pIn1) );
007293    assert( pOp->p4type==P4_INT32 );
007294    assert( iSet==-1 || iSet>=0 );
007295    if( iSet ){
007296      exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
007297      VdbeBranchTaken(exists!=0,2);
007298      if( exists ) goto jump_to_p2;
007299    }
007300    if( iSet>=0 ){
007301      sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
007302    }
007303    break;
007304  }
007305  
007306  
007307  #ifndef SQLITE_OMIT_TRIGGER
007308  
007309  /* Opcode: Program P1 P2 P3 P4 P5
007310  **
007311  ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
007312  **
007313  ** P1 contains the address of the memory cell that contains the first memory
007314  ** cell in an array of values used as arguments to the sub-program. P2
007315  ** contains the address to jump to if the sub-program throws an IGNORE
007316  ** exception using the RAISE() function. P2 might be zero, if there is
007317  ** no possibility that an IGNORE exception will be raised.
007318  ** Register P3 contains the address
007319  ** of a memory cell in this (the parent) VM that is used to allocate the
007320  ** memory required by the sub-vdbe at runtime.
007321  **
007322  ** P4 is a pointer to the VM containing the trigger program.
007323  **
007324  ** If P5 is non-zero, then recursive program invocation is enabled.
007325  */
007326  case OP_Program: {        /* jump0 */
007327    int nMem;               /* Number of memory registers for sub-program */
007328    int nByte;              /* Bytes of runtime space required for sub-program */
007329    Mem *pRt;               /* Register to allocate runtime space */
007330    Mem *pMem;              /* Used to iterate through memory cells */
007331    Mem *pEnd;              /* Last memory cell in new array */
007332    VdbeFrame *pFrame;      /* New vdbe frame to execute in */
007333    SubProgram *pProgram;   /* Sub-program to execute */
007334    void *t;                /* Token identifying trigger */
007335  
007336    pProgram = pOp->p4.pProgram;
007337    pRt = &aMem[pOp->p3];
007338    assert( pProgram->nOp>0 );
007339   
007340    /* If the p5 flag is clear, then recursive invocation of triggers is
007341    ** disabled for backwards compatibility (p5 is set if this sub-program
007342    ** is really a trigger, not a foreign key action, and the flag set
007343    ** and cleared by the "PRAGMA recursive_triggers" command is clear).
007344    **
007345    ** It is recursive invocation of triggers, at the SQL level, that is
007346    ** disabled. In some cases a single trigger may generate more than one
007347    ** SubProgram (if the trigger may be executed with more than one different
007348    ** ON CONFLICT algorithm). SubProgram structures associated with a
007349    ** single trigger all have the same value for the SubProgram.token
007350    ** variable.  */
007351    if( pOp->p5 ){
007352      t = pProgram->token;
007353      for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
007354      if( pFrame ) break;
007355    }
007356  
007357    if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
007358      rc = SQLITE_ERROR;
007359      sqlite3VdbeError(p, "too many levels of trigger recursion");
007360      goto abort_due_to_error;
007361    }
007362  
007363    /* Register pRt is used to store the memory required to save the state
007364    ** of the current program, and the memory required at runtime to execute
007365    ** the trigger program. If this trigger has been fired before, then pRt
007366    ** is already allocated. Otherwise, it must be initialized.  */
007367    if( (pRt->flags&MEM_Blob)==0 ){
007368      /* SubProgram.nMem is set to the number of memory cells used by the
007369      ** program stored in SubProgram.aOp. As well as these, one memory
007370      ** cell is required for each cursor used by the program. Set local
007371      ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
007372      */
007373      nMem = pProgram->nMem + pProgram->nCsr;
007374      assert( nMem>0 );
007375      if( pProgram->nCsr==0 ) nMem++;
007376      nByte = ROUND8(sizeof(VdbeFrame))
007377                + nMem * sizeof(Mem)
007378                + pProgram->nCsr * sizeof(VdbeCursor*)
007379                + (pProgram->nOp + 7)/8;
007380      pFrame = sqlite3DbMallocZero(db, nByte);
007381      if( !pFrame ){
007382        goto no_mem;
007383      }
007384      sqlite3VdbeMemRelease(pRt);
007385      pRt->flags = MEM_Blob|MEM_Dyn;
007386      pRt->z = (char*)pFrame;
007387      pRt->n = nByte;
007388      pRt->xDel = sqlite3VdbeFrameMemDel;
007389  
007390      pFrame->v = p;
007391      pFrame->nChildMem = nMem;
007392      pFrame->nChildCsr = pProgram->nCsr;
007393      pFrame->pc = (int)(pOp - aOp);
007394      pFrame->aMem = p->aMem;
007395      pFrame->nMem = p->nMem;
007396      pFrame->apCsr = p->apCsr;
007397      pFrame->nCursor = p->nCursor;
007398      pFrame->aOp = p->aOp;
007399      pFrame->nOp = p->nOp;
007400      pFrame->token = pProgram->token;
007401  #ifdef SQLITE_DEBUG
007402      pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
007403  #endif
007404  
007405      pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
007406      for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
007407        pMem->flags = MEM_Undefined;
007408        pMem->db = db;
007409      }
007410    }else{
007411      pFrame = (VdbeFrame*)pRt->z;
007412      assert( pRt->xDel==sqlite3VdbeFrameMemDel );
007413      assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
007414          || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
007415      assert( pProgram->nCsr==pFrame->nChildCsr );
007416      assert( (int)(pOp - aOp)==pFrame->pc );
007417    }
007418  
007419    p->nFrame++;
007420    pFrame->pParent = p->pFrame;
007421    pFrame->lastRowid = db->lastRowid;
007422    pFrame->nChange = p->nChange;
007423    pFrame->nDbChange = p->db->nChange;
007424    assert( pFrame->pAuxData==0 );
007425    pFrame->pAuxData = p->pAuxData;
007426    p->pAuxData = 0;
007427    p->nChange = 0;
007428    p->pFrame = pFrame;
007429    p->aMem = aMem = VdbeFrameMem(pFrame);
007430    p->nMem = pFrame->nChildMem;
007431    p->nCursor = (u16)pFrame->nChildCsr;
007432    p->apCsr = (VdbeCursor **)&aMem[p->nMem];
007433    pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
007434    memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
007435    p->aOp = aOp = pProgram->aOp;
007436    p->nOp = pProgram->nOp;
007437  #ifdef SQLITE_DEBUG
007438    /* Verify that second and subsequent executions of the same trigger do not
007439    ** try to reuse register values from the first use. */
007440    {
007441      int i;
007442      for(i=0; i<p->nMem; i++){
007443        aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
007444        MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
007445      }
007446    }
007447  #endif
007448    pOp = &aOp[-1];
007449    goto check_for_interrupt;
007450  }
007451  
007452  /* Opcode: Param P1 P2 * * *
007453  **
007454  ** This opcode is only ever present in sub-programs called via the
007455  ** OP_Program instruction. Copy a value currently stored in a memory
007456  ** cell of the calling (parent) frame to cell P2 in the current frames
007457  ** address space. This is used by trigger programs to access the new.*
007458  ** and old.* values.
007459  **
007460  ** The address of the cell in the parent frame is determined by adding
007461  ** the value of the P1 argument to the value of the P1 argument to the
007462  ** calling OP_Program instruction.
007463  */
007464  case OP_Param: {           /* out2 */
007465    VdbeFrame *pFrame;
007466    Mem *pIn;
007467    pOut = out2Prerelease(p, pOp);
007468    pFrame = p->pFrame;
007469    pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];  
007470    sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
007471    break;
007472  }
007473  
007474  #endif /* #ifndef SQLITE_OMIT_TRIGGER */
007475  
007476  #ifndef SQLITE_OMIT_FOREIGN_KEY
007477  /* Opcode: FkCounter P1 P2 * * *
007478  ** Synopsis: fkctr[P1]+=P2
007479  **
007480  ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
007481  ** If P1 is non-zero, the database constraint counter is incremented
007482  ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
007483  ** statement counter is incremented (immediate foreign key constraints).
007484  */
007485  case OP_FkCounter: {
007486    if( db->flags & SQLITE_DeferFKs ){
007487      db->nDeferredImmCons += pOp->p2;
007488    }else if( pOp->p1 ){
007489      db->nDeferredCons += pOp->p2;
007490    }else{
007491      p->nFkConstraint += pOp->p2;
007492    }
007493    break;
007494  }
007495  
007496  /* Opcode: FkIfZero P1 P2 * * *
007497  ** Synopsis: if fkctr[P1]==0 goto P2
007498  **
007499  ** This opcode tests if a foreign key constraint-counter is currently zero.
007500  ** If so, jump to instruction P2. Otherwise, fall through to the next
007501  ** instruction.
007502  **
007503  ** If P1 is non-zero, then the jump is taken if the database constraint-counter
007504  ** is zero (the one that counts deferred constraint violations). If P1 is
007505  ** zero, the jump is taken if the statement constraint-counter is zero
007506  ** (immediate foreign key constraint violations).
007507  */
007508  case OP_FkIfZero: {         /* jump */
007509    if( pOp->p1 ){
007510      VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
007511      if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
007512    }else{
007513      VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
007514      if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
007515    }
007516    break;
007517  }
007518  #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
007519  
007520  #ifndef SQLITE_OMIT_AUTOINCREMENT
007521  /* Opcode: MemMax P1 P2 * * *
007522  ** Synopsis: r[P1]=max(r[P1],r[P2])
007523  **
007524  ** P1 is a register in the root frame of this VM (the root frame is
007525  ** different from the current frame if this instruction is being executed
007526  ** within a sub-program). Set the value of register P1 to the maximum of
007527  ** its current value and the value in register P2.
