000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** The code in this file implements the function that runs the 000013 ** bytecode of a prepared statement. 000014 ** 000015 ** Various scripts scan this source file in order to generate HTML 000016 ** documentation, headers files, or other derived files. The formatting 000017 ** of the code in this file is, therefore, important. See other comments 000018 ** in this file for details. If in doubt, do not deviate from existing 000019 ** commenting and indentation practices when changing or adding code. 000020 */ 000021 #include "sqliteInt.h" 000022 #include "vdbeInt.h" 000023 000024 /* 000025 ** High-resolution hardware timer used for debugging and testing only. 000026 */ 000027 #if defined(VDBE_PROFILE) \ 000028 || defined(SQLITE_PERFORMANCE_TRACE) \ 000029 || defined(SQLITE_ENABLE_STMT_SCANSTATUS) 000030 # include "hwtime.h" 000031 #endif 000032 000033 /* 000034 ** Invoke this macro on memory cells just prior to changing the 000035 ** value of the cell. This macro verifies that shallow copies are 000036 ** not misused. A shallow copy of a string or blob just copies a 000037 ** pointer to the string or blob, not the content. If the original 000038 ** is changed while the copy is still in use, the string or blob might 000039 ** be changed out from under the copy. This macro verifies that nothing 000040 ** like that ever happens. 000041 */ 000042 #ifdef SQLITE_DEBUG 000043 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 000044 #else 000045 # define memAboutToChange(P,M) 000046 #endif 000047 000048 /* 000049 ** The following global variable is incremented every time a cursor 000050 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 000051 ** procedures use this information to make sure that indices are 000052 ** working correctly. This variable has no function other than to 000053 ** help verify the correct operation of the library. 000054 */ 000055 #ifdef SQLITE_TEST 000056 int sqlite3_search_count = 0; 000057 #endif 000058 000059 /* 000060 ** When this global variable is positive, it gets decremented once before 000061 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 000062 ** field of the sqlite3 structure is set in order to simulate an interrupt. 000063 ** 000064 ** This facility is used for testing purposes only. It does not function 000065 ** in an ordinary build. 000066 */ 000067 #ifdef SQLITE_TEST 000068 int sqlite3_interrupt_count = 0; 000069 #endif 000070 000071 /* 000072 ** The next global variable is incremented each type the OP_Sort opcode 000073 ** is executed. The test procedures use this information to make sure that 000074 ** sorting is occurring or not occurring at appropriate times. This variable 000075 ** has no function other than to help verify the correct operation of the 000076 ** library. 000077 */ 000078 #ifdef SQLITE_TEST 000079 int sqlite3_sort_count = 0; 000080 #endif 000081 000082 /* 000083 ** The next global variable records the size of the largest MEM_Blob 000084 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 000085 ** use this information to make sure that the zero-blob functionality 000086 ** is working correctly. This variable has no function other than to 000087 ** help verify the correct operation of the library. 000088 */ 000089 #ifdef SQLITE_TEST 000090 int sqlite3_max_blobsize = 0; 000091 static void updateMaxBlobsize(Mem *p){ 000092 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 000093 sqlite3_max_blobsize = p->n; 000094 } 000095 } 000096 #endif 000097 000098 /* 000099 ** This macro evaluates to true if either the update hook or the preupdate 000100 ** hook are enabled for database connect DB. 000101 */ 000102 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 000103 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 000104 #else 000105 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 000106 #endif 000107 000108 /* 000109 ** The next global variable is incremented each time the OP_Found opcode 000110 ** is executed. This is used to test whether or not the foreign key 000111 ** operation implemented using OP_FkIsZero is working. This variable 000112 ** has no function other than to help verify the correct operation of the 000113 ** library. 000114 */ 000115 #ifdef SQLITE_TEST 000116 int sqlite3_found_count = 0; 000117 #endif 000118 000119 /* 000120 ** Test a register to see if it exceeds the current maximum blob size. 000121 ** If it does, record the new maximum blob size. 000122 */ 000123 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 000124 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 000125 #else 000126 # define UPDATE_MAX_BLOBSIZE(P) 000127 #endif 000128 000129 #ifdef SQLITE_DEBUG 000130 /* This routine provides a convenient place to set a breakpoint during 000131 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 000132 ** each opcode is printed. Variables "pc" (program counter) and pOp are 000133 ** available to add conditionals to the breakpoint. GDB example: 000134 ** 000135 ** break test_trace_breakpoint if pc=22 000136 ** 000137 ** Other useful labels for breakpoints include: 000138 ** test_addop_breakpoint(pc,pOp) 000139 ** sqlite3CorruptError(lineno) 000140 ** sqlite3MisuseError(lineno) 000141 ** sqlite3CantopenError(lineno) 000142 */ 000143 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 000144 static u64 n = 0; 000145 (void)pc; 000146 (void)pOp; 000147 (void)v; 000148 n++; 000149 if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */ 000150 } 000151 #endif 000152 000153 /* 000154 ** Invoke the VDBE coverage callback, if that callback is defined. This 000155 ** feature is used for test suite validation only and does not appear an 000156 ** production builds. 000157 ** 000158 ** M is the type of branch. I is the direction taken for this instance of 000159 ** the branch. 000160 ** 000161 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 000162 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 000163 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 000164 ** 000165 ** In other words, if M is 2, then I is either 0 (for fall-through) or 000166 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 000167 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 000168 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 000169 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 000170 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 000171 ** depending on if the operands are less than, equal, or greater than. 000172 ** 000173 ** iSrcLine is the source code line (from the __LINE__ macro) that 000174 ** generated the VDBE instruction combined with flag bits. The source 000175 ** code line number is in the lower 24 bits of iSrcLine and the upper 000176 ** 8 bytes are flags. The lower three bits of the flags indicate 000177 ** values for I that should never occur. For example, if the branch is 000178 ** always taken, the flags should be 0x05 since the fall-through and 000179 ** alternate branch are never taken. If a branch is never taken then 000180 ** flags should be 0x06 since only the fall-through approach is allowed. 000181 ** 000182 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 000183 ** interested in equal or not-equal. In other words, I==0 and I==2 000184 ** should be treated as equivalent 000185 ** 000186 ** Since only a line number is retained, not the filename, this macro 000187 ** only works for amalgamation builds. But that is ok, since these macros 000188 ** should be no-ops except for special builds used to measure test coverage. 000189 */ 000190 #if !defined(SQLITE_VDBE_COVERAGE) 000191 # define VdbeBranchTaken(I,M) 000192 #else 000193 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 000194 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 000195 u8 mNever; 000196 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 000197 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 000198 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 000199 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 000200 I = 1<<I; 000201 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 000202 ** the flags indicate directions that the branch can never go. If 000203 ** a branch really does go in one of those directions, assert right 000204 ** away. */ 000205 mNever = iSrcLine >> 24; 000206 assert( (I & mNever)==0 ); 000207 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 000208 /* Invoke the branch coverage callback with three arguments: 000209 ** iSrcLine - the line number of the VdbeCoverage() macro, with 000210 ** flags removed. 000211 ** I - Mask of bits 0x07 indicating which cases are are 000212 ** fulfilled by this instance of the jump. 0x01 means 000213 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 000214 ** impossible cases (ex: if the comparison is never NULL) 000215 ** are filled in automatically so that the coverage 000216 ** measurement logic does not flag those impossible cases 000217 ** as missed coverage. 000218 ** M - Type of jump. Same as M argument above 000219 */ 000220 I |= mNever; 000221 if( M==2 ) I |= 0x04; 000222 if( M==4 ){ 000223 I |= 0x08; 000224 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 000225 } 000226 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 000227 iSrcLine&0xffffff, I, M); 000228 } 000229 #endif 000230 000231 /* 000232 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 000233 ** a pointer to a dynamically allocated string where some other entity 000234 ** is responsible for deallocating that string. Because the register 000235 ** does not control the string, it might be deleted without the register 000236 ** knowing it. 000237 ** 000238 ** This routine converts an ephemeral string into a dynamically allocated 000239 ** string that the register itself controls. In other words, it 000240 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 000241 */ 000242 #define Deephemeralize(P) \ 000243 if( ((P)->flags&MEM_Ephem)!=0 \ 000244 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 000245 000246 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 000247 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 000248 000249 /* 000250 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 000251 ** if we run out of memory. 000252 */ 000253 static VdbeCursor *allocateCursor( 000254 Vdbe *p, /* The virtual machine */ 000255 int iCur, /* Index of the new VdbeCursor */ 000256 int nField, /* Number of fields in the table or index */ 000257 u8 eCurType /* Type of the new cursor */ 000258 ){ 000259 /* Find the memory cell that will be used to store the blob of memory 000260 ** required for this VdbeCursor structure. It is convenient to use a 000261 ** vdbe memory cell to manage the memory allocation required for a 000262 ** VdbeCursor structure for the following reasons: 000263 ** 000264 ** * Sometimes cursor numbers are used for a couple of different 000265 ** purposes in a vdbe program. The different uses might require 000266 ** different sized allocations. Memory cells provide growable 000267 ** allocations. 000268 ** 000269 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 000270 ** be freed lazily via the sqlite3_release_memory() API. This 000271 ** minimizes the number of malloc calls made by the system. 000272 ** 000273 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 000274 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 000275 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 000276 */ 000277 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 000278 000279 int nByte; 000280 VdbeCursor *pCx = 0; 000281 nByte = 000282 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 000283 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 000284 000285 assert( iCur>=0 && iCur<p->nCursor ); 000286 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 000287 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 000288 p->apCsr[iCur] = 0; 000289 } 000290 000291 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 000292 ** the pMem used to hold space for the cursor has enough storage available 000293 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 000294 ** to hold cursors, it is faster to in-line the logic. */ 000295 assert( pMem->flags==MEM_Undefined ); 000296 assert( (pMem->flags & MEM_Dyn)==0 ); 000297 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 000298 if( pMem->szMalloc<nByte ){ 000299 if( pMem->szMalloc>0 ){ 000300 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 000301 } 000302 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 000303 if( pMem->zMalloc==0 ){ 000304 pMem->szMalloc = 0; 000305 return 0; 000306 } 000307 pMem->szMalloc = nByte; 000308 } 000309 000310 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 000311 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 000312 pCx->eCurType = eCurType; 000313 pCx->nField = nField; 000314 pCx->aOffset = &pCx->aType[nField]; 000315 if( eCurType==CURTYPE_BTREE ){ 000316 pCx->uc.pCursor = (BtCursor*) 000317 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 000318 sqlite3BtreeCursorZero(pCx->uc.pCursor); 000319 } 000320 return pCx; 000321 } 000322 000323 /* 000324 ** The string in pRec is known to look like an integer and to have a 000325 ** floating point value of rValue. Return true and set *piValue to the 000326 ** integer value if the string is in range to be an integer. Otherwise, 000327 ** return false. 000328 */ 000329 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 000330 i64 iValue; 000331 iValue = sqlite3RealToI64(rValue); 000332 if( sqlite3RealSameAsInt(rValue,iValue) ){ 000333 *piValue = iValue; 000334 return 1; 000335 } 000336 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 000337 } 000338 000339 /* 000340 ** Try to convert a value into a numeric representation if we can 000341 ** do so without loss of information. In other words, if the string 000342 ** looks like a number, convert it into a number. If it does not 000343 ** look like a number, leave it alone. 000344 ** 000345 ** If the bTryForInt flag is true, then extra effort is made to give 000346 ** an integer representation. Strings that look like floating point 000347 ** values but which have no fractional component (example: '48.00') 000348 ** will have a MEM_Int representation when bTryForInt is true. 000349 ** 000350 ** If bTryForInt is false, then if the input string contains a decimal 000351 ** point or exponential notation, the result is only MEM_Real, even 000352 ** if there is an exact integer representation of the quantity. 000353 */ 000354 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 000355 double rValue; 000356 u8 enc = pRec->enc; 000357 int rc; 000358 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 000359 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 000360 if( rc<=0 ) return; 000361 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 000362 pRec->flags |= MEM_Int; 000363 }else{ 000364 pRec->u.r = rValue; 000365 pRec->flags |= MEM_Real; 000366 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 000367 } 000368 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 000369 ** string representation after computing a numeric equivalent, because the 000370 ** string representation might not be the canonical representation for the 000371 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 000372 pRec->flags &= ~MEM_Str; 000373 } 000374 000375 /* 000376 ** Processing is determine by the affinity parameter: 000377 ** 000378 ** SQLITE_AFF_INTEGER: 000379 ** SQLITE_AFF_REAL: 000380 ** SQLITE_AFF_NUMERIC: 000381 ** Try to convert pRec to an integer representation or a 000382 ** floating-point representation if an integer representation 000383 ** is not possible. Note that the integer representation is 000384 ** always preferred, even if the affinity is REAL, because 000385 ** an integer representation is more space efficient on disk. 000386 ** 000387 ** SQLITE_AFF_FLEXNUM: 000388 ** If the value is text, then try to convert it into a number of 000389 ** some kind (integer or real) but do not make any other changes. 000390 ** 000391 ** SQLITE_AFF_TEXT: 000392 ** Convert pRec to a text representation. 000393 ** 000394 ** SQLITE_AFF_BLOB: 000395 ** SQLITE_AFF_NONE: 000396 ** No-op. pRec is unchanged. 000397 */ 000398 static void applyAffinity( 000399 Mem *pRec, /* The value to apply affinity to */ 000400 char affinity, /* The affinity to be applied */ 000401 u8 enc /* Use this text encoding */ 000402 ){ 000403 if( affinity>=SQLITE_AFF_NUMERIC ){ 000404 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 000405 || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM ); 000406 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 000407 if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){ 000408 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 000409 }else if( affinity<=SQLITE_AFF_REAL ){ 000410 sqlite3VdbeIntegerAffinity(pRec); 000411 } 000412 } 000413 }else if( affinity==SQLITE_AFF_TEXT ){ 000414 /* Only attempt the conversion to TEXT if there is an integer or real 000415 ** representation (blob and NULL do not get converted) but no string 000416 ** representation. It would be harmless to repeat the conversion if 000417 ** there is already a string rep, but it is pointless to waste those 000418 ** CPU cycles. */ 000419 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 000420 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 000421 testcase( pRec->flags & MEM_Int ); 000422 testcase( pRec->flags & MEM_Real ); 000423 testcase( pRec->flags & MEM_IntReal ); 000424 sqlite3VdbeMemStringify(pRec, enc, 1); 000425 } 000426 } 000427 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 000428 } 000429 } 000430 000431 /* 000432 ** Try to convert the type of a function argument or a result column 000433 ** into a numeric representation. Use either INTEGER or REAL whichever 000434 ** is appropriate. But only do the conversion if it is possible without 000435 ** loss of information and return the revised type of the argument. 000436 */ 000437 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 000438 int eType = sqlite3_value_type(pVal); 000439 if( eType==SQLITE_TEXT ){ 000440 Mem *pMem = (Mem*)pVal; 000441 applyNumericAffinity(pMem, 0); 000442 eType = sqlite3_value_type(pVal); 000443 } 000444 return eType; 000445 } 000446 000447 /* 000448 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 000449 ** not the internal Mem* type. 000450 */ 000451 void sqlite3ValueApplyAffinity( 000452 sqlite3_value *pVal, 000453 u8 affinity, 000454 u8 enc 000455 ){ 000456 applyAffinity((Mem *)pVal, affinity, enc); 000457 } 000458 000459 /* 000460 ** pMem currently only holds a string type (or maybe a BLOB that we can 000461 ** interpret as a string if we want to). Compute its corresponding 000462 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 000463 ** accordingly. 000464 */ 000465 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 000466 int rc; 000467 sqlite3_int64 ix; 000468 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 000469 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 000470 if( ExpandBlob(pMem) ){ 000471 pMem->u.i = 0; 000472 return MEM_Int; 000473 } 000474 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 000475 if( rc<=0 ){ 000476 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 000477 pMem->u.i = ix; 000478 return MEM_Int; 000479 }else{ 000480 return MEM_Real; 000481 } 000482 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 000483 pMem->u.i = ix; 000484 return MEM_Int; 000485 } 000486 return MEM_Real; 000487 } 000488 000489 /* 000490 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 000491 ** none. 000492 ** 000493 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 000494 ** But it does set pMem->u.r and pMem->u.i appropriately. 000495 */ 000496 static u16 numericType(Mem *pMem){ 000497 assert( (pMem->flags & MEM_Null)==0 000498 || pMem->db==0 || pMem->db->mallocFailed ); 000499 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ 000500 testcase( pMem->flags & MEM_Int ); 000501 testcase( pMem->flags & MEM_Real ); 000502 testcase( pMem->flags & MEM_IntReal ); 000503 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); 000504 } 000505 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 000506 testcase( pMem->flags & MEM_Str ); 000507 testcase( pMem->flags & MEM_Blob ); 000508 return computeNumericType(pMem); 000509 return 0; 000510 } 000511 000512 #ifdef SQLITE_DEBUG 000513 /* 000514 ** Write a nice string representation of the contents of cell pMem 000515 ** into buffer zBuf, length nBuf. 000516 */ 000517 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 000518 int f = pMem->flags; 000519 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 000520 if( f&MEM_Blob ){ 000521 int i; 000522 char c; 000523 if( f & MEM_Dyn ){ 000524 c = 'z'; 000525 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 000526 }else if( f & MEM_Static ){ 000527 c = 't'; 000528 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 000529 }else if( f & MEM_Ephem ){ 000530 c = 'e'; 000531 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 000532 }else{ 000533 c = 's'; 000534 } 000535 sqlite3_str_appendf(pStr, "%cx[", c); 000536 for(i=0; i<25 && i<pMem->n; i++){ 000537 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 000538 } 000539 sqlite3_str_appendf(pStr, "|"); 000540 for(i=0; i<25 && i<pMem->n; i++){ 000541 char z = pMem->z[i]; 000542 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 000543 } 000544 sqlite3_str_appendf(pStr,"]"); 000545 if( f & MEM_Zero ){ 000546 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 000547 } 000548 }else if( f & MEM_Str ){ 000549 int j; 000550 u8 c; 000551 if( f & MEM_Dyn ){ 000552 c = 'z'; 000553 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 000554 }else if( f & MEM_Static ){ 000555 c = 't'; 000556 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 000557 }else if( f & MEM_Ephem ){ 000558 c = 'e'; 000559 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 000560 }else{ 000561 c = 's'; 000562 } 000563 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 000564 for(j=0; j<25 && j<pMem->n; j++){ 000565 c = pMem->z[j]; 000566 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 000567 } 000568 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 000569 if( f & MEM_Term ){ 000570 sqlite3_str_appendf(pStr, "(0-term)"); 000571 } 000572 } 000573 } 000574 #endif 000575 000576 #ifdef SQLITE_DEBUG 000577 /* 000578 ** Print the value of a register for tracing purposes: 000579 */ 000580 static void memTracePrint(Mem *p){ 000581 if( p->flags & MEM_Undefined ){ 000582 printf(" undefined"); 000583 }else if( p->flags & MEM_Null ){ 000584 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 000585 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 000586 printf(" si:%lld", p->u.i); 000587 }else if( (p->flags & (MEM_IntReal))!