007528  **
007529  ** This instruction throws an error if the memory cell is not initially
007530  ** an integer.
007531  */
007532  case OP_MemMax: {        /* in2 */
007533    VdbeFrame *pFrame;
007534    if( p->pFrame ){
007535      for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
007536      pIn1 = &pFrame->aMem[pOp->p1];
007537    }else{
007538      pIn1 = &aMem[pOp->p1];
007539    }
007540    assert( memIsValid(pIn1) );
007541    sqlite3VdbeMemIntegerify(pIn1);
007542    pIn2 = &aMem[pOp->p2];
007543    sqlite3VdbeMemIntegerify(pIn2);
007544    if( pIn1->u.i<pIn2->u.i){
007545      pIn1->u.i = pIn2->u.i;
007546    }
007547    break;
007548  }
007549  #endif /* SQLITE_OMIT_AUTOINCREMENT */
007550  
007551  /* Opcode: IfPos P1 P2 P3 * *
007552  ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
007553  **
007554  ** Register P1 must contain an integer.
007555  ** If the value of register P1 is 1 or greater, subtract P3 from the
007556  ** value in P1 and jump to P2.
007557  **
007558  ** If the initial value of register P1 is less than 1, then the
007559  ** value is unchanged and control passes through to the next instruction.
007560  */
007561  case OP_IfPos: {        /* jump, in1 */
007562    pIn1 = &aMem[pOp->p1];
007563    assert( pIn1->flags&MEM_Int );
007564    VdbeBranchTaken( pIn1->u.i>0, 2);
007565    if( pIn1->u.i>0 ){
007566      pIn1->u.i -= pOp->p3;
007567      goto jump_to_p2;
007568    }
007569    break;
007570  }
007571  
007572  /* Opcode: OffsetLimit P1 P2 P3 * *
007573  ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
007574  **
007575  ** This opcode performs a commonly used computation associated with
007576  ** LIMIT and OFFSET processing.  r[P1] holds the limit counter.  r[P3]
007577  ** holds the offset counter.  The opcode computes the combined value
007578  ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
007579  ** value computed is the total number of rows that will need to be
007580  ** visited in order to complete the query.
007581  **
007582  ** If r[P3] is zero or negative, that means there is no OFFSET
007583  ** and r[P2] is set to be the value of the LIMIT, r[P1].
007584  **
007585  ** if r[P1] is zero or negative, that means there is no LIMIT
007586  ** and r[P2] is set to -1.
007587  **
007588  ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
007589  */
007590  case OP_OffsetLimit: {    /* in1, out2, in3 */
007591    i64 x;
007592    pIn1 = &aMem[pOp->p1];
007593    pIn3 = &aMem[pOp->p3];
007594    pOut = out2Prerelease(p, pOp);
007595    assert( pIn1->flags & MEM_Int );
007596    assert( pIn3->flags & MEM_Int );
007597    x = pIn1->u.i;
007598    if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
007599      /* If the LIMIT is less than or equal to zero, loop forever.  This
007600      ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
007601      ** also loop forever.  This is undocumented.  In fact, one could argue
007602      ** that the loop should terminate.  But assuming 1 billion iterations
007603      ** per second (far exceeding the capabilities of any current hardware)
007604      ** it would take nearly 300 years to actually reach the limit.  So
007605      ** looping forever is a reasonable approximation. */
007606      pOut->u.i = -1;
007607    }else{
007608      pOut->u.i = x;
007609    }
007610    break;
007611  }
007612  
007613  /* Opcode: IfNotZero P1 P2 * * *
007614  ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
007615  **
007616  ** Register P1 must contain an integer.  If the content of register P1 is
007617  ** initially greater than zero, then decrement the value in register P1.
007618  ** If it is non-zero (negative or positive) and then also jump to P2. 
007619  ** If register P1 is initially zero, leave it unchanged and fall through.
007620  */
007621  case OP_IfNotZero: {        /* jump, in1 */
007622    pIn1 = &aMem[pOp->p1];
007623    assert( pIn1->flags&MEM_Int );
007624    VdbeBranchTaken(pIn1->u.i<0, 2);
007625    if( pIn1->u.i ){
007626       if( pIn1->u.i>0 ) pIn1->u.i--;
007627       goto jump_to_p2;
007628    }
007629    break;
007630  }
007631  
007632  /* Opcode: DecrJumpZero P1 P2 * * *
007633  ** Synopsis: if (--r[P1])==0 goto P2
007634  **
007635  ** Register P1 must hold an integer.  Decrement the value in P1
007636  ** and jump to P2 if the new value is exactly zero.
007637  */
007638  case OP_DecrJumpZero: {      /* jump, in1 */
007639    pIn1 = &aMem[pOp->p1];
007640    assert( pIn1->flags&MEM_Int );
007641    if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
007642    VdbeBranchTaken(pIn1->u.i==0, 2);
007643    if( pIn1->u.i==0 ) goto jump_to_p2;
007644    break;
007645  }
007646  
007647  
007648  /* Opcode: AggStep * P2 P3 P4 P5
007649  ** Synopsis: accum=r[P3] step(r[P2@P5])
007650  **
007651  ** Execute the xStep function for an aggregate.
007652  ** The function has P5 arguments.  P4 is a pointer to the
007653  ** FuncDef structure that specifies the function.  Register P3 is the
007654  ** accumulator.
007655  **
007656  ** The P5 arguments are taken from register P2 and its
007657  ** successors.
007658  */
007659  /* Opcode: AggInverse * P2 P3 P4 P5
007660  ** Synopsis: accum=r[P3] inverse(r[P2@P5])
007661  **
007662  ** Execute the xInverse function for an aggregate.
007663  ** The function has P5 arguments.  P4 is a pointer to the
007664  ** FuncDef structure that specifies the function.  Register P3 is the
007665  ** accumulator.
007666  **
007667  ** The P5 arguments are taken from register P2 and its
007668  ** successors.
007669  */
007670  /* Opcode: AggStep1 P1 P2 P3 P4 P5
007671  ** Synopsis: accum=r[P3] step(r[P2@P5])
007672  **
007673  ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
007674  ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
007675  ** FuncDef structure that specifies the function.  Register P3 is the
007676  ** accumulator.
007677  **
007678  ** The P5 arguments are taken from register P2 and its
007679  ** successors.
007680  **
007681  ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
007682  ** the FuncDef stored in P4 is converted into an sqlite3_context and
007683  ** the opcode is changed.  In this way, the initialization of the
007684  ** sqlite3_context only happens once, instead of on each call to the
007685  ** step function.
007686  */
007687  case OP_AggInverse:
007688  case OP_AggStep: {
007689    int n;
007690    sqlite3_context *pCtx;
007691    u64 nAlloc;
007692  
007693    assert( pOp->p4type==P4_FUNCDEF );
007694    n = pOp->p5;
007695    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
007696    assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
007697    assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
007698  
007699    /* Allocate space for (a) the context object and (n-1) extra pointers
007700    ** to append to the sqlite3_context.argv[1] array, and (b) a memory
007701    ** cell in which to store the accumulation. Be careful that the memory
007702    ** cell is 8-byte aligned, even on platforms where a pointer is 32-bits.