=0 ){ 000588 printf(" ir:%lld", p->u.i); 000589 }else if( p->flags & MEM_Int ){ 000590 printf(" i:%lld", p->u.i); 000591 #ifndef SQLITE_OMIT_FLOATING_POINT 000592 }else if( p->flags & MEM_Real ){ 000593 printf(" r:%.17g", p->u.r); 000594 #endif 000595 }else if( sqlite3VdbeMemIsRowSet(p) ){ 000596 printf(" (rowset)"); 000597 }else{ 000598 StrAccum acc; 000599 char zBuf[1000]; 000600 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 000601 sqlite3VdbeMemPrettyPrint(p, &acc); 000602 printf(" %s", sqlite3StrAccumFinish(&acc)); 000603 } 000604 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 000605 } 000606 static void registerTrace(int iReg, Mem *p){ 000607 printf("R[%d] = ", iReg); 000608 memTracePrint(p); 000609 if( p->pScopyFrom ){ 000610 assert( p->pScopyFrom->bScopy ); 000611 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 000612 } 000613 printf("\n"); 000614 sqlite3VdbeCheckMemInvariants(p); 000615 } 000616 /**/ void sqlite3PrintMem(Mem *pMem){ 000617 memTracePrint(pMem); 000618 printf("\n"); 000619 fflush(stdout); 000620 } 000621 #endif 000622 000623 #ifdef SQLITE_DEBUG 000624 /* 000625 ** Show the values of all registers in the virtual machine. Used for 000626 ** interactive debugging. 000627 */ 000628 void sqlite3VdbeRegisterDump(Vdbe *v){ 000629 int i; 000630 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 000631 } 000632 #endif /* SQLITE_DEBUG */ 000633 000634 000635 #ifdef SQLITE_DEBUG 000636 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 000637 #else 000638 # define REGISTER_TRACE(R,M) 000639 #endif 000640 000641 #ifndef NDEBUG 000642 /* 000643 ** This function is only called from within an assert() expression. It 000644 ** checks that the sqlite3.nTransaction variable is correctly set to 000645 ** the number of non-transaction savepoints currently in the 000646 ** linked list starting at sqlite3.pSavepoint. 000647 ** 000648 ** Usage: 000649 ** 000650 ** assert( checkSavepointCount(db) ); 000651 */ 000652 static int checkSavepointCount(sqlite3 *db){ 000653 int n = 0; 000654 Savepoint *p; 000655 for(p=db->pSavepoint; p; p=p->pNext) n++; 000656 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 000657 return 1; 000658 } 000659 #endif 000660 000661 /* 000662 ** Return the register of pOp->p2 after first preparing it to be 000663 ** overwritten with an integer value. 000664 */ 000665 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 000666 sqlite3VdbeMemSetNull(pOut); 000667 pOut->flags = MEM_Int; 000668 return pOut; 000669 } 000670 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 000671 Mem *pOut; 000672 assert( pOp->p2>0 ); 000673 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000674 pOut = &p->aMem[pOp->p2]; 000675 memAboutToChange(p, pOut); 000676 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 000677 return out2PrereleaseWithClear(pOut); 000678 }else{ 000679 pOut->flags = MEM_Int; 000680 return pOut; 000681 } 000682 } 000683 000684 /* 000685 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 000686 ** with pOp->p3. Return the hash. 000687 */ 000688 static u64 filterHash(const Mem *aMem, const Op *pOp){ 000689 int i, mx; 000690 u64 h = 0; 000691 000692 assert( pOp->p4type==P4_INT32 ); 000693 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 000694 const Mem *p = &aMem[i]; 000695 if( p->flags & (MEM_Int|MEM_IntReal) ){ 000696 h += p->u.i; 000697 }else if( p->flags & MEM_Real ){ 000698 h += sqlite3VdbeIntValue(p); 000699 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 000700 /* All strings have the same hash and all blobs have the same hash, 000701 ** though, at least, those hashes are different from each other and 000702 ** from NULL. */ 000703 h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); 000704 } 000705 } 000706 return h; 000707 } 000708 000709 000710 /* 000711 ** For OP_Column, factor out the case where content is loaded from 000712 ** overflow pages, so that the code to implement this case is separate 000713 ** the common case where all content fits on the page. Factoring out 000714 ** the code reduces register pressure and helps the common case 000715 ** to run faster. 000716 */ 000717 static SQLITE_NOINLINE int vdbeColumnFromOverflow( 000718 VdbeCursor *pC, /* The BTree cursor from which we are reading */ 000719 int iCol, /* The column to read */ 000720 int t, /* The serial-type code for the column value */ 000721 i64 iOffset, /* Offset to the start of the content value */ 000722 u32 cacheStatus, /* Current Vdbe.cacheCtr value */ 000723 u32 colCacheCtr, /* Current value of the column cache counter */ 000724 Mem *pDest /* Store the value into this register. */ 000725 ){ 000726 int rc; 000727 sqlite3 *db = pDest->db; 000728 int encoding = pDest->enc; 000729 int len = sqlite3VdbeSerialTypeLen(t); 000730 assert( pC->eCurType==CURTYPE_BTREE ); 000731 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG; 000732 if( len > 4000 && pC->pKeyInfo==0 ){ 000733 /* Cache large column values that are on overflow pages using 000734 ** an RCStr (reference counted string) so that if they are reloaded, 000735 ** that do not have to be copied a second time. The overhead of 000736 ** creating and managing the cache is such that this is only 000737 ** profitable for larger TEXT and BLOB values. 000738 ** 000739 ** Only do this on table-btrees so that writes to index-btrees do not 000740 ** need to clear the cache. This buys performance in the common case 000741 ** in exchange for generality. 000742 */ 000743 VdbeTxtBlbCache *pCache; 000744 char *pBuf; 000745 if( pC->colCache==0 ){ 000746 pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) ); 000747 if( pC->pCache==0 ) return SQLITE_NOMEM; 000748 pC->colCache = 1; 000749 } 000750 pCache = pC->pCache; 000751 if( pCache->pCValue==0 000752 || pCache->iCol!=iCol 000753 || pCache->cacheStatus!=cacheStatus 000754 || pCache->colCacheCtr!=colCacheCtr 000755 || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor) 000756 ){ 000757 if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue); 000758 pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 ); 000759 if( pBuf==0 ) return SQLITE_NOMEM; 000760 rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf); 000761 if( rc ) return rc; 000762 pBuf[len] = 0; 000763 pBuf[len+1] = 0; 000764 pBuf[len+2] = 0; 000765 pCache->iCol = iCol; 000766 pCache->cacheStatus = cacheStatus; 000767 pCache->colCacheCtr = colCacheCtr; 000768 pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor); 000769 }else{ 000770 pBuf = pCache->pCValue; 000771 } 000772 assert( t>=12 ); 000773 sqlite3RCStrRef(pBuf); 000774 if( t&1 ){ 000775 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding, 000776 sqlite3RCStrUnref); 000777 pDest->flags |= MEM_Term; 000778 }else{ 000779 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0, 000780 sqlite3RCStrUnref); 000781 } 000782 }else{ 000783 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest); 000784 if( rc ) return rc; 000785 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 000786 if( (t&1)!=0 && encoding==SQLITE_UTF8 ){ 000787 pDest->z[len] = 0; 000788 pDest->flags |= MEM_Term; 000789 } 000790 } 000791 pDest->flags &= ~MEM_Ephem; 000792 return rc; 000793 } 000794 000795 000796 /* 000797 ** Return the symbolic name for the data type of a pMem 000798 */ 000799 static const char *vdbeMemTypeName(Mem *pMem){ 000800 static const char *azTypes[] = { 000801 /* SQLITE_INTEGER */ "INT", 000802 /* SQLITE_FLOAT */ "REAL", 000803 /* SQLITE_TEXT */ "TEXT", 000804 /* SQLITE_BLOB */ "BLOB", 000805 /* SQLITE_NULL */ "NULL" 000806 }; 000807 return azTypes[sqlite3_value_type(pMem)-1]; 000808 } 000809 000810 /* 000811 ** Execute as much of a VDBE program as we can. 000812 ** This is the core of sqlite3_step(). 000813 */ 000814 int sqlite3VdbeExec( 000815 Vdbe *p /* The VDBE */ 000816 ){ 000817 Op *aOp = p->aOp; /* Copy of p->aOp */ 000818 Op *pOp = aOp; /* Current operation */ 000819 #ifdef SQLITE_DEBUG 000820 Op *pOrigOp; /* Value of pOp at the top of the loop */ 000821 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 000822 u8 iCompareIsInit = 0; /* iCompare is initialized */ 000823 #endif 000824 int rc = SQLITE_OK; /* Value to return */ 000825 sqlite3 *db = p->db; /* The database */ 000826 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 000827 u8 encoding = ENC(db); /* The database encoding */ 000828 int iCompare = 0; /* Result of last comparison */ 000829 u64 nVmStep = 0; /* Number of virtual machine steps */ 000830 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 000831 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 000832 #endif 000833 Mem *aMem = p->aMem; /* Copy of p->aMem */ 000834 Mem *pIn1 = 0; /* 1st input operand */ 000835 Mem *pIn2 = 0; /* 2nd input operand */ 000836 Mem *pIn3 = 0; /* 3rd input operand */ 000837 Mem *pOut = 0; /* Output operand */ 000838 u32 colCacheCtr = 0; /* Column cache counter */ 000839 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000840 u64 *pnCycle = 0; 000841 int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; 000842 #endif 000843 /*** INSERT STACK UNION HERE ***/ 000844 000845 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 000846 if( DbMaskNonZero(p->lockMask) ){ 000847 sqlite3VdbeEnter(p); 000848 } 000849 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 000850 if( db->xProgress ){ 000851 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 000852 assert( 0 < db->nProgressOps ); 000853 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 000854 }else{ 000855 nProgressLimit = LARGEST_UINT64; 000856 } 000857 #endif 000858 if( p->rc==SQLITE_NOMEM ){ 000859 /* This happens if a malloc() inside a call to sqlite3_column_text() or 000860 ** sqlite3_column_text16() failed. */ 000861 goto no_mem; 000862 } 000863 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 000864 testcase( p->rc!=SQLITE_OK ); 000865 p->rc = SQLITE_OK; 000866 assert( p->bIsReader || p->readOnly!=0 ); 000867 p->iCurrentTime = 0; 000868 assert( p->explain==0 ); 000869 db->busyHandler.nBusy = 0; 000870 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 000871 sqlite3VdbeIOTraceSql(p); 000872 #ifdef SQLITE_DEBUG 000873 sqlite3BeginBenignMalloc(); 000874 if( p->pc==0 000875 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 000876 ){ 000877 int i; 000878 int once = 1; 000879 sqlite3VdbePrintSql(p); 000880 if( p->db->flags & SQLITE_VdbeListing ){ 000881 printf("VDBE Program Listing:\n"); 000882 for(i=0; i<p->nOp; i++){ 000883 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 000884 } 000885 } 000886 if( p->db->flags & SQLITE_VdbeEQP ){ 000887 for(i=0; i<p->nOp; i++){ 000888 if( aOp[i].opcode==OP_Explain ){ 000889 if( once ) printf("VDBE Query Plan:\n"); 000890 printf("%s\n", aOp[i].p4.z); 000891 once = 0; 000892 } 000893 } 000894 } 000895 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 000896 } 000897 sqlite3EndBenignMalloc(); 000898 #endif 000899 for(pOp=&aOp[p->pc]; 1; pOp++){ 000900 /* Errors are detected by individual opcodes, with an immediate 000901 ** jumps to abort_due_to_error. */ 000902 assert( rc==SQLITE_OK ); 000903 000904 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 000905 nVmStep++; 000906 000907 #if defined(VDBE_PROFILE) 000908 pOp->nExec++; 000909 pnCycle = &pOp->nCycle; 000910 if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime(); 000911 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 000912 if( bStmtScanStatus ){ 000913 pOp->nExec++; 000914 pnCycle = &pOp->nCycle; 000915 *pnCycle -= sqlite3Hwtime(); 000916 } 000917 #endif 000918 000919 /* Only allow tracing if SQLITE_DEBUG is defined. 000920 */ 000921 #ifdef SQLITE_DEBUG 000922 if( db->flags & SQLITE_VdbeTrace ){ 000923 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 000924 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 000925 } 000926 #endif 000927 000928 000929 /* Check to see if we need to simulate an interrupt. This only happens 000930 ** if we have a special test build. 000931 */ 000932 #ifdef SQLITE_TEST 000933 if( sqlite3_interrupt_count>0 ){ 000934 sqlite3_interrupt_count--; 000935 if( sqlite3_interrupt_count==0 ){ 000936 sqlite3_interrupt(db); 000937 } 000938 } 000939 #endif 000940 000941 /* Sanity checking on other operands */ 000942 #ifdef SQLITE_DEBUG 000943 { 000944 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 000945 if( (opProperty & OPFLG_IN1)!=0 ){ 000946 assert( pOp->p1>0 ); 000947 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 000948 assert( memIsValid(&aMem[pOp->p1]) ); 000949 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 000950 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 000951 } 000952 if( (opProperty & OPFLG_IN2)!=0 ){ 000953 assert( pOp->p2>0 ); 000954 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000955 assert( memIsValid(&aMem[pOp->p2]) ); 000956 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 000957 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 000958 } 000959 if( (opProperty & OPFLG_IN3)!=0 ){ 000960 assert( pOp->p3>0 ); 000961 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 000962 assert( memIsValid(&aMem[pOp->p3]) ); 000963 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 000964 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 000965 } 000966 if( (opProperty & OPFLG_OUT2)!=0 ){ 000967 assert( pOp->p2>0 ); 000968 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000969 memAboutToChange(p, &aMem[pOp->p2]); 000970 } 000971 if( (opProperty & OPFLG_OUT3)!=0 ){ 000972 assert( pOp->p3>0 ); 000973 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 000974 memAboutToChange(p, &aMem[pOp->p3]); 000975 } 000976 } 000977 #endif 000978 #ifdef SQLITE_DEBUG 000979 pOrigOp = pOp; 000980 #endif 000981 000982 switch( pOp->opcode ){ 000983 000984 /***************************************************************************** 000985 ** What follows is a massive switch statement where each case implements a 000986 ** separate instruction in the virtual machine. If we follow the usual 000987 ** indentation conventions, each case should be indented by 6 spaces. But 000988 ** that is a lot of wasted space on the left margin. So the code within 000989 ** the switch statement will break with convention and be flush-left. Another 000990 ** big comment (similar to this one) will mark the point in the code where 000991 ** we transition back to normal indentation. 000992 ** 000993 ** The formatting of each case is important. The makefile for SQLite 000994 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 000995 ** file looking for lines that begin with "case OP_". The opcodes.h files 000996 ** will be filled with #defines that give unique integer values to each 000997 ** opcode and the opcodes.c file is filled with an array of strings where 000998 ** each string is the symbolic name for the corresponding opcode. If the 000999 ** case statement is followed by a comment of the form "/# same as ... #/" 001000 ** that comment is used to determine the particular value of the opcode. 001001 ** 001002 ** Other keywords in the comment that follows each case are used to 001003 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 001004 ** Keywords include: in1, in2, in3, out2, out3. See 001005 ** the mkopcodeh.awk script for additional information. 001006 ** 001007 ** Documentation about VDBE opcodes is generated by scanning this file 001008 ** for lines of that contain "Opcode:". That line and all subsequent 001009 ** comment lines are used in the generation of the opcode.html documentation 001010 ** file. 001011 ** 001012 ** SUMMARY: 001013 ** 001014 ** Formatting is important to scripts that scan this file. 001015 ** Do not deviate from the formatting style currently in use. 001016 ** 001017 *****************************************************************************/ 001018 001019 /* Opcode: Goto * P2 * * * 001020 ** 001021 ** An unconditional jump to address P2. 001022 ** The next instruction executed will be 001023 ** the one at index P2 from the beginning of 001024 ** the program. 001025 ** 001026 ** The P1 parameter is not actually used by this opcode. However, it 001027 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 001028 ** that this Goto is the bottom of a loop and that the lines from P2 down 001029 ** to the current line should be indented for EXPLAIN output. 001030 */ 001031 case OP_Goto: { /* jump */ 001032 001033 #ifdef SQLITE_DEBUG 001034 /* In debugging mode, when the p5 flags is set on an OP_Goto, that 001035 ** means we should really jump back to the preceding OP_ReleaseReg 001036 ** instruction. */ 001037 if( pOp->p5 ){ 001038 assert( pOp->p2 < (int)(pOp - aOp) ); 001039 assert( pOp->p2 > 1 ); 001040 pOp = &aOp[pOp->p2 - 2]; 001041 assert( pOp[1].opcode==OP_ReleaseReg ); 001042 goto check_for_interrupt; 001043 } 001044 #endif 001045 001046 jump_to_p2_and_check_for_interrupt: 001047 pOp = &aOp[pOp->p2 - 1]; 001048 001049 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 001050 ** OP_VNext, or OP_SorterNext) all jump here upon 001051 ** completion. Check to see if sqlite3_interrupt() has been called 001052 ** or if the progress callback needs to be invoked. 001053 ** 001054 ** This code uses unstructured "goto" statements and does not look clean. 001055 ** But that is not due to sloppy coding habits. The code is written this 001056 ** way for performance, to avoid having to run the interrupt and progress 001057 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 001058 ** faster according to "valgrind --tool=cachegrind" */ 001059 check_for_interrupt: 001060 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 001061 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001062 /* Call the progress callback if it is configured and the required number 001063 ** of VDBE ops have been executed (either since this invocation of 001064 ** sqlite3VdbeExec() or since last time the progress callback was called). 001065 ** If the progress callback returns non-zero, exit the virtual machine with 001066 ** a return code SQLITE_ABORT. 001067 */ 001068 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 001069 assert( db->nProgressOps!=0 ); 001070 nProgressLimit += db->nProgressOps; 001071 if( db->xProgress(db->pProgressArg) ){ 001072 nProgressLimit = LARGEST_UINT64; 001073 rc = SQLITE_INTERRUPT; 001074 goto abort_due_to_error; 001075 } 001076 } 001077 #endif 001078 001079 break; 001080 } 001081 001082 /* Opcode: Gosub P1 P2 * * * 001083 ** 001084 ** Write the current address onto register P1 001085 ** and then jump to address P2. 001086 */ 001087 case OP_Gosub: { /* jump */ 001088 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001089 pIn1 = &aMem[pOp->p1]; 001090 assert( VdbeMemDynamic(pIn1)==0 ); 001091 memAboutToChange(p, pIn1); 001092 pIn1->flags = MEM_Int; 001093 pIn1->u.i = (int)(pOp-aOp); 001094 REGISTER_TRACE(pOp->p1, pIn1); 001095 goto jump_to_p2_and_check_for_interrupt; 001096 } 001097 001098 /* Opcode: Return P1 P2 P3 * * 001099 ** 001100 ** Jump to the address stored in register P1. If P1 is a return address 001101 ** register, then this accomplishes a return from a subroutine. 001102 ** 001103 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 001104 ** values, otherwise execution falls through to the next opcode, and the 001105 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 001106 ** integer or else an assert() is raised. P3 should be set to 1 when 001107 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 001108 ** otherwise. 001109 ** 001110 ** The value in register P1 is unchanged by this opcode. 001111 ** 001112 ** P2 is not used by the byte-code engine. However, if P2 is positive 001113 ** and also less than the current address, then the "EXPLAIN" output 001114 ** formatter in the CLI will indent all opcodes from the P2 opcode up 001115 ** to be not including the current Return. P2 should be the first opcode 001116 ** in the subroutine from which this opcode is returning. Thus the P2 001117 ** value is a byte-code indentation hint. See tag-20220407a in 001118 ** wherecode.c and shell.c. 001119 */ 001120 case OP_Return: { /* in1 */ 001121 pIn1 = &aMem[pOp->p1]; 001122 if( pIn1->flags & MEM_Int ){ 001123 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 001124 pOp = &aOp[pIn1->u.i]; 001125 }else if( ALWAYS(pOp->p3) ){ 001126 VdbeBranchTaken(0, 2); 001127 } 001128 break; 001129 } 001130 001131 /* Opcode: InitCoroutine P1 P2 P3 * * 001132 ** 001133 ** Set up register P1 so that it will Yield to the coroutine 001134 ** located at address P3. 001135 ** 001136 ** If P2!=0 then the coroutine implementation immediately follows 001137 ** this opcode. So jump over the coroutine implementation to 001138 ** address P2. 001139 ** 001140 ** See also: EndCoroutine 001141 */ 001142 case OP_InitCoroutine: { /* jump0 */ 001143 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001144 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 001145 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 001146 pOut = &aMem[pOp->p1]; 001147 assert( !VdbeMemDynamic(pOut) ); 001148 pOut->u.i = pOp->p3 - 1; 001149 pOut->flags = MEM_Int; 001150 if( pOp->p2==0 ) break; 001151 001152 /* Most jump operations do a goto to this spot in order to update 001153 ** the pOp pointer. */ 001154 jump_to_p2: 001155 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 001156 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 001157 pOp = &aOp[pOp->p2 - 1]; 001158 break; 001159 } 001160 001161 /* Opcode: EndCoroutine P1 * * * * 001162 ** 001163 ** The instruction at the address in register P1 is a Yield. 001164 ** Jump to the P2 parameter of that Yield. 