007703    **
007704    ** Note: We could avoid this by using a regular memory cell from aMem[] for 
007705    ** the accumulator, instead of allocating one here. */
007706    nAlloc = ROUND8P( sizeof(pCtx[0]) + (n-1)*sizeof(sqlite3_value*) );
007707    pCtx = sqlite3DbMallocRawNN(db, nAlloc + sizeof(Mem));
007708    if( pCtx==0 ) goto no_mem;
007709    pCtx->pOut = (Mem*)((u8*)pCtx + nAlloc);
007710    assert( EIGHT_BYTE_ALIGNMENT(pCtx->pOut) );
007711  
007712    sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
007713    pCtx->pMem = 0;
007714    pCtx->pFunc = pOp->p4.pFunc;
007715    pCtx->iOp = (int)(pOp - aOp);
007716    pCtx->pVdbe = p;
007717    pCtx->skipFlag = 0;
007718    pCtx->isError = 0;
007719    pCtx->enc = encoding;
007720    pCtx->argc = n;
007721    pOp->p4type = P4_FUNCCTX;
007722    pOp->p4.pCtx = pCtx;
007723  
007724    /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
007725    assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
007726  
007727    pOp->opcode = OP_AggStep1;
007728    /* Fall through into OP_AggStep */
007729    /* no break */ deliberate_fall_through
007730  }
007731  case OP_AggStep1: {
007732    int i;
007733    sqlite3_context *pCtx;
007734    Mem *pMem;
007735  
007736    assert( pOp->p4type==P4_FUNCCTX );
007737    pCtx = pOp->p4.pCtx;
007738    pMem = &aMem[pOp->p3];
007739  
007740  #ifdef SQLITE_DEBUG
007741    if( pOp->p1 ){
007742      /* This is an OP_AggInverse call.  Verify that xStep has always
007743      ** been called at least once prior to any xInverse call. */
007744      assert( pMem->uTemp==0x1122e0e3 );
007745    }else{
007746      /* This is an OP_AggStep call.  Mark it as such. */
007747      pMem->uTemp = 0x1122e0e3;
007748    }
007749  #endif
007750  
007751    /* If this function is inside of a trigger, the register array in aMem[]
007752    ** might change from one evaluation to the next.  The next block of code
007753    ** checks to see if the register array has changed, and if so it
007754    ** reinitializes the relevant parts of the sqlite3_context object */
007755    if( pCtx->pMem != pMem ){
007756      pCtx->pMem = pMem;
007757      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
007758    }
007759  
007760  #ifdef SQLITE_DEBUG
007761    for(i=0; i<pCtx->argc; i++){
007762      assert( memIsValid(pCtx->argv[i]) );
007763      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
007764    }
007765  #endif
007766  
007767    pMem->n++;
007768    assert( pCtx->pOut->flags==MEM_Null );
007769    assert( pCtx->isError==0 );
007770    assert( pCtx->skipFlag==0 );
007771  #ifndef SQLITE_OMIT_WINDOWFUNC
007772    if( pOp->p1 ){
007773      (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
007774    }else
007775  #endif
007776    (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
007777  
007778    if( pCtx->isError ){
007779      if( pCtx->isError>0 ){
007780        sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
007781        rc = pCtx->isError;
007782      }
007783      if( pCtx->skipFlag ){
007784        assert( pOp[-1].opcode==OP_CollSeq );
007785        i = pOp[-1].p1;
007786        if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
007787        pCtx->skipFlag = 0;
007788      }
007789      sqlite3VdbeMemRelease(pCtx->pOut);
007790      pCtx->pOut->flags = MEM_Null;
007791      pCtx->isError = 0;
007792      if( rc ) goto abort_due_to_error;
007793    }
007794    assert( pCtx->pOut->flags==MEM_Null );
007795    assert( pCtx->skipFlag==0 );
007796    break;
007797  }
007798  
007799  /* Opcode: AggFinal P1 P2 * P4 *
007800  ** Synopsis: accum=r[P1] N=P2
007801  **
007802  ** P1 is the memory location that is the accumulator for an aggregate
007803  ** or window function.  Execute the finalizer function
007804  ** for an aggregate and store the result in P1.
007805  **
007806  ** P2 is the number of arguments that the step function takes and
007807  ** P4 is a pointer to the FuncDef for this function.  The P2
007808  ** argument is not used by this opcode.  It is only there to disambiguate
007809  ** functions that can take varying numbers of arguments.  The
007810  ** P4 argument is only needed for the case where
007811  ** the step function was not previously called.
007812  */
007813  /* Opcode: AggValue * P2 P3 P4 *
007814  ** Synopsis: r[P3]=value N=P2
007815  **
007816  ** Invoke the xValue() function and store the result in register P3.
007817  **
007818  ** P2 is the number of arguments that the step function takes and
007819  ** P4 is a pointer to the FuncDef for this function.  The P2
007820  ** argument is not used by this opcode.  It is only there to disambiguate
007821  ** functions that can take varying numbers of arguments.  The
007822  ** P4 argument is only needed for the case where
007823  ** the step function was not previously called.
007824  */
007825  case OP_AggValue:
007826  case OP_AggFinal: {
007827    Mem *pMem;
007828    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
007829    assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
007830    pMem = &aMem[pOp->p1];
007831    assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
007832  #ifndef SQLITE_OMIT_WINDOWFUNC
007833    if( pOp->p3 ){
007834      memAboutToChange(p, &aMem[pOp->p3]);
007835      rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
007836      pMem = &aMem[pOp->p3];
007837    }else
007838  #endif
007839    {
007840      rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
007841    }
007842   
007843    if( rc ){
007844      sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
007845      goto abort_due_to_error;
007846    }
007847    sqlite3VdbeChangeEncoding(pMem, encoding);
007848    UPDATE_MAX_BLOBSIZE(pMem);
007849    REGISTER_TRACE((int)(pMem-aMem), pMem);
007850    break;
007851  }
007852  
007853  #ifndef SQLITE_OMIT_WAL
007854  /* Opcode: Checkpoint P1 P2 P3 * *
007855  **
007856  ** Checkpoint database P1. This is a no-op if P1 is not currently in
007857  ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
007858  ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
007859  ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
007860  ** WAL after the checkpoint into mem[P3+1] and the number of pages
007861  ** in the WAL that have been checkpointed after the checkpoint
007862  ** completes into mem[P3+2].  However on an error, mem[P3+1] and
007863  ** mem[P3+2] are initialized to -1.
007864  */
007865  case OP_Checkpoint: {
007866    int i;                          /* Loop counter */
007867    int aRes[3];                    /* Results */
007868    Mem *pMem;                      /* Write results here */
007869  
007870    assert( p->readOnly==0 );
007871    aRes[0] = 0;
007872    aRes[1] = aRes[2] = -1;
007873    assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
007874         || pOp->p2==SQLITE_CHECKPOINT_FULL
007875         || pOp->p2==SQLITE_CHECKPOINT_RESTART
007876         || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
007877    );
007878    rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
007879    if( rc ){
007880      if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
007881      rc = SQLITE_OK;
007882      aRes[0] = 1;
007883    }
007884    for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
007885      sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
007886    }   
007887    break;
007888  }; 
007889  #endif
007890  
007891  #ifndef SQLITE_OMIT_PRAGMA
007892  /* Opcode: JournalMode P1 P2 P3 * *
007893  **
007894  ** Change the journal mode of database P1 to P3. P3 must be one of the
007895  ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
007896  ** modes (delete, truncate, persist, off and memory), this is a simple
007897  ** operation. No IO is required.
007898  **
007899  ** If changing into or out of WAL mode the procedure is more complicated.
007900  **
007901  ** Write a string containing the final journal-mode to register P2.
007902  */
007903  case OP_JournalMode: {    /* out2 */
007904    Btree *pBt;                     /* Btree to change journal mode of */
007905    Pager *pPager;                  /* Pager associated with pBt */
007906    int eNew;                       /* New journal mode */
007907    int eOld;                       /* The old journal mode */
007908  #ifndef SQLITE_OMIT_WAL
007909    const char *zFilename;          /* Name of database file for pPager */
007910  #endif
007911  
007912    pOut = out2Prerelease(p, pOp);
007913    eNew = pOp->p3;
007914    assert( eNew==PAGER_JOURNALMODE_DELETE
007915         || eNew==PAGER_JOURNALMODE_TRUNCATE
007916         || eNew==PAGER_JOURNALMODE_PERSIST
007917         || eNew==PAGER_JOURNALMODE_OFF
007918         || eNew==PAGER_JOURNALMODE_MEMORY
007919         || eNew==PAGER_JOURNALMODE_WAL
007920         || eNew==PAGER_JOURNALMODE_QUERY
007921    );
007922    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007923    assert( p->readOnly==0 );
007924  
007925    pBt = db->aDb[pOp->p1].pBt;
007926    pPager = sqlite3BtreePager(pBt);
007927    eOld = sqlite3PagerGetJournalMode(pPager);
007928    if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
007929    assert( sqlite3BtreeHoldsMutex(pBt) );
007930    if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
007931  
007932  #ifndef SQLITE_OMIT_WAL
007933    zFilename = sqlite3PagerFilename(pPager, 1);
007934  
007935    /* Do not allow a transition to journal_mode=WAL for a database
007936    ** in temporary storage or if the VFS does not support shared memory
007937    */
007938    if( eNew==PAGER_JOURNALMODE_WAL
007939     && (sqlite3Strlen30(zFilename)==0           /* Temp file */
007940         || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
007941    ){
007942      eNew = eOld;
007943    }
007944  
007945    if( (eNew!=eOld)
007946     && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
007947    ){
007948      if( !db->autoCommit || db->nVdbeRead>1 ){
007949        rc = SQLITE_ERROR;
007950        sqlite3VdbeError(p,
007951            "cannot change %s wal mode from within a transaction",
007952            (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
007953        );
007954        goto abort_due_to_error;
007955      }else{
007956  
007957        if( eOld==PAGER_JOURNALMODE_WAL ){
007958          /* If leaving WAL mode, close the log file. If successful, the call
007959          ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
007960          ** file. An EXCLUSIVE lock may still be held on the database file
007961          ** after a successful return.
007962          */
007963          rc = sqlite3PagerCloseWal(pPager, db);
007964          if( rc==SQLITE_OK ){
007965            sqlite3PagerSetJournalMode(pPager, eNew);
007966          }
007967        }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
007968          /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
007969          ** as an intermediate */
007970          sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
007971        }
007972   
007973        /* Open a transaction on the database file. Regardless of the journal
007974        ** mode, this transaction always uses a rollback journal.
007975        */
007976        assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
007977        if( rc==SQLITE_OK ){
007978          rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
007979        }
007980      }
007981    }
007982  #endif /* ifndef SQLITE_OMIT_WAL */
007983  
007984    if( rc ) eNew = eOld;
007985    eNew = sqlite3PagerSetJournalMode(pPager, eNew);
007986  
007987    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
007988    pOut->z = (char *)sqlite3JournalModename(eNew);
007989    pOut->n = sqlite3Strlen30(pOut->z);
007990    pOut->enc = SQLITE_UTF8;
007991    sqlite3VdbeChangeEncoding(pOut, encoding);
007992    if( rc ) goto abort_due_to_error;
007993    break;
007994  };
007995  #endif /* SQLITE_OMIT_PRAGMA */
007996  
007997  #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
007998  /* Opcode: Vacuum P1 P2 * * *
007999  **
008000  ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
008001  ** for an attached database.  The "temp" database may not be vacuumed.