001165 ** After the jump, the value register P1 is left with a value 001166 ** such that subsequent OP_Yields go back to the this same 001167 ** OP_EndCoroutine instruction. 001168 ** 001169 ** See also: InitCoroutine 001170 */ 001171 case OP_EndCoroutine: { /* in1 */ 001172 VdbeOp *pCaller; 001173 pIn1 = &aMem[pOp->p1]; 001174 assert( pIn1->flags==MEM_Int ); 001175 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 001176 pCaller = &aOp[pIn1->u.i]; 001177 assert( pCaller->opcode==OP_Yield ); 001178 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 001179 pIn1->u.i = (int)(pOp - p->aOp) - 1; 001180 pOp = &aOp[pCaller->p2 - 1]; 001181 break; 001182 } 001183 001184 /* Opcode: Yield P1 P2 * * * 001185 ** 001186 ** Swap the program counter with the value in register P1. This 001187 ** has the effect of yielding to a coroutine. 001188 ** 001189 ** If the coroutine that is launched by this instruction ends with 001190 ** Yield or Return then continue to the next instruction. But if 001191 ** the coroutine launched by this instruction ends with 001192 ** EndCoroutine, then jump to P2 rather than continuing with the 001193 ** next instruction. 001194 ** 001195 ** See also: InitCoroutine 001196 */ 001197 case OP_Yield: { /* in1, jump0 */ 001198 int pcDest; 001199 pIn1 = &aMem[pOp->p1]; 001200 assert( VdbeMemDynamic(pIn1)==0 ); 001201 pIn1->flags = MEM_Int; 001202 pcDest = (int)pIn1->u.i; 001203 pIn1->u.i = (int)(pOp - aOp); 001204 REGISTER_TRACE(pOp->p1, pIn1); 001205 pOp = &aOp[pcDest]; 001206 break; 001207 } 001208 001209 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 001210 ** Synopsis: if r[P3]=null halt 001211 ** 001212 ** Check the value in register P3. If it is NULL then Halt using 001213 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 001214 ** value in register P3 is not NULL, then this routine is a no-op. 001215 ** The P5 parameter should be 1. 001216 */ 001217 case OP_HaltIfNull: { /* in3 */ 001218 pIn3 = &aMem[pOp->p3]; 001219 #ifdef SQLITE_DEBUG 001220 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 001221 #endif 001222 if( (pIn3->flags & MEM_Null)==0 ) break; 001223 /* Fall through into OP_Halt */ 001224 /* no break */ deliberate_fall_through 001225 } 001226 001227 /* Opcode: Halt P1 P2 P3 P4 P5 001228 ** 001229 ** Exit immediately. All open cursors, etc are closed 001230 ** automatically. 001231 ** 001232 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 001233 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 001234 ** For errors, it can be some other value. If P1!=0 then P2 will determine 001235 ** whether or not to rollback the current transaction. Do not rollback 001236 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 001237 ** then back out all changes that have occurred during this execution of the 001238 ** VDBE, but do not rollback the transaction. 001239 ** 001240 ** If P3 is not zero and P4 is NULL, then P3 is a register that holds the 001241 ** text of an error message. 001242 ** 001243 ** If P3 is zero and P4 is not null then the error message string is held 001244 ** in P4. 001245 ** 001246 ** P5 is a value between 1 and 4, inclusive, then the P4 error message 001247 ** string is modified as follows: 001248 ** 001249 ** 1: NOT NULL constraint failed: P4 001250 ** 2: UNIQUE constraint failed: P4 001251 ** 3: CHECK constraint failed: P4 001252 ** 4: FOREIGN KEY constraint failed: P4 001253 ** 001254 ** If P3 is zero and P5 is not zero and P4 is NULL, then everything after 001255 ** the ":" is omitted. 001256 ** 001257 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 001258 ** every program. So a jump past the last instruction of the program 001259 ** is the same as executing Halt. 001260 */ 001261 case OP_Halt: { 001262 VdbeFrame *pFrame; 001263 int pcx; 001264 001265 #ifdef SQLITE_DEBUG 001266 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 001267 #endif 001268 assert( pOp->p4type==P4_NOTUSED 001269 || pOp->p4type==P4_STATIC 001270 || pOp->p4type==P4_DYNAMIC ); 001271 001272 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates 001273 ** something is wrong with the code generator. Raise an assertion in order 001274 ** to bring this to the attention of fuzzers and other testing tools. */ 001275 assert( pOp->p1!=SQLITE_INTERNAL ); 001276 001277 if( p->pFrame && pOp->p1==SQLITE_OK ){ 001278 /* Halt the sub-program. Return control to the parent frame. */ 001279 pFrame = p->pFrame; 001280 p->pFrame = pFrame->pParent; 001281 p->nFrame--; 001282 sqlite3VdbeSetChanges(db, p->nChange); 001283 pcx = sqlite3VdbeFrameRestore(pFrame); 001284 if( pOp->p2==OE_Ignore ){ 001285 /* Instruction pcx is the OP_Program that invoked the sub-program 001286 ** currently being halted. If the p2 instruction of this OP_Halt 001287 ** instruction is set to OE_Ignore, then the sub-program is throwing 001288 ** an IGNORE exception. In this case jump to the address specified 001289 ** as the p2 of the calling OP_Program. */ 001290 pcx = p->aOp[pcx].p2-1; 001291 } 001292 aOp = p->aOp; 001293 aMem = p->aMem; 001294 pOp = &aOp[pcx]; 001295 break; 001296 } 001297 p->rc = pOp->p1; 001298 p->errorAction = (u8)pOp->p2; 001299 assert( pOp->p5<=4 ); 001300 if( p->rc ){ 001301 if( pOp->p3>0 && pOp->p4type==P4_NOTUSED ){ 001302 const char *zErr; 001303 assert( pOp->p3<=(p->nMem + 1 - p->nCursor) ); 001304 zErr = sqlite3ValueText(&aMem[pOp->p3], SQLITE_UTF8); 001305 sqlite3VdbeError(p, "%s", zErr); 001306 }else if( pOp->p5 ){ 001307 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 001308 "FOREIGN KEY" }; 001309 testcase( pOp->p5==1 ); 001310 testcase( pOp->p5==2 ); 001311 testcase( pOp->p5==3 ); 001312 testcase( pOp->p5==4 ); 001313 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 001314 if( pOp->p4.z ){ 001315 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 001316 } 001317 }else{ 001318 sqlite3VdbeError(p, "%s", pOp->p4.z); 001319 } 001320 pcx = (int)(pOp - aOp); 001321 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 001322 } 001323 rc = sqlite3VdbeHalt(p); 001324 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 001325 if( rc==SQLITE_BUSY ){ 001326 p->rc = SQLITE_BUSY; 001327 }else{ 001328 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 001329 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 001330 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 001331 } 001332 goto vdbe_return; 001333 } 001334 001335 /* Opcode: Integer P1 P2 * * * 001336 ** Synopsis: r[P2]=P1 001337 ** 001338 ** The 32-bit integer value P1 is written into register P2. 001339 */ 001340 case OP_Integer: { /* out2 */ 001341 pOut = out2Prerelease(p, pOp); 001342 pOut->u.i = pOp->p1; 001343 break; 001344 } 001345 001346 /* Opcode: Int64 * P2 * P4 * 001347 ** Synopsis: r[P2]=P4 001348 ** 001349 ** P4 is a pointer to a 64-bit integer value. 001350 ** Write that value into register P2. 001351 */ 001352 case OP_Int64: { /* out2 */ 001353 pOut = out2Prerelease(p, pOp); 001354 assert( pOp->p4.pI64!=0 ); 001355 pOut->u.i = *pOp->p4.pI64; 001356 break; 001357 } 001358 001359 #ifndef SQLITE_OMIT_FLOATING_POINT 001360 /* Opcode: Real * P2 * P4 * 001361 ** Synopsis: r[P2]=P4 001362 ** 001363 ** P4 is a pointer to a 64-bit floating point value. 001364 ** Write that value into register P2. 001365 */ 001366 case OP_Real: { /* same as TK_FLOAT, out2 */ 001367 pOut = out2Prerelease(p, pOp); 001368 pOut->flags = MEM_Real; 001369 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 001370 pOut->u.r = *pOp->p4.pReal; 001371 break; 001372 } 001373 #endif 001374 001375 /* Opcode: String8 * P2 * P4 * 001376 ** Synopsis: r[P2]='P4' 001377 ** 001378 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 001379 ** into a String opcode before it is executed for the first time. During 001380 ** this transformation, the length of string P4 is computed and stored 001381 ** as the P1 parameter. 001382 */ 001383 case OP_String8: { /* same as TK_STRING, out2 */ 001384 assert( pOp->p4.z!=0 ); 001385 pOut = out2Prerelease(p, pOp); 001386 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 001387 001388 #ifndef SQLITE_OMIT_UTF16 001389 if( encoding!=SQLITE_UTF8 ){ 001390 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 001391 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 001392 if( rc ) goto too_big; 001393 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 001394 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 001395 assert( VdbeMemDynamic(pOut)==0 ); 001396 pOut->szMalloc = 0; 001397 pOut->flags |= MEM_Static; 001398 if( pOp->p4type==P4_DYNAMIC ){ 001399 sqlite3DbFree(db, pOp->p4.z); 001400 } 001401 pOp->p4type = P4_DYNAMIC; 001402 pOp->p4.z = pOut->z; 001403 pOp->p1 = pOut->n; 001404 } 001405 #endif 001406 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001407 goto too_big; 001408 } 001409 pOp->opcode = OP_String; 001410 assert( rc==SQLITE_OK ); 001411 /* Fall through to the next case, OP_String */ 001412 /* no break */ deliberate_fall_through 001413 } 001414 001415 /* Opcode: String P1 P2 P3 P4 P5 001416 ** Synopsis: r[P2]='P4' (len=P1) 001417 ** 001418 ** The string value P4 of length P1 (bytes) is stored in register P2. 001419 ** 001420 ** If P3 is not zero and the content of register P3 is equal to P5, then 001421 ** the datatype of the register P2 is converted to BLOB. The content is 001422 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 001423 ** of a string, as if it had been CAST. In other words: 001424 ** 001425 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 001426 */ 001427 case OP_String: { /* out2 */ 001428 assert( pOp->p4.z!=0 ); 001429 pOut = out2Prerelease(p, pOp); 001430 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 001431 pOut->z = pOp->p4.z; 001432 pOut->n = pOp->p1; 001433 pOut->enc = encoding; 001434 UPDATE_MAX_BLOBSIZE(pOut); 001435 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 001436 if( pOp->p3>0 ){ 001437 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 001438 pIn3 = &aMem[pOp->p3]; 001439 assert( pIn3->flags & MEM_Int ); 001440 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 001441 } 001442 #endif 001443 break; 001444 } 001445 001446 /* Opcode: BeginSubrtn * P2 * * * 001447 ** Synopsis: r[P2]=NULL 001448 ** 001449 ** Mark the beginning of a subroutine that can be entered in-line 001450 ** or that can be called using OP_Gosub. The subroutine should 001451 ** be terminated by an OP_Return instruction that has a P1 operand that 001452 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 001453 ** If the subroutine is entered in-line, then the OP_Return will simply 001454 ** fall through. But if the subroutine is entered using OP_Gosub, then 001455 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 001456 ** 001457 ** This routine works by loading a NULL into the P2 register. When the 001458 ** return address register contains a NULL, the OP_Return instruction is 001459 ** a no-op that simply falls through to the next instruction (assuming that 001460 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 001461 ** entered in-line, then the OP_Return will cause in-line execution to 001462 ** continue. But if the subroutine is entered via OP_Gosub, then the 001463 ** OP_Return will cause a return to the address following the OP_Gosub. 