008002  **
008003  ** If P2 is not zero, then it is a register holding a string which is
008004  ** the file into which the result of vacuum should be written.  When
008005  ** P2 is zero, the vacuum overwrites the original database.
008006  */
008007  case OP_Vacuum: {
008008    assert( p->readOnly==0 );
008009    rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
008010                          pOp->p2 ? &aMem[pOp->p2] : 0);
008011    if( rc ) goto abort_due_to_error;
008012    break;
008013  }
008014  #endif
008015  
008016  #if !defined(SQLITE_OMIT_AUTOVACUUM)
008017  /* Opcode: IncrVacuum P1 P2 * * *
008018  **
008019  ** Perform a single step of the incremental vacuum procedure on
008020  ** the P1 database. If the vacuum has finished, jump to instruction
008021  ** P2. Otherwise, fall through to the next instruction.
008022  */
008023  case OP_IncrVacuum: {        /* jump */
008024    Btree *pBt;
008025  
008026    assert( pOp->p1>=0 && pOp->p1<db->nDb );
008027    assert( DbMaskTest(p->btreeMask, pOp->p1) );
008028    assert( p->readOnly==0 );
008029    pBt = db->aDb[pOp->p1].pBt;
008030    rc = sqlite3BtreeIncrVacuum(pBt);
008031    VdbeBranchTaken(rc==SQLITE_DONE,2);
008032    if( rc ){
008033      if( rc!=SQLITE_DONE ) goto abort_due_to_error;
008034      rc = SQLITE_OK;
008035      goto jump_to_p2;
008036    }
008037    break;
008038  }
008039  #endif
008040  
008041  /* Opcode: Expire P1 P2 * * *
008042  **
008043  ** Cause precompiled statements to expire.  When an expired statement
008044  ** is executed using sqlite3_step() it will either automatically
008045  ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
008046  ** or it will fail with SQLITE_SCHEMA.
008047  **
008048  ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
008049  ** then only the currently executing statement is expired.
008050  **
008051  ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
008052  ** then running SQL statements are allowed to continue to run to completion.
008053  ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
008054  ** that might help the statement run faster but which does not affect the
008055  ** correctness of operation.
008056  */
008057  case OP_Expire: {
008058    assert( pOp->p2==0 || pOp->p2==1 );
008059    if( !pOp->p1 ){
008060      sqlite3ExpirePreparedStatements(db, pOp->p2);
008061    }else{
008062      p->expired = pOp->p2+1;
008063    }
008064    break;
008065  }
008066  
008067  /* Opcode: CursorLock P1 * * * *
008068  **
008069  ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
008070  ** written by an other cursor.
008071  */
008072  case OP_CursorLock: {
008073    VdbeCursor *pC;
008074    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008075    pC = p->apCsr[pOp->p1];
008076    assert( pC!=0 );
008077    assert( pC->eCurType==CURTYPE_BTREE );
008078    sqlite3BtreeCursorPin(pC->uc.pCursor);
008079    break;
008080  }
008081  
008082  /* Opcode: CursorUnlock P1 * * * *
008083  **
008084  ** Unlock the btree to which cursor P1 is pointing so that it can be
008085  ** written by other cursors.
008086  */
008087  case OP_CursorUnlock: {
008088    VdbeCursor *pC;
008089    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008090    pC = p->apCsr[pOp->p1];
008091    assert( pC!=0 );
008092    assert( pC->eCurType==CURTYPE_BTREE );
008093    sqlite3BtreeCursorUnpin(pC->uc.pCursor);
008094    break;
008095  }
008096  
008097  #ifndef SQLITE_OMIT_SHARED_CACHE
008098  /* Opcode: TableLock P1 P2 P3 P4 *
008099  ** Synopsis: iDb=P1 root=P2 write=P3
008100  **
008101  ** Obtain a lock on a particular table. This instruction is only used when
008102  ** the shared-cache feature is enabled.
008103  **
008104  ** P1 is the index of the database in sqlite3.aDb[] of the database
008105  ** on which the lock is acquired.  A readlock is obtained if P3==0 or
008106  ** a write lock if P3==1.
008107  **
008108  ** P2 contains the root-page of the table to lock.
008109  **
008110  ** P4 contains a pointer to the name of the table being locked. This is only
008111  ** used to generate an error message if the lock cannot be obtained.
008112  */
008113  case OP_TableLock: {
008114    u8 isWriteLock = (u8)pOp->p3;
008115    if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
008116      int p1 = pOp->p1;
008117      assert( p1>=0 && p1<db->nDb );
008118      assert( DbMaskTest(p->btreeMask, p1) );
008119      assert( isWriteLock==0 || isWriteLock==1 );
008120      rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
008121      if( rc ){
008122        if( (rc&0xFF)==SQLITE_LOCKED ){
008123          const char *z = pOp->p4.z;
008124          sqlite3VdbeError(p, "database table is locked: %s", z);
008125        }
008126        goto abort_due_to_error;
008127      }
008128    }
008129    break;
008130  }
008131  #endif /* SQLITE_OMIT_SHARED_CACHE */
008132  
008133  #ifndef SQLITE_OMIT_VIRTUALTABLE
008134  /* Opcode: VBegin * * * P4 *
008135  **
008136  ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
008137  ** xBegin method for that table.
008138  **
008139  ** Also, whether or not P4 is set, check that this is not being called from
008140  ** within a callback to a virtual table xSync() method. If it is, the error
008141  ** code will be set to SQLITE_LOCKED.
008142  */
008143  case OP_VBegin: {
008144    VTable *pVTab;
008145    pVTab = pOp->p4.pVtab;
008146    rc = sqlite3VtabBegin(db, pVTab);
008147    if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
008148    if( rc ) goto abort_due_to_error;
008149    break;
008150  }
008151  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008152  
008153  #ifndef SQLITE_OMIT_VIRTUALTABLE
008154  /* Opcode: VCreate P1 P2 * * *
008155  **
008156  ** P2 is a register that holds the name of a virtual table in database
008157  ** P1. Call the xCreate method for that table.
008158  */
008159  case OP_VCreate: {
008160    Mem sMem;          /* For storing the record being decoded */
008161    const char *zTab;  /* Name of the virtual table */
008162  
008163    memset(&sMem, 0, sizeof(sMem));
008164    sMem.db = db;
008165    /* Because P2 is always a static string, it is impossible for the
008166    ** sqlite3VdbeMemCopy() to fail */
008167    assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
008168    assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
008169    rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
008170    assert( rc==SQLITE_OK );
008171    zTab = (const char*)sqlite3_value_text(&sMem);
008172    assert( zTab || db->mallocFailed );
008173    if( zTab ){
008174      rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
008175    }
008176    sqlite3VdbeMemRelease(&sMem);
008177    if( rc ) goto abort_due_to_error;
008178    break;
008179  }
008180  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008181  
008182  #ifndef SQLITE_OMIT_VIRTUALTABLE
008183  /* Opcode: VDestroy P1 * * P4 *
008184  **
008185  ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
008186  ** of that table.
008187  */
008188  case OP_VDestroy: {
008189    db->nVDestroy++;
008190    rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
008191    db->nVDestroy--;
008192    assert( p->errorAction==OE_Abort && p->usesStmtJournal );
008193    if( rc ) goto abort_due_to_error;
008194    break;
008195  }
008196  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008197  
008198  #ifndef SQLITE_OMIT_VIRTUALTABLE
008199  /* Opcode: VOpen P1 * * P4 *
008200  **
008201  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008202  ** P1 is a cursor number.  This opcode opens a cursor to the virtual
008203  ** table and stores that cursor in P1.
008204  */
008205  case OP_VOpen: {             /* ncycle */
008206    VdbeCursor *pCur;
008207    sqlite3_vtab_cursor *pVCur;
008208    sqlite3_vtab *pVtab;
008209    const sqlite3_module *pModule;
008210  
008211    assert( p->bIsReader );
008212    pCur = 0;
008213    pVCur = 0;
008214    pVtab = pOp->p4.pVtab->pVtab;
008215    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
008216      rc = SQLITE_LOCKED;
008217      goto abort_due_to_error;
008218    }
008219    pModule = pVtab->pModule;
008220    rc = pModule->xOpen(pVtab, &pVCur);
008221    sqlite3VtabImportErrmsg(p, pVtab);
008222    if( rc ) goto abort_due_to_error;
008223  
008224    /* Initialize sqlite3_vtab_cursor base class */
008225    pVCur->pVtab = pVtab;
008226  
008227    /* Initialize vdbe cursor object */
008228    pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
008229    if( pCur ){
008230      pCur->uc.pVCur = pVCur;
008231      pVtab->nRef++;
008232    }else{
008233      assert( db->mallocFailed );
008234      pModule->xClose(pVCur);
008235      goto no_mem;
008236    }
008237    break;
008238  }
008239  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008240  
008241  #ifndef SQLITE_OMIT_VIRTUALTABLE
008242  /* Opcode: VCheck P1 P2 P3 P4 *
008243  **
008244  ** P4 is a pointer to a Table object that is a virtual table in schema P1
008245  ** that supports the xIntegrity() method.  This opcode runs the xIntegrity()
008246  ** method for that virtual table, using P3 as the integer argument.  If
008247  ** an error is reported back, the table name is prepended to the error
008248  ** message and that message is stored in P2.  If no errors are seen,
008249  ** register P2 is set to NULL.
008250  */
008251  case OP_VCheck: {             /* out2 */
008252    Table *pTab;
008253    sqlite3_vtab *pVtab;
008254    const sqlite3_module *pModule;
008255    char *zErr = 0;
008256  
008257    pOut = &aMem[pOp->p2];
008258    sqlite3VdbeMemSetNull(pOut);  /* Innocent until proven guilty */
008259    assert( pOp->p4type==P4_TABLEREF );
008260    pTab = pOp->p4.pTab;
008261    assert( pTab!=0 );
008262    assert( pTab->nTabRef>0 );
008263    assert( IsVirtual(pTab) );
008264    if( pTab->u.vtab.p==0 ) break;
008265    pVtab = pTab->u.vtab.p->pVtab;
008266    assert( pVtab!=0 );
008267    pModule = pVtab->pModule;
008268    assert( pModule!=0 );
008269    assert( pModule->iVersion>=4 );
008270    assert( pModule->xIntegrity!=0 );
008271    sqlite3VtabLock(pTab->u.vtab.p);
008272    assert( pOp->p1>=0 && pOp->p1<db->nDb );
008273    rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName,
008274                             pOp->p3, &zErr);
008275    sqlite3VtabUnlock(pTab->u.vtab.p);
008276    if( rc ){
008277      sqlite3_free(zErr);
008278      goto abort_due_to_error;
008279    }
008280    if( zErr ){
008281      sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free);
008282    }
008283    break;
008284  }
008285  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008286  
008287  #ifndef SQLITE_OMIT_VIRTUALTABLE
008288  /* Opcode: VInitIn P1 P2 P3 * *
008289  ** Synopsis: r[P2]=ValueList(P1,P3)
008290  **
008291  ** Set register P2 to be a pointer to a ValueList object for cursor P1
008292  ** with cache register P3 and output register P3+1.  This ValueList object
008293  ** can be used as the first argument to sqlite3_vtab_in_first() and
008294  ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
008295  ** cursor.  Register P3 is used to hold the values returned by
008296  ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
008297  */
008298  case OP_VInitIn: {        /* out2, ncycle */
008299    VdbeCursor *pC;         /* The cursor containing the RHS values */
008300    ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
008301  
008302    pC = p->apCsr[pOp->p1];
008303    pRhs = sqlite3_malloc64( sizeof(*pRhs) );
008304    if( pRhs==0 ) goto no_mem;
008305    pRhs->pCsr = pC->uc.pCursor;
008306    pRhs->pOut = &aMem[pOp->p3];
008307    pOut = out2Prerelease(p, pOp);
008308    pOut->flags = MEM_Null;
008309    sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
008310    break;
008311  }
008312  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008313  
008314  
008315  #ifndef SQLITE_OMIT_VIRTUALTABLE
008316  /* Opcode: VFilter P1 P2 P3 P4 *
008317  ** Synopsis: iplan=r[P3] zplan='P4'
008318  **
008319  ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
008320  ** the filtered result set is empty.
008321  **
008322  ** P4 is either NULL or a string that was generated by the xBestIndex
008323  ** method of the module.  The interpretation of the P4 string is left
008324  ** to the module implementation.
008325  **
008326  ** This opcode invokes the xFilter method on the virtual table specified
008327  ** by P1.  The integer query plan parameter to xFilter is stored in register
008328  ** P3. Register P3+1 stores the argc parameter to be passed to the
008329  ** xFilter method. Registers P3+2..P3+1+argc are the argc
008330  ** additional parameters which are passed to
008331  ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
008332  **
008333  ** A jump is made to P2 if the result set after filtering would be empty.
008334  */
008335  case OP_VFilter: {   /* jump, ncycle */
008336    int nArg;
008337    int iQuery;
008338    const sqlite3_module *pModule;
008339    Mem *pQuery;
008340    Mem *pArgc;
008341    sqlite3_vtab_cursor *pVCur;
008342    sqlite3_vtab *pVtab;
008343    VdbeCursor *pCur;
008344    int res;
008345    int i;
008346    Mem **apArg;
008347  
008348    pQuery = &aMem[pOp->p3];
008349    pArgc = &pQuery[1];
008350    pCur = p->apCsr[pOp->p1];
008351    assert( memIsValid(pQuery) );
008352    REGISTER_TRACE(pOp->p3, pQuery);
008353    assert( pCur!=0 );
008354    assert( pCur->eCurType==CURTYPE_VTAB );
008355    pVCur = pCur->uc.pVCur;
008356    pVtab = pVCur->pVtab;
008357    pModule = pVtab->pModule;
008358  
008359    /* Grab the index number and argc parameters */
008360    assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
008361    nArg = (int)pArgc->u.i;
008362    iQuery = (int)pQuery->u.i;
008363  
008364    /* Invoke the xFilter method */
008365    apArg = p->apArg;
008366    for(i = 0; i<nArg; i++){
008367      apArg[i] = &pArgc[i+1];
008368    }
008369    rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
008370    sqlite3VtabImportErrmsg(p, pVtab);
008371    if( rc ) goto abort_due_to_error;
008372    res = pModule->xEof(pVCur);
008373    pCur->nullRow = 0;
008374    VdbeBranchTaken(res!=0,2);
008375    if( res ) goto jump_to_p2;
008376    break;
008377  }
008378  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008379  
008380  #ifndef SQLITE_OMIT_VIRTUALTABLE
008381  /* Opcode: VColumn P1 P2 P3 * P5
008382  ** Synopsis: r[P3]=vcolumn(P2)
008383  **
008384  ** Store in register P3 the value of the P2-th column of
008385  ** the current row of the virtual-table of cursor P1.
008386  **
008387  ** If the VColumn opcode is being used to fetch the value of
008388  ** an unchanging column during an UPDATE operation, then the P5
008389  ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
008390  ** function to return true inside the xColumn method of the virtual
008391  ** table implementation.  The P5 column might also contain other
008392  ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
008393  ** unused by OP_VColumn.
008394  */
008395  case OP_VColumn: {           /* ncycle */
008396    sqlite3_vtab *pVtab;
008397    const sqlite3_module *pModule;
008398    Mem *pDest;
008399    sqlite3_context sContext;
008400    FuncDef nullFunc;
008401  
008402    VdbeCursor *pCur = p->apCsr[pOp->p1];
008403    assert( pCur!=0 );
008404    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
008405    pDest = &aMem[pOp->p3];
008406    memAboutToChange(p, pDest);
008407    if( pCur->nullRow ){
008408      sqlite3VdbeMemSetNull(pDest);
008409      break;
008410    }
008411    assert( pCur->eCurType==CURTYPE_VTAB );
008412    pVtab = pCur->uc.pVCur->pVtab;
008413    pModule = pVtab->pModule;
008414    assert( pModule->xColumn );
008415    memset(&sContext, 0, sizeof(sContext));
008416    sContext.pOut = pDest;
008417    sContext.enc = encoding;
008418    nullFunc.pUserData = 0;
008419    nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE;
008420    sContext.pFunc = &nullFunc;
008421    assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
008422    if( pOp->p5 & OPFLAG_NOCHNG ){
008423      sqlite3VdbeMemSetNull(pDest);
008424      pDest->flags = MEM_Null|MEM_Zero;
008425      pDest->u.nZero = 0;
008426    }else{
008427      MemSetTypeFlag(pDest, MEM_Null);
008428    }
008429    rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
008430    sqlite3VtabImportErrmsg(p, pVtab);
008431    if( sContext.isError>0 ){
008432      sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
008433      rc = sContext.isError;
008434    }
008435    sqlite3VdbeChangeEncoding(pDest, encoding);
008436    REGISTER_TRACE(pOp->p3, pDest);
008437    UPDATE_MAX_BLOBSIZE(pDest);
008438  
008439    if( rc ) goto abort_due_to_error;
008440    break;
008441  }
008442  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008443  
008444  #ifndef SQLITE_OMIT_VIRTUALTABLE
008445  /* Opcode: VNext P1 P2 * * *
008446  **
008447  ** Advance virtual table P1 to the next row in its result set and
008448  ** jump to instruction P2.  Or, if the virtual table has reached
008449  ** the end of its result set, then fall through to the next instruction.
008450  */
008451  case OP_VNext: {   /* jump, ncycle */
008452    sqlite3_vtab *pVtab;
008453    const sqlite3_module *pModule;
008454    int res;
008455    VdbeCursor *pCur;
008456  
008457    pCur = p->apCsr[pOp->p1];
008458    assert( pCur!=0 );
008459    assert( pCur->eCurType==CURTYPE_VTAB );
008460    if( pCur->nullRow ){
008461      break;
008462    }
008463    pVtab = pCur->uc.pVCur->pVtab;
008464    pModule = pVtab->pModule;
008465    assert( pModule->xNext );
008466  
008467    /* Invoke the xNext() method of the module. There is no way for the
008468    ** underlying implementation to return an error if one occurs during
008469    ** xNext(). Instead, if an error occurs, true is returned (indicating that
008470    ** data is available) and the error code returned when xColumn or
008471    ** some other method is next invoked on the save virtual table cursor.