001464 ** 001465 ** This opcode is identical to OP_Null. It has a different name 001466 ** only to make the byte code easier to read and verify. 001467 */ 001468 /* Opcode: Null P1 P2 P3 * * 001469 ** Synopsis: r[P2..P3]=NULL 001470 ** 001471 ** Write a NULL into registers P2. If P3 greater than P2, then also write 001472 ** NULL into register P3 and every register in between P2 and P3. If P3 001473 ** is less than P2 (typically P3 is zero) then only register P2 is 001474 ** set to NULL. 001475 ** 001476 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 001477 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 001478 ** OP_Ne or OP_Eq. 001479 */ 001480 case OP_BeginSubrtn: 001481 case OP_Null: { /* out2 */ 001482 int cnt; 001483 u16 nullFlag; 001484 pOut = out2Prerelease(p, pOp); 001485 cnt = pOp->p3-pOp->p2; 001486 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 001487 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 001488 pOut->n = 0; 001489 #ifdef SQLITE_DEBUG 001490 pOut->uTemp = 0; 001491 #endif 001492 while( cnt>0 ){ 001493 pOut++; 001494 memAboutToChange(p, pOut); 001495 sqlite3VdbeMemSetNull(pOut); 001496 pOut->flags = nullFlag; 001497 pOut->n = 0; 001498 cnt--; 001499 } 001500 break; 001501 } 001502 001503 /* Opcode: SoftNull P1 * * * * 001504 ** Synopsis: r[P1]=NULL 001505 ** 001506 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 001507 ** instruction, but do not free any string or blob memory associated with 001508 ** the register, so that if the value was a string or blob that was 001509 ** previously copied using OP_SCopy, the copies will continue to be valid. 001510 */ 001511 case OP_SoftNull: { 001512 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001513 pOut = &aMem[pOp->p1]; 001514 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 001515 break; 001516 } 001517 001518 /* Opcode: Blob P1 P2 * P4 * 001519 ** Synopsis: r[P2]=P4 (len=P1) 001520 ** 001521 ** P4 points to a blob of data P1 bytes long. Store this 001522 ** blob in register P2. If P4 is a NULL pointer, then construct 001523 ** a zero-filled blob that is P1 bytes long in P2. 001524 */ 001525 case OP_Blob: { /* out2 */ 001526 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 001527 pOut = out2Prerelease(p, pOp); 001528 if( pOp->p4.z==0 ){ 001529 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 001530 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 001531 }else{ 001532 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 001533 } 001534 pOut->enc = encoding; 001535 UPDATE_MAX_BLOBSIZE(pOut); 001536 break; 001537 } 001538 001539 /* Opcode: Variable P1 P2 * * * 001540 ** Synopsis: r[P2]=parameter(P1) 001541 ** 001542 ** Transfer the values of bound parameter P1 into register P2 001543 */ 001544 case OP_Variable: { /* out2 */ 001545 Mem *pVar; /* Value being transferred */ 001546 001547 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 001548 pVar = &p->aVar[pOp->p1 - 1]; 001549 if( sqlite3VdbeMemTooBig(pVar) ){ 001550 goto too_big; 001551 } 001552 pOut = &aMem[pOp->p2]; 001553 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 001554 memcpy(pOut, pVar, MEMCELLSIZE); 001555 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 001556 pOut->flags |= MEM_Static|MEM_FromBind; 001557 UPDATE_MAX_BLOBSIZE(pOut); 001558 break; 001559 } 001560 001561 /* Opcode: Move P1 P2 P3 * * 001562 ** Synopsis: r[P2@P3]=r[P1@P3] 001563 ** 001564 ** Move the P3 values in register P1..P1+P3-1 over into 001565 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 001566 ** left holding a NULL. It is an error for register ranges 001567 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 001568 ** for P3 to be less than 1. 001569 */ 001570 case OP_Move: { 001571 int n; /* Number of registers left to copy */ 001572 int p1; /* Register to copy from */ 001573 int p2; /* Register to copy to */ 001574 001575 n = pOp->p3; 001576 p1 = pOp->p1; 001577 p2 = pOp->p2; 001578 assert( n>0 && p1>0 && p2>0 ); 001579 assert( p1+n<=p2 || p2+n<=p1 ); 001580 001581 pIn1 = &aMem[p1]; 001582 pOut = &aMem[p2]; 001583 do{ 001584 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 001585 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 001586 assert( memIsValid(pIn1) ); 001587 memAboutToChange(p, pOut); 001588 sqlite3VdbeMemMove(pOut, pIn1); 001589 #ifdef SQLITE_DEBUG 001590 pIn1->pScopyFrom = 0; 001591 { int i; 001592 for(i=1; i<p->nMem; i++){ 001593 if( aMem[i].pScopyFrom==pIn1 ){ 001594 assert( aMem[i].bScopy ); 001595 aMem[i].pScopyFrom = pOut; 001596 } 001597 } 001598 } 001599 #endif 001600 Deephemeralize(pOut); 001601 REGISTER_TRACE(p2++, pOut); 001602 pIn1++; 001603 pOut++; 001604 }while( --n ); 001605 break; 001606 } 001607 001608 /* Opcode: Copy P1 P2 P3 * P5 001609 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 001610 ** 001611 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 001612 ** 001613 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 001614 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 001615 ** be merged. The 0x0001 bit is used by the query planner and does not 001616 ** come into play during query execution. 001617 ** 001618 ** This instruction makes a deep copy of the value. A duplicate 001619 ** is made of any string or blob constant. See also OP_SCopy. 001620 */ 001621 case OP_Copy: { 001622 int n; 001623 001624 n = pOp->p3; 001625 pIn1 = &aMem[pOp->p1]; 001626 pOut = &aMem[pOp->p2]; 001627 assert( pOut!=pIn1 ); 001628 while( 1 ){ 001629 memAboutToChange(p, pOut); 001630 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 001631 Deephemeralize(pOut); 001632 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 001633 pOut->flags &= ~MEM_Subtype; 001634 } 001635 #ifdef SQLITE_DEBUG 001636 pOut->pScopyFrom = 0; 001637 #endif 001638 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 001639 if( (n--)==0 ) break; 001640 pOut++; 001641 pIn1++; 001642 } 001643 break; 001644 } 001645 001646 /* Opcode: SCopy P1 P2 * * * 001647 ** Synopsis: r[P2]=r[P1] 001648 ** 001649 ** Make a shallow copy of register P1 into register P2. 001650 ** 001651 ** This instruction makes a shallow copy of the value. If the value 001652 ** is a string or blob, then the copy is only a pointer to the 001653 ** original and hence if the original changes so will the copy. 001654 ** Worse, if the original is deallocated, the copy becomes invalid. 001655 ** Thus the program must guarantee that the original will not change 001656 ** during the lifetime of the copy. Use OP_Copy to make a complete 001657 ** copy. 001658 */ 001659 case OP_SCopy: { /* out2 */ 001660 pIn1 = &aMem[pOp->p1]; 001661 pOut = &aMem[pOp->p2]; 001662 assert( pOut!=pIn1 ); 001663 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 001664 #ifdef SQLITE_DEBUG 001665 pOut->pScopyFrom = pIn1; 001666 pOut->mScopyFlags = pIn1->flags; 001667 pIn1->bScopy = 1; 001668 #endif 001669 break; 001670 } 001671 001672 /* Opcode: IntCopy P1 P2 * * * 001673 ** Synopsis: r[P2]=r[P1] 001674 ** 001675 ** Transfer the integer value held in register P1 into register P2. 001676 ** 001677 ** This is an optimized version of SCopy that works only for integer 001678 ** values. 001679 */ 001680 case OP_IntCopy: { /* out2 */ 001681 pIn1 = &aMem[pOp->p1]; 001682 assert( (pIn1->flags & MEM_Int)!=0 ); 001683 pOut = &aMem[pOp->p2]; 001684 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 001685 break; 001686 } 001687 001688 /* Opcode: FkCheck * * * * * 001689 ** 001690 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 001691 ** foreign key constraint violations. If there are no foreign key 001692 ** constraint violations, this is a no-op. 001693 ** 001694 ** FK constraint violations are also checked when the prepared statement 001695 ** exits. This opcode is used to raise foreign key constraint errors prior 001696 ** to returning results such as a row change count or the result of a 001697 ** RETURNING clause. 001698 */ 001699 case OP_FkCheck: { 001700 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 001701 goto abort_due_to_error; 001702 } 001703 break; 001704 } 001705 001706 /* Opcode: ResultRow P1 P2 * * * 001707 ** Synopsis: output=r[P1@P2] 001708 ** 001709 ** The registers P1 through P1+P2-1 contain a single row of 001710 ** results. This opcode causes the sqlite3_step() call to terminate 001711 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 001712 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 001713 ** the result row. 001714 */ 001715 case OP_ResultRow: { 001716 assert( p->nResColumn==pOp->p2 ); 001717 assert( pOp->p1>0 || CORRUPT_DB ); 001718 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 001719 001720 p->cacheCtr = (p->cacheCtr + 2)|1; 001721 p->pResultRow = &aMem[pOp->p1]; 001722 #ifdef SQLITE_DEBUG 001723 { 001724 Mem *pMem = p->pResultRow; 001725 int i; 001726 for(i=0; i<pOp->p2; i++){ 001727 assert( memIsValid(&pMem[i]) ); 001728 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 001729 /* The registers in the result will not be used again when the 001730 ** prepared statement restarts. This is because sqlite3_column() 001731 ** APIs might have caused type conversions of made other changes to 001732 ** the register values. Therefore, we can go ahead and break any 001733 ** OP_SCopy dependencies. */ 001734 pMem[i].pScopyFrom = 0; 001735 } 001736 } 001737 #endif 001738 if( db->mallocFailed ) goto no_mem; 001739 if( db->mTrace & SQLITE_TRACE_ROW ){ 001740 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 001741 } 001742 p->pc = (int)(pOp - aOp) + 1; 001743 rc = SQLITE_ROW; 001744 goto vdbe_return; 001745 } 001746 001747 /* Opcode: Concat P1 P2 P3 * * 001748 ** Synopsis: r[P3]=r[P2]+r[P1] 001749 ** 001750 ** Add the text in register P1 onto the end of the text in 001751 ** register P2 and store the result in register P3. 001752 ** If either the P1 or P2 text are NULL then store NULL in P3. 001753 ** 001754 ** P3 = P2 || P1 001755 ** 001756 ** It is illegal for P1 and P3 to be the same register. Sometimes, 001757 ** if P3 is the same register as P2, the implementation is able 001758 ** to avoid a memcpy(). 001759 */ 001760 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 001761 i64 nByte; /* Total size of the output string or blob */ 001762 u16 flags1; /* Initial flags for P1 */ 001763 u16 flags2; /* Initial flags for P2 */ 001764 001765 pIn1 = &aMem[pOp->p1]; 001766 pIn2 = &aMem[pOp->p2]; 001767 pOut = &aMem[pOp->p3]; 001768 testcase( pOut==pIn2 ); 001769 assert( pIn1!=pOut ); 001770 flags1 = pIn1->flags; 001771 testcase( flags1 & MEM_Null ); 001772 testcase( pIn2->flags & MEM_Null ); 001773 if( (flags1 | pIn2->flags) & MEM_Null ){ 001774 sqlite3VdbeMemSetNull(pOut); 001775 break; 001776 } 001777 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 001778 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 001779 flags1 = pIn1->flags & ~MEM_Str; 001780 }else if( (flags1 & MEM_Zero)!=0 ){ 001781 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 001782 flags1 = pIn1->flags & ~MEM_Str; 001783 } 001784 flags2 = pIn2->flags; 001785 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 001786 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 001787 flags2 = pIn2->flags & ~MEM_Str; 001788 }else if( (flags2 & MEM_Zero)!