008472    */
008473    rc = pModule->xNext(pCur->uc.pVCur);
008474    sqlite3VtabImportErrmsg(p, pVtab);
008475    if( rc ) goto abort_due_to_error;
008476    res = pModule->xEof(pCur->uc.pVCur);
008477    VdbeBranchTaken(!res,2);
008478    if( !res ){
008479      /* If there is data, jump to P2 */
008480      goto jump_to_p2_and_check_for_interrupt;
008481    }
008482    goto check_for_interrupt;
008483  }
008484  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008485  
008486  #ifndef SQLITE_OMIT_VIRTUALTABLE
008487  /* Opcode: VRename P1 * * P4 *
008488  **
008489  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008490  ** This opcode invokes the corresponding xRename method. The value
008491  ** in register P1 is passed as the zName argument to the xRename method.
008492  */
008493  case OP_VRename: {
008494    sqlite3_vtab *pVtab;
008495    Mem *pName;
008496    int isLegacy;
008497   
008498    isLegacy = (db->flags & SQLITE_LegacyAlter);
008499    db->flags |= SQLITE_LegacyAlter;
008500    pVtab = pOp->p4.pVtab->pVtab;
008501    pName = &aMem[pOp->p1];
008502    assert( pVtab->pModule->xRename );
008503    assert( memIsValid(pName) );
008504    assert( p->readOnly==0 );
008505    REGISTER_TRACE(pOp->p1, pName);
008506    assert( pName->flags & MEM_Str );
008507    testcase( pName->enc==SQLITE_UTF8 );
008508    testcase( pName->enc==SQLITE_UTF16BE );
008509    testcase( pName->enc==SQLITE_UTF16LE );
008510    rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
008511    if( rc ) goto abort_due_to_error;
008512    rc = pVtab->pModule->xRename(pVtab, pName->z);
008513    if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
008514    sqlite3VtabImportErrmsg(p, pVtab);
008515    p->expired = 0;
008516    if( rc ) goto abort_due_to_error;
008517    break;
008518  }
008519  #endif
008520  
008521  #ifndef SQLITE_OMIT_VIRTUALTABLE
008522  /* Opcode: VUpdate P1 P2 P3 P4 P5
008523  ** Synopsis: data=r[P3@P2]
008524  **
008525  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008526  ** This opcode invokes the corresponding xUpdate method. P2 values
008527  ** are contiguous memory cells starting at P3 to pass to the xUpdate
008528  ** invocation. The value in register (P3+P2-1) corresponds to the
008529  ** p2th element of the argv array passed to xUpdate.
008530  **
008531  ** The xUpdate method will do a DELETE or an INSERT or both.
008532  ** The argv[0] element (which corresponds to memory cell P3)
008533  ** is the rowid of a row to delete.  If argv[0] is NULL then no
008534  ** deletion occurs.  The argv[1] element is the rowid of the new
008535  ** row.  This can be NULL to have the virtual table select the new
008536  ** rowid for itself.  The subsequent elements in the array are
008537  ** the values of columns in the new row.
008538  **
008539  ** If P2==1 then no insert is performed.  argv[0] is the rowid of
008540  ** a row to delete.
008541  **
008542  ** P1 is a boolean flag. If it is set to true and the xUpdate call
008543  ** is successful, then the value returned by sqlite3_last_insert_rowid()
008544  ** is set to the value of the rowid for the row just inserted.
008545  **
008546  ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
008547  ** apply in the case of a constraint failure on an insert or update.
008548  */
008549  case OP_VUpdate: {
008550    sqlite3_vtab *pVtab;
008551    const sqlite3_module *pModule;
008552    int nArg;
008553    int i;
008554    sqlite_int64 rowid = 0;
008555    Mem **apArg;
008556    Mem *pX;
008557  
008558    assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
008559         || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
008560    );
008561    assert( p->readOnly==0 );
008562    if( db->mallocFailed ) goto no_mem;
008563    sqlite3VdbeIncrWriteCounter(p, 0);
008564    pVtab = pOp->p4.pVtab->pVtab;
008565    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
008566      rc = SQLITE_LOCKED;
008567      goto abort_due_to_error;
008568    }
008569    pModule = pVtab->pModule;
008570    nArg = pOp->p2;
008571    assert( pOp->p4type==P4_VTAB );
008572    if( ALWAYS(pModule->xUpdate) ){
008573      u8 vtabOnConflict = db->vtabOnConflict;
008574      apArg = p->apArg;
008575      pX = &aMem[pOp->p3];
008576      for(i=0; i<nArg; i++){
008577        assert( memIsValid(pX) );
008578        memAboutToChange(p, pX);
008579        apArg[i] = pX;
008580        pX++;
008581      }
008582      db->vtabOnConflict = pOp->p5;
008583      rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
008584      db->vtabOnConflict = vtabOnConflict;
008585      sqlite3VtabImportErrmsg(p, pVtab);
008586      if( rc==SQLITE_OK && pOp->p1 ){
008587        assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
008588        db->lastRowid = rowid;
008589      }
008590      if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
008591        if( pOp->p5==OE_Ignore ){
008592          rc = SQLITE_OK;
008593        }else{
008594          p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
008595        }
008596      }else{
008597        p->nChange++;
008598      }
008599      if( rc ) goto abort_due_to_error;
008600    }
008601    break;
008602  }
008603  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008604  
008605  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
008606  /* Opcode: Pagecount P1 P2 * * *
008607  **
008608  ** Write the current number of pages in database P1 to memory cell P2.
008609  */
008610  case OP_Pagecount: {            /* out2 */
008611    pOut = out2Prerelease(p, pOp);
008612    pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
008613    break;
008614  }
008615  #endif
008616  
008617  
008618  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
008619  /* Opcode: MaxPgcnt P1 P2 P3 * *
008620  **
008621  ** Try to set the maximum page count for database P1 to the value in P3.
008622  ** Do not let the maximum page count fall below the current page count and
008623  ** do not change the maximum page count value if P3==0.
008624  **
008625  ** Store the maximum page count after the change in register P2.
008626  */
008627  case OP_MaxPgcnt: {            /* out2 */
008628    unsigned int newMax;
008629    Btree *pBt;
008630  
008631    pOut = out2Prerelease(p, pOp);
008632    pBt = db->aDb[pOp->p1].pBt;
008633    newMax = 0;
008634    if( pOp->p3 ){
008635      newMax = sqlite3BtreeLastPage(pBt);
008636      if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
008637    }
008638    pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
008639    break;
008640  }
008641  #endif
008642  
008643  /* Opcode: Function P1 P2 P3 P4 *
008644  ** Synopsis: r[P3]=func(r[P2@NP])
008645  **
008646  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
008647  ** contains a pointer to the function to be run) with arguments taken
008648  ** from register P2 and successors.  The number of arguments is in
008649  ** the sqlite3_context object that P4 points to.
008650  ** The result of the function is stored
008651  ** in register P3.  Register P3 must not be one of the function inputs.
008652  **
008653  ** P1 is a 32-bit bitmask indicating whether or not each argument to the
008654  ** function was determined to be constant at compile time. If the first
008655  ** argument was constant then bit 0 of P1 is set. This is used to determine
008656  ** whether meta data associated with a user function argument using the
008657  ** sqlite3_set_auxdata() API may be safely retained until the next
008658  ** invocation of this opcode.
008659  **
008660  ** See also: AggStep, AggFinal, PureFunc
008661  */
008662  /* Opcode: PureFunc P1 P2 P3 P4 *
008663  ** Synopsis: r[P3]=func(r[P2@NP])
008664  **
008665  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
008666  ** contains a pointer to the function to be run) with arguments taken
008667  ** from register P2 and successors.  The number of arguments is in
008668  ** the sqlite3_context object that P4 points to.
008669  ** The result of the function is stored
008670  ** in register P3.  Register P3 must not be one of the function inputs.
008671  **
008672  ** P1 is a 32-bit bitmask indicating whether or not each argument to the
008673  ** function was determined to be constant at compile time. If the first
008674  ** argument was constant then bit 0 of P1 is set. This is used to determine
008675  ** whether meta data associated with a user function argument using the
008676  ** sqlite3_set_auxdata() API may be safely retained until the next
008677  ** invocation of this opcode.
008678  **
008679  ** This opcode works exactly like OP_Function.  The only difference is in
008680  ** its name.  This opcode is used in places where the function must be
008681  ** purely non-deterministic.  Some built-in date/time functions can be
008682  ** either deterministic of non-deterministic, depending on their arguments.
008683  ** When those function are used in a non-deterministic way, they will check
008684  ** to see if they were called using OP_PureFunc instead of OP_Function, and
008685  ** if they were, they throw an error.
008686  **
008687  ** See also: AggStep, AggFinal, Function
008688  */
008689  case OP_PureFunc:              /* group */
008690  case OP_Function: {            /* group */
008691    int i;
008692    sqlite3_context *pCtx;
008693  
008694    assert( pOp->p4type==P4_FUNCCTX );
008695    pCtx = pOp->p4.pCtx;
008696  
008697    /* If this function is inside of a trigger, the register array in aMem[]
008698    ** might change from one evaluation to the next.  The next block of code
008699    ** checks to see if the register array has changed, and if so it
008700    ** reinitializes the relevant parts of the sqlite3_context object */
008701    pOut = &aMem[pOp->p3];
008702    if( pCtx->pOut != pOut ){
008703      pCtx->pVdbe = p;
008704      pCtx->pOut = pOut;
008705      pCtx->enc = encoding;
008706      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
008707    }
008708    assert( pCtx->pVdbe==p );
008709  
008710    memAboutToChange(p, pOut);
008711  #ifdef SQLITE_DEBUG
008712    for(i=0; i<pCtx->argc; i++){
008713      assert( memIsValid(pCtx->argv[i]) );
008714      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
008715    }
008716  #endif
008717    MemSetTypeFlag(pOut, MEM_Null);
008718    assert( pCtx->isError==0 );
008719    (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
008720  
008721    /* If the function returned an error, throw an exception */
008722    if( pCtx->isError ){
008723      if( pCtx->isError>0 ){
008724        sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
008725        rc = pCtx->isError;
008726      }
008727      sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
008728      pCtx->isError = 0;
008729      if( rc ) goto abort_due_to_error;
008730    }
008731  
008732    assert( (pOut->flags&MEM_Str)==0
008733         || pOut->enc==encoding
008734         || db->mallocFailed );
008735    assert( !sqlite3VdbeMemTooBig(pOut) );
008736  
008737    REGISTER_TRACE(pOp->p3, pOut);
008738    UPDATE_MAX_BLOBSIZE(pOut);
008739    break;
008740  }
008741  
008742  /* Opcode: ClrSubtype P1 * * * *
008743  ** Synopsis:  r[P1].subtype = 0
008744  **
008745  ** Clear the subtype from register P1.
008746  */
008747  case OP_ClrSubtype: {   /* in1 */
008748    pIn1 = &aMem[pOp->p1];
008749    pIn1->flags &= ~MEM_Subtype;
008750    break;
008751  }
008752  
008753  /* Opcode: GetSubtype P1 P2 * * *
008754  ** Synopsis:  r[P2] = r[P1].subtype
008755  **
008756  ** Extract the subtype value from register P1 and write that subtype
008757  ** into register P2.  If P1 has no subtype, then P1 gets a NULL.
008758  */
008759  case OP_GetSubtype: {   /* in1 out2 */
008760    pIn1 = &aMem[pOp->p1];
008761    pOut = &aMem[pOp->p2];
008762    if( pIn1->flags & MEM_Subtype ){
008763      sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype);
008764    }else{
008765      sqlite3VdbeMemSetNull(pOut);
008766    }
008767    break;
008768  }
008769  
008770  /* Opcode: SetSubtype P1 P2 * * *
008771  ** Synopsis:  r[P2].subtype = r[P1]
008772  **
008773  ** Set the subtype value of register P2 to the integer from register P1.
008774  ** If P1 is NULL, clear the subtype from p2.
008775  */
008776  case OP_SetSubtype: {   /* in1 out2 */
008777    pIn1 = &aMem[pOp->p1];
008778    pOut = &aMem[pOp->p2];
008779    if( pIn1->flags & MEM_Null ){
008780      pOut->flags &= ~MEM_Subtype;
008781    }else{
008782      assert( pIn1->flags & MEM_Int );
008783      pOut->flags |= MEM_Subtype;
008784      pOut->eSubtype = (u8)(pIn1->u.i & 0xff);
008785    }
008786    break;
008787  }
008788  
008789  /* Opcode: FilterAdd P1 * P3 P4 *
008790  ** Synopsis: filter(P1) += key(P3@P4)
008791  **
008792  ** Compute a hash on the P4 registers starting with r[P3] and
008793  ** add that hash to the bloom filter contained in r[P1].
008794  */
008795  case OP_FilterAdd: {
008796    u64 h;
008797  
008798    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
008799    pIn1 = &aMem[pOp->p1];
008800    assert( pIn1->flags & MEM_Blob );
008801    assert( pIn1->n>0 );
008802    h = filterHash(aMem, pOp);
008803  #ifdef SQLITE_DEBUG
008804    if( db->flags&SQLITE_VdbeTrace ){
008805      int ii;
008806      for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
008807        registerTrace(ii, &aMem[ii]);
008808      }
008809      printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
008810    }
008811  #endif
008812    h %= (pIn1->n*8);
008813    pIn1->z[h/8] |= 1<<(h&7);
008814    break;
008815  }
008816  
008817  /* Opcode: Filter P1 P2 P3 P4 *
008818  ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
008819  **
008820  ** Compute a hash on the key contained in the P4 registers starting
008821  ** with r[P3].  Check to see if that hash is found in the
008822  ** bloom filter hosted by register P1.  If it is not present then
008823  ** maybe jump to P2.  Otherwise fall through.
008824  **
008825  ** False negatives are harmless.  It is always safe to fall through,
008826  ** even if the value is in the bloom filter.  A false negative causes
008827  ** more CPU cycles to be used, but it should still yield the correct
008828  ** answer.  However, an incorrect answer may well arise from a
008829  ** false positive - if the jump is taken when it should fall through.
008830  */
008831  case OP_Filter: {          /* jump */
008832    u64 h;
008833  
008834    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
008835    pIn1 = &aMem[pOp->p1];
008836    assert( (pIn1->flags & MEM_Blob)!=0 );
008837    assert( pIn1->n >= 1 );
008838    h = filterHash(aMem, pOp);
008839  #ifdef SQLITE_DEBUG
008840    if( db->flags&SQLITE_VdbeTrace ){
008841      int ii;
008842      for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
008843        registerTrace(ii, &aMem[ii]);
008844      }
008845      printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
008846    }
008847  #endif
008848    h %= (pIn1->n*8);
008849    if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
008850      VdbeBranchTaken(1, 2);
008851      p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
008852      goto jump_to_p2;
008853    }else{
008854      p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
008855      VdbeBranchTaken(0, 2);
008856    }
008857    break;
008858  }
008859  
008860  /* Opcode: Trace P1 P2 * P4 *
008861  **
008862  ** Write P4 on the statement trace output if statement tracing is
008863  ** enabled.
008864  **
008865  ** Operand P1 must be 0x7fffffff and P2 must positive.
008866  */
008867  /* Opcode: Init P1 P2 P3 P4 *
008868  ** Synopsis: Start at P2
008869  **
008870  ** Programs contain a single instance of this opcode as the very first
008871  ** opcode.
008872  **
008873  ** If tracing is enabled (by the sqlite3_trace()) interface, then
008874  ** the UTF-8 string contained in P4 is emitted on the trace callback.
008875  ** Or if P4 is blank, use the string returned by sqlite3_sql().
008876  **
008877  ** If P2 is not zero, jump to instruction P2.
008878  **
008879  ** Increment the value of P1 so that OP_Once opcodes will jump the
008880  ** first time they are evaluated for this run.
008881  **
008882  ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
008883  ** error is encountered.
008884  */
008885  case OP_Trace:
008886  case OP_Init: {          /* jump0 */
008887    int i;
008888  #ifndef SQLITE_OMIT_TRACE
008889    char *zTrace;
008890  #endif
008891  
008892    /* If the P4 argument is not NULL, then it must be an SQL comment string.
008893    ** The "--" string is broken up to prevent false-positives with srcck1.c.
008894    **
008895    ** This assert() provides evidence for:
008896    ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
008897    ** would have been returned by the legacy sqlite3_trace() interface by
008898    ** using the X argument when X begins with "--" and invoking
008899    ** sqlite3_expanded_sql(P) otherwise.
008900    */
008901    assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
008902  
008903    /* OP_Init is always instruction 0 */
008904    assert( pOp==p->aOp || pOp->opcode==OP_Trace );
008905  
008906  #ifndef SQLITE_OMIT_TRACE
008907    if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
008908     && p->minWriteFileFormat!=254  /* tag-20220401a */
008909     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
008910    ){
008911  #ifndef SQLITE_OMIT_DEPRECATED
008912      if( db->mTrace & SQLITE_TRACE_LEGACY ){
008913        char *z = sqlite3VdbeExpandSql(p, zTrace);
008914        db->trace.xLegacy(db->pTraceArg, z);
008915        sqlite3_free(z);
008916      }else
008917  #endif
008918      if( db->nVdbeExec>1 ){
008919        char *z = sqlite3MPrintf(db, "-- %s", zTrace);
008920        (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
008921        sqlite3DbFree(db, z);
008922      }else{
008923        (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
008924      }
008925    }
008926  #ifdef SQLITE_USE_FCNTL_TRACE
008927    zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
008928    if( zTrace ){
008929      int j;
008930      for(j=0; j<db->nDb; j++){
008931        if( DbMaskTest(p->btreeMask, j)==0 ) continue;
008932        sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
008933      }
008934    }
008935  #endif /* SQLITE_USE_FCNTL_TRACE */
008936  #ifdef SQLITE_DEBUG
008937    if( (db->flags & SQLITE_SqlTrace)!=0
008938     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
008939    ){
008940      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
008941    }
008942  #endif /* SQLITE_DEBUG */
008943  #endif /* SQLITE_OMIT_TRACE */
008944    assert( pOp->p2>0 );
008945    if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
008946      if( pOp->opcode==OP_Trace ) break;
008947      for(i=1; i<p->nOp; i++){
008948        if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
008949      }
008950      pOp->p1 = 0;
008951    }
008952    pOp->p1++;
008953    p->aCounter[SQLITE_STMTSTATUS_RUN]++;
008954    goto jump_to_p2;
008955  }
008956  
008957  #ifdef SQLITE_ENABLE_CURSOR_HINTS
008958  /* Opcode: CursorHint P1 * * P4 *
008959  **
008960  ** Provide a hint to cursor P1 that it only needs to return rows that
008961  ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
008962  ** to values currently held in registers.  TK_COLUMN terms in the P4
008963  ** expression refer to columns in the b-tree to which cursor P1 is pointing.