=0 ){ 001789 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 001790 flags2 = pIn2->flags & ~MEM_Str; 001791 } 001792 nByte = pIn1->n + pIn2->n; 001793 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001794 goto too_big; 001795 } 001796 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 001797 goto no_mem; 001798 } 001799 MemSetTypeFlag(pOut, MEM_Str); 001800 if( pOut!=pIn2 ){ 001801 memcpy(pOut->z, pIn2->z, pIn2->n); 001802 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 001803 pIn2->flags = flags2; 001804 } 001805 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 001806 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 001807 pIn1->flags = flags1; 001808 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 001809 pOut->z[nByte]=0; 001810 pOut->z[nByte+1] = 0; 001811 pOut->flags |= MEM_Term; 001812 pOut->n = (int)nByte; 001813 pOut->enc = encoding; 001814 UPDATE_MAX_BLOBSIZE(pOut); 001815 break; 001816 } 001817 001818 /* Opcode: Add P1 P2 P3 * * 001819 ** Synopsis: r[P3]=r[P1]+r[P2] 001820 ** 001821 ** Add the value in register P1 to the value in register P2 001822 ** and store the result in register P3. 001823 ** If either input is NULL, the result is NULL. 001824 */ 001825 /* Opcode: Multiply P1 P2 P3 * * 001826 ** Synopsis: r[P3]=r[P1]*r[P2] 001827 ** 001828 ** 001829 ** Multiply the value in register P1 by the value in register P2 001830 ** and store the result in register P3. 001831 ** If either input is NULL, the result is NULL. 001832 */ 001833 /* Opcode: Subtract P1 P2 P3 * * 001834 ** Synopsis: r[P3]=r[P2]-r[P1] 001835 ** 001836 ** Subtract the value in register P1 from the value in register P2 001837 ** and store the result in register P3. 001838 ** If either input is NULL, the result is NULL. 001839 */ 001840 /* Opcode: Divide P1 P2 P3 * * 001841 ** Synopsis: r[P3]=r[P2]/r[P1] 001842 ** 001843 ** Divide the value in register P1 by the value in register P2 001844 ** and store the result in register P3 (P3=P2/P1). If the value in 001845 ** register P1 is zero, then the result is NULL. If either input is 001846 ** NULL, the result is NULL. 001847 */ 001848 /* Opcode: Remainder P1 P2 P3 * * 001849 ** Synopsis: r[P3]=r[P2]%r[P1] 001850 ** 001851 ** Compute the remainder after integer register P2 is divided by 001852 ** register P1 and store the result in register P3. 001853 ** If the value in register P1 is zero the result is NULL. 001854 ** If either operand is NULL, the result is NULL. 001855 */ 001856 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 001857 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 001858 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 001859 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 001860 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 001861 u16 type1; /* Numeric type of left operand */ 001862 u16 type2; /* Numeric type of right operand */ 001863 i64 iA; /* Integer value of left operand */ 001864 i64 iB; /* Integer value of right operand */ 001865 double rA; /* Real value of left operand */ 001866 double rB; /* Real value of right operand */ 001867 001868 pIn1 = &aMem[pOp->p1]; 001869 type1 = pIn1->flags; 001870 pIn2 = &aMem[pOp->p2]; 001871 type2 = pIn2->flags; 001872 pOut = &aMem[pOp->p3]; 001873 if( (type1 & type2 & MEM_Int)!=0 ){ 001874 int_math: 001875 iA = pIn1->u.i; 001876 iB = pIn2->u.i; 001877 switch( pOp->opcode ){ 001878 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 001879 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 001880 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 001881 case OP_Divide: { 001882 if( iA==0 ) goto arithmetic_result_is_null; 001883 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 001884 iB /= iA; 001885 break; 001886 } 001887 default: { 001888 if( iA==0 ) goto arithmetic_result_is_null; 001889 if( iA==-1 ) iA = 1; 001890 iB %= iA; 001891 break; 001892 } 001893 } 001894 pOut->u.i = iB; 001895 MemSetTypeFlag(pOut, MEM_Int); 001896 }else if( ((type1 | type2) & MEM_Null)!=0 ){ 001897 goto arithmetic_result_is_null; 001898 }else{ 001899 type1 = numericType(pIn1); 001900 type2 = numericType(pIn2); 001901 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; 001902 fp_math: 001903 rA = sqlite3VdbeRealValue(pIn1); 001904 rB = sqlite3VdbeRealValue(pIn2); 001905 switch( pOp->opcode ){ 001906 case OP_Add: rB += rA; break; 001907 case OP_Subtract: rB -= rA; break; 001908 case OP_Multiply: rB *= rA; break; 001909 case OP_Divide: { 001910 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 001911 if( rA==(double)0 ) goto arithmetic_result_is_null; 001912 rB /= rA; 001913 break; 001914 } 001915 default: { 001916 iA = sqlite3VdbeIntValue(pIn1); 001917 iB = sqlite3VdbeIntValue(pIn2); 001918 if( iA==0 ) goto arithmetic_result_is_null; 001919 if( iA==-1 ) iA = 1; 001920 rB = (double)(iB % iA); 001921 break; 001922 } 001923 } 001924 #ifdef SQLITE_OMIT_FLOATING_POINT 001925 pOut->u.i = rB; 001926 MemSetTypeFlag(pOut, MEM_Int); 001927 #else 001928 if( sqlite3IsNaN(rB) ){ 001929 goto arithmetic_result_is_null; 001930 } 001931 pOut->u.r = rB; 001932 MemSetTypeFlag(pOut, MEM_Real); 001933 #endif 001934 } 001935 break; 001936 001937 arithmetic_result_is_null: 001938 sqlite3VdbeMemSetNull(pOut); 001939 break; 001940 } 001941 001942 /* Opcode: CollSeq P1 * * P4 001943 ** 001944 ** P4 is a pointer to a CollSeq object. If the next call to a user function 001945 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 001946 ** be returned. This is used by the built-in min(), max() and nullif() 001947 ** functions. 001948 ** 001949 ** If P1 is not zero, then it is a register that a subsequent min() or 001950 ** max() aggregate will set to 1 if the current row is not the minimum or 001951 ** maximum. The P1 register is initialized to 0 by this instruction. 001952 ** 001953 ** The interface used by the implementation of the aforementioned functions 001954 ** to retrieve the collation sequence set by this opcode is not available 001955 ** publicly. Only built-in functions have access to this feature. 001956 */ 001957 case OP_CollSeq: { 001958 assert( pOp->p4type==P4_COLLSEQ ); 001959 if( pOp->p1 ){ 001960 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 001961 } 001962 break; 001963 } 001964 001965 /* Opcode: BitAnd P1 P2 P3 * * 001966 ** Synopsis: r[P3]=r[P1]&r[P2] 001967 ** 001968 ** Take the bit-wise AND of the values in register P1 and P2 and 001969 ** store the result in register P3. 001970 ** If either input is NULL, the result is NULL. 001971 */ 001972 /* Opcode: BitOr P1 P2 P3 * * 001973 ** Synopsis: r[P3]=r[P1]|r[P2] 001974 ** 001975 ** Take the bit-wise OR of the values in register P1 and P2 and 001976 ** store the result in register P3. 001977 ** If either input is NULL, the result is NULL. 001978 */ 001979 /* Opcode: ShiftLeft P1 P2 P3 * * 001980 ** Synopsis: r[P3]=r[P2]<<r[P1] 001981 ** 001982 ** Shift the integer value in register P2 to the left by the 001983 ** number of bits specified by the integer in register P1. 001984 ** Store the result in register P3. 001985 ** If either input is NULL, the result is NULL. 001986 */ 001987 /* Opcode: ShiftRight P1 P2 P3 * * 001988 ** Synopsis: r[P3]=r[P2]>>r[P1] 001989 ** 001990 ** Shift the integer value in register P2 to the right by the 001991 ** number of bits specified by the integer in register P1. 001992 ** Store the result in register P3. 001993 ** If either input is NULL, the result is NULL. 001994 */ 001995 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 001996 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 001997 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 001998 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 001999 i64 iA; 002000 u64 uA; 002001 i64 iB; 002002 u8 op; 002003 002004 pIn1 = &aMem[pOp->p1]; 002005 pIn2 = &aMem[pOp->p2]; 002006 pOut = &aMem[pOp->p3]; 002007 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 002008 sqlite3VdbeMemSetNull(pOut); 002009 break; 002010 } 002011 iA = sqlite3VdbeIntValue(pIn2); 002012 iB = sqlite3VdbeIntValue(pIn1); 002013 op = pOp->opcode; 002014 if( op==OP_BitAnd ){ 002015 iA &= iB; 002016 }else if( op==OP_BitOr ){ 002017 iA |= iB; 002018 }else if( iB!=0 ){ 002019 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 002020 002021 /* If shifting by a negative amount, shift in the other direction */ 002022 if( iB<0 ){ 002023 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 002024 op = 2*OP_ShiftLeft + 1 - op; 002025 iB = iB>(-64) ? -iB : 64; 002026 } 002027 002028 if( iB>=64 ){ 002029 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 002030 }else{ 002031 memcpy(&uA, &iA, sizeof(uA)); 002032 if( op==OP_ShiftLeft ){ 002033 uA <<= iB; 002034 }else{ 002035 uA >>= iB; 002036 /* Sign-extend on a right shift of a negative number */ 002037 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 002038 } 002039 memcpy(&iA, &uA, sizeof(iA)); 002040 } 002041 } 002042 pOut->u.i = iA; 002043 MemSetTypeFlag(pOut, MEM_Int); 002044 break; 002045 } 002046 002047 /* Opcode: AddImm P1 P2 * * * 002048 ** Synopsis: r[P1]=r[P1]+P2 002049 ** 002050 ** Add the constant P2 to the value in register P1. 002051 ** The result is always an integer. 002052 ** 002053 ** To force any register to be an integer, just add 0. 002054 */ 002055 case OP_AddImm: { /* in1 */ 002056 pIn1 = &aMem[pOp->p1]; 002057 memAboutToChange(p, pIn1); 002058 sqlite3VdbeMemIntegerify(pIn1); 002059 *(u64*)&pIn1->u.i += (u64)pOp->p2; 002060 break; 002061 } 002062 002063 /* Opcode: MustBeInt P1 P2 * * * 002064 ** 002065 ** Force the value in register P1 to be an integer. If the value 002066 ** in P1 is not an integer and cannot be converted into an integer 002067 ** without data loss, then jump immediately to P2, or if P2==0 002068 ** raise an SQLITE_MISMATCH exception. 002069 */ 002070 case OP_MustBeInt: { /* jump0, in1 */ 002071 pIn1 = &aMem[pOp->p1]; 002072 if( (pIn1->flags & MEM_Int)==0 ){ 002073 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 002074 if( (pIn1->flags & MEM_Int)==0 ){ 002075 VdbeBranchTaken(1, 2); 002076 if( pOp->p2==0 ){ 002077 rc = SQLITE_MISMATCH; 002078 goto abort_due_to_error; 002079 }else{ 002080 goto jump_to_p2; 002081 } 002082 } 002083 } 002084 VdbeBranchTaken(0, 2); 002085 MemSetTypeFlag(pIn1, MEM_Int); 002086 break; 002087 } 002088 002089 #ifndef SQLITE_OMIT_FLOATING_POINT 002090 /* Opcode: RealAffinity P1 * * * * 002091 ** 002092 ** If register P1 holds an integer convert it to a real value. 002093 ** 002094 ** This opcode is used when extracting information from a column that 002095 ** has REAL affinity. Such column values may still be stored as 002096 ** integers, for space efficiency, but after extraction we want them 002097 ** to have only a real value. 