008964  */
008965  case OP_CursorHint: {
008966    VdbeCursor *pC;
008967  
008968    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008969    assert( pOp->p4type==P4_EXPR );
008970    pC = p->apCsr[pOp->p1];
008971    if( pC ){
008972      assert( pC->eCurType==CURTYPE_BTREE );
008973      sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
008974                             pOp->p4.pExpr, aMem);
008975    }
008976    break;
008977  }
008978  #endif /* SQLITE_ENABLE_CURSOR_HINTS */
008979  
008980  #ifdef SQLITE_DEBUG
008981  /* Opcode:  Abortable   * * * * *
008982  **
008983  ** Verify that an Abort can happen.  Assert if an Abort at this point
008984  ** might cause database corruption.  This opcode only appears in debugging
008985  ** builds.
008986  **
008987  ** An Abort is safe if either there have been no writes, or if there is
008988  ** an active statement journal.
008989  */
008990  case OP_Abortable: {
008991    sqlite3VdbeAssertAbortable(p);
008992    break;
008993  }
008994  #endif
008995  
008996  #ifdef SQLITE_DEBUG
008997  /* Opcode:  ReleaseReg   P1 P2 P3 * P5
008998  ** Synopsis: release r[P1@P2] mask P3
008999  **
009000  ** Release registers from service.  Any content that was in the
009001  ** the registers is unreliable after this opcode completes.
009002  **
009003  ** The registers released will be the P2 registers starting at P1,
009004  ** except if bit ii of P3 set, then do not release register P1+ii.
009005  ** In other words, P3 is a mask of registers to preserve.
009006  **
009007  ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
009008  ** that if the content of the released register was set using OP_SCopy,
009009  ** a change to the value of the source register for the OP_SCopy will no longer
009010  ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
009011  **
009012  ** If P5 is set, then all released registers have their type set
009013  ** to MEM_Undefined so that any subsequent attempt to read the released
009014  ** register (before it is reinitialized) will generate an assertion fault.
009015  **
009016  ** P5 ought to be set on every call to this opcode.
009017  ** However, there are places in the code generator will release registers
009018  ** before their are used, under the (valid) assumption that the registers
009019  ** will not be reallocated for some other purpose before they are used and
009020  ** hence are safe to release.
009021  **
009022  ** This opcode is only available in testing and debugging builds.  It is
009023  ** not generated for release builds.  The purpose of this opcode is to help
009024  ** validate the generated bytecode.  This opcode does not actually contribute
009025  ** to computing an answer.
009026  */
009027  case OP_ReleaseReg: {
009028    Mem *pMem;
009029    int i;
009030    u32 constMask;
009031    assert( pOp->p1>0 );
009032    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
009033    pMem = &aMem[pOp->p1];
009034    constMask = pOp->p3;
009035    for(i=0; i<pOp->p2; i++, pMem++){
009036      if( i>=32 || (constMask & MASKBIT32(i))==0 ){
009037        pMem->pScopyFrom = 0;
009038        if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
009039      }
009040    }
009041    break;
009042  }
009043  #endif
009044  
009045  /* Opcode: Noop * * * * *
009046  **
009047  ** Do nothing.  Continue downward to the next opcode.
009048  */
009049  /* Opcode: Explain P1 P2 P3 P4 *
009050  **
009051  ** This is the same as OP_Noop during normal query execution.  The
009052  ** purpose of this opcode is to hold information about the query
009053  ** plan for the purpose of EXPLAIN QUERY PLAN output.
009054  **
009055  ** The P4 value is human-readable text that describes the query plan
009056  ** element.  Something like "SCAN t1" or "SEARCH t2 USING INDEX t2x1".
009057  **
009058  ** The P1 value is the ID of the current element and P2 is the parent
009059  ** element for the case of nested query plan elements.  If P2 is zero
009060  ** then this element is a top-level element.
009061  **
009062  ** For loop elements, P3 is the estimated code of each invocation of this
009063  ** element.
009064  **
009065  ** As with all opcodes, the meanings of the parameters for OP_Explain
009066  ** are subject to change from one release to the next.  Applications
009067  ** should not attempt to interpret or use any of the information
009068  ** contained in the OP_Explain opcode.  The information provided by this
009069  ** opcode is intended for testing and debugging use only.
009070  */
009071  default: {          /* This is really OP_Noop, OP_Explain */
009072    assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
009073  
009074    break;
009075  }
009076  
009077  /*****************************************************************************
009078  ** The cases of the switch statement above this line should all be indented
009079  ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
009080  ** readability.  From this point on down, the normal indentation rules are
009081  ** restored.
009082  *****************************************************************************/
009083      }
009084  
009085  #if defined(VDBE_PROFILE)
009086      *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
009087      pnCycle = 0;
009088  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
009089      if( pnCycle ){
009090        *pnCycle += sqlite3Hwtime();
009091        pnCycle = 0;
009092      }
009093  #endif
009094  
009095      /* The following code adds nothing to the actual functionality
009096      ** of the program.  It is only here for testing and debugging.
009097      ** On the other hand, it does burn CPU cycles every time through
009098      ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
009099      */
009100  #ifndef NDEBUG
009101      assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
009102  
009103  #ifdef SQLITE_DEBUG
009104      if( db->flags & SQLITE_VdbeTrace ){
009105        u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
009106        if( rc!=0 ) printf("rc=%d\n",rc);
009107        if( opProperty & (OPFLG_OUT2) ){
009108          registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
009109        }
009110        if( opProperty & OPFLG_OUT3 ){
009111          registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
009112        }
009113        if( opProperty==0xff ){
009114          /* Never happens.  This code exists to avoid a harmless linkage
009115          ** warning about sqlite3VdbeRegisterDump() being defined but not
009116          ** used. */
009117          sqlite3VdbeRegisterDump(p);
009118        }
009119      }
009120  #endif  /* SQLITE_DEBUG */
009121  #endif  /* NDEBUG */
009122    }  /* The end of the for(;;) loop the loops through opcodes */
009123  
009124    /* If we reach this point, it means that execution is finished with
009125    ** an error of some kind.
009126    */
009127  abort_due_to_error:
009128    if( db->mallocFailed ){
009129      rc = SQLITE_NOMEM_BKPT;
009130    }else if( rc==SQLITE_IOERR_CORRUPTFS ){
009131      rc = SQLITE_CORRUPT_BKPT;
009132    }
009133    assert( rc );
009134  #ifdef SQLITE_DEBUG
009135    if( db->flags & SQLITE_VdbeTrace ){
009136      const char *zTrace = p->zSql;
009137      if( zTrace==0 ){
009138        if( aOp[0].opcode==OP_Trace ){
009139          zTrace = aOp[0].p4.z;
009140        }
009141        if( zTrace==0 ) zTrace = "???";
009142      }
009143      printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
009144    }
009145  #endif
009146    if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
009147      sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
009148    }
009149    p->rc = rc;
009150    sqlite3SystemError(db, rc);
009151    testcase( sqlite3GlobalConfig.xLog!=0 );
009152    sqlite3_log(rc, "statement aborts at %d: [%s] %s",
009153                     (int)(pOp - aOp), p->zSql, p->zErrMsg);
009154    if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
009155    if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
009156    if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
009157      db->flags |= SQLITE_CorruptRdOnly;
009158    }
009159    rc = SQLITE_ERROR;
009160    if( resetSchemaOnFault>0 ){
009161      sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
009162    }
009163  
009164    /* This is the only way out of this procedure.  We have to
009165    ** release the mutexes on btrees that were acquired at the
009166    ** top. */
009167  vdbe_return:
009168  #if defined(VDBE_PROFILE)
009169    if( pnCycle ){
009170      *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
009171      pnCycle = 0;
009172    }
009173  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
009174    if( pnCycle ){
009175      *pnCycle += sqlite3Hwtime();
009176      pnCycle = 0;
009177    }
009178  #endif
009179  
009180  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
009181    while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
009182      nProgressLimit += db->nProgressOps;
009183      if( db->xProgress(db->pProgressArg) ){
009184        nProgressLimit = LARGEST_UINT64;
009185        rc = SQLITE_INTERRUPT;
009186        goto abort_due_to_error;
009187      }
009188    }
009189  #endif
009190    p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
009191    if( DbMaskNonZero(p->lockMask) ){
009192      sqlite3VdbeLeave(p);
009193    }
009194    assert( rc!=SQLITE_OK || nExtraDelete==0
009195         || sqlite3_strlike("DELETE%",p->zSql,0)!=0
009196    );
009197    return rc;
009198  
009199    /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
009200    ** is encountered.
009201    */
009202  too_big:
009203    sqlite3VdbeError(p, "string or blob too big");
009204    rc = SQLITE_TOOBIG;
009205    goto abort_due_to_error;
009206  
009207    /* Jump to here if a malloc() fails.
009208    */
009209  no_mem:
009210    sqlite3OomFault(db);
009211    sqlite3VdbeError(p, "out of memory");
009212    rc = SQLITE_NOMEM_BKPT;
009213    goto abort_due_to_error;
009214  
009215    /* Jump to here if the sqlite3_interrupt() API sets the interrupt
009216    ** flag.
009217    */
009218  abort_due_to_interrupt:
009219    assert( AtomicLoad(&db->u1.isInterrupted) );
009220    rc = SQLITE_INTERRUPT;
009221    goto abort_due_to_error;
009222  }