002098 */ 002099 case OP_RealAffinity: { /* in1 */ 002100 pIn1 = &aMem[pOp->p1]; 002101 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 002102 testcase( pIn1->flags & MEM_Int ); 002103 testcase( pIn1->flags & MEM_IntReal ); 002104 sqlite3VdbeMemRealify(pIn1); 002105 REGISTER_TRACE(pOp->p1, pIn1); 002106 } 002107 break; 002108 } 002109 #endif 002110 002111 #if !defined(SQLITE_OMIT_CAST) || !defined(SQLITE_OMIT_ANALYZE) 002112 /* Opcode: Cast P1 P2 * * * 002113 ** Synopsis: affinity(r[P1]) 002114 ** 002115 ** Force the value in register P1 to be the type defined by P2. 002116 ** 002117 ** <ul> 002118 ** <li> P2=='A' → BLOB 002119 ** <li> P2=='B' → TEXT 002120 ** <li> P2=='C' → NUMERIC 002121 ** <li> P2=='D' → INTEGER 002122 ** <li> P2=='E' → REAL 002123 ** </ul> 002124 ** 002125 ** A NULL value is not changed by this routine. It remains NULL. 002126 */ 002127 case OP_Cast: { /* in1 */ 002128 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 002129 testcase( pOp->p2==SQLITE_AFF_TEXT ); 002130 testcase( pOp->p2==SQLITE_AFF_BLOB ); 002131 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 002132 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 002133 testcase( pOp->p2==SQLITE_AFF_REAL ); 002134 pIn1 = &aMem[pOp->p1]; 002135 memAboutToChange(p, pIn1); 002136 rc = ExpandBlob(pIn1); 002137 if( rc ) goto abort_due_to_error; 002138 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 002139 if( rc ) goto abort_due_to_error; 002140 UPDATE_MAX_BLOBSIZE(pIn1); 002141 REGISTER_TRACE(pOp->p1, pIn1); 002142 break; 002143 } 002144 #endif /* SQLITE_OMIT_CAST */ 002145 002146 /* Opcode: Eq P1 P2 P3 P4 P5 002147 ** Synopsis: IF r[P3]==r[P1] 002148 ** 002149 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 002150 ** jump to address P2. 002151 ** 002152 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 002153 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 002154 ** to coerce both inputs according to this affinity before the 002155 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 002156 ** affinity is used. Note that the affinity conversions are stored 002157 ** back into the input registers P1 and P3. So this opcode can cause 002158 ** persistent changes to registers P1 and P3. 002159 ** 002160 ** Once any conversions have taken place, and neither value is NULL, 002161 ** the values are compared. If both values are blobs then memcmp() is 002162 ** used to determine the results of the comparison. If both values 002163 ** are text, then the appropriate collating function specified in 002164 ** P4 is used to do the comparison. If P4 is not specified then 002165 ** memcmp() is used to compare text string. If both values are 002166 ** numeric, then a numeric comparison is used. If the two values 002167 ** are of different types, then numbers are considered less than 002168 ** strings and strings are considered less than blobs. 002169 ** 002170 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 002171 ** true or false and is never NULL. If both operands are NULL then the result 002172 ** of comparison is true. If either operand is NULL then the result is false. 002173 ** If neither operand is NULL the result is the same as it would be if 002174 ** the SQLITE_NULLEQ flag were omitted from P5. 002175 ** 002176 ** This opcode saves the result of comparison for use by the new 002177 ** OP_Jump opcode. 002178 */ 002179 /* Opcode: Ne P1 P2 P3 P4 P5 002180 ** Synopsis: IF r[P3]!=r[P1] 002181 ** 002182 ** This works just like the Eq opcode except that the jump is taken if 002183 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 002184 ** additional information. 002185 */ 002186 /* Opcode: Lt P1 P2 P3 P4 P5 002187 ** Synopsis: IF r[P3]<r[P1] 002188 ** 002189 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 002190 ** jump to address P2. 002191 ** 002192 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 002193 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 002194 ** bit is clear then fall through if either operand is NULL. 002195 ** 002196 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 002197 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 002198 ** to coerce both inputs according to this affinity before the 002199 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 002200 ** affinity is used. Note that the affinity conversions are stored 002201 ** back into the input registers P1 and P3. So this opcode can cause 002202 ** persistent changes to registers P1 and P3. 002203 ** 002204 ** Once any conversions have taken place, and neither value is NULL, 002205 ** the values are compared. If both values are blobs then memcmp() is 002206 ** used to determine the results of the comparison. If both values 002207 ** are text, then the appropriate collating function specified in 002208 ** P4 is used to do the comparison. If P4 is not specified then 002209 ** memcmp() is used to compare text string. If both values are 002210 ** numeric, then a numeric comparison is used. If the two values 002211 ** are of different types, then numbers are considered less than 002212 ** strings and strings are considered less than blobs. 002213 ** 002214 ** This opcode saves the result of comparison for use by the new 002215 ** OP_Jump opcode. 002216 */ 002217 /* Opcode: Le P1 P2 P3 P4 P5 002218 ** Synopsis: IF r[P3]<=r[P1] 002219 ** 002220 ** This works just like the Lt opcode except that the jump is taken if 002221 ** the content of register P3 is less than or equal to the content of 002222 ** register P1. See the Lt opcode for additional information. 002223 */ 002224 /* Opcode: Gt P1 P2 P3 P4 P5 002225 ** Synopsis: IF r[P3]>r[P1] 002226 ** 002227 ** This works just like the Lt opcode except that the jump is taken if 002228 ** the content of register P3 is greater than the content of 002229 ** register P1. See the Lt opcode for additional information. 002230 */ 002231 /* Opcode: Ge P1 P2 P3 P4 P5 002232 ** Synopsis: IF r[P3]>=r[P1] 002233 ** 002234 ** This works just like the Lt opcode except that the jump is taken if 002235 ** the content of register P3 is greater than or equal to the content of 002236 ** register P1. See the Lt opcode for additional information. 002237 */ 002238 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 002239 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 002240 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 002241 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 002242 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 002243 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 002244 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 002245 char affinity; /* Affinity to use for comparison */ 002246 u16 flags1; /* Copy of initial value of pIn1->flags */ 002247 u16 flags3; /* Copy of initial value of pIn3->flags */ 002248 002249 pIn1 = &aMem[pOp->p1]; 002250 pIn3 = &aMem[pOp->p3]; 002251 flags1 = pIn1->flags; 002252 flags3 = pIn3->flags; 002253 if( (flags1 & flags3 & MEM_Int)!=0 ){ 002254 /* Common case of comparison of two integers */ 002255 if( pIn3->u.i > pIn1->u.i ){ 002256 if( sqlite3aGTb[pOp->opcode] ){ 002257 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002258 goto jump_to_p2; 002259 } 002260 iCompare = +1; 002261 VVA_ONLY( iCompareIsInit = 1; ) 002262 }else if( pIn3->u.i < pIn1->u.i ){ 002263 if( sqlite3aLTb[pOp->opcode] ){ 002264 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002265 goto jump_to_p2; 002266 } 002267 iCompare = -1; 002268 VVA_ONLY( iCompareIsInit = 1; ) 002269 }else{ 002270 if( sqlite3aEQb[pOp->opcode] ){ 002271 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002272 goto jump_to_p2; 002273 } 002274 iCompare = 0; 002275 VVA_ONLY( iCompareIsInit = 1; ) 002276 } 002277 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002278 break; 002279 } 002280 if( (flags1 | flags3)&MEM_Null ){ 002281 /* One or both operands are NULL */ 002282 if( pOp->p5 & SQLITE_NULLEQ ){ 002283 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 002284 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 002285 ** or not both operands are null. 002286 */ 002287 assert( (flags1 & MEM_Cleared)==0 ); 002288 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 002289 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 002290 if( (flags1&flags3&MEM_Null)!=0 002291 && (flags3&MEM_Cleared)==0 002292 ){ 002293 res = 0; /* Operands are equal */ 002294 }else{ 002295 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 002296 } 002297 }else{ 002298 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 002299 ** then the result is always NULL. 002300 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 002301 */ 002302 VdbeBranchTaken(2,3); 002303 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 002304 goto jump_to_p2; 002305 } 002306 iCompare = 1; /* Operands are not equal */ 002307 VVA_ONLY( iCompareIsInit = 1; ) 002308 break; 002309 } 002310 }else{ 002311 /* Neither operand is NULL and we couldn't do the special high-speed 002312 ** integer comparison case. So do a general-case comparison. */ 002313 affinity = pOp->p5 & SQLITE_AFF_MASK; 002314 if( affinity>=SQLITE_AFF_NUMERIC ){ 002315 if( (flags1 | flags3)&MEM_Str ){ 002316 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 002317 applyNumericAffinity(pIn1,0); 002318 assert( flags3==pIn3->flags || CORRUPT_DB ); 002319 flags3 = pIn3->flags; 002320 } 002321 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 002322 applyNumericAffinity(pIn3,0); 002323 } 002324 } 002325 }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){ 002326 if( (flags1 & MEM_Str)!=0 ){ 002327 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 002328 }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 002329 testcase( pIn1->flags & MEM_Int ); 002330 testcase( pIn1->flags & MEM_Real ); 002331 testcase( pIn1->flags & MEM_IntReal ); 002332 sqlite3VdbeMemStringify(pIn1, encoding, 1); 002333 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 002334 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 002335 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 002336 } 002337 if( (flags3 & MEM_Str)!=0 ){ 002338 pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 002339 }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 002340 testcase( pIn3->flags & MEM_Int ); 002341 testcase( pIn3->flags & MEM_Real ); 002342 testcase( pIn3->flags & MEM_IntReal ); 002343 sqlite3VdbeMemStringify(pIn3, encoding, 1); 002344 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 002345 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 002346 } 002347 } 002348 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 002349 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 002350 } 002351 002352 /* At this point, res is negative, zero, or positive if reg[P1] is 002353 ** less than, equal to, or greater than reg[P3], respectively. Compute 002354 ** the answer to this operator in res2, depending on what the comparison 002355 ** operator actually is. The next block of code depends on the fact 002356 ** that the 6 comparison operators are consecutive integers in this 002357 ** order: NE, EQ, GT, LE, LT, GE */ 002358 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 002359 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 002360 if( res<0 ){ 002361 res2 = sqlite3aLTb[pOp->opcode]; 002362 }else if( res==0 ){ 002363 res2 = sqlite3aEQb[pOp->opcode]; 002364 }else{ 002365 res2 = sqlite3aGTb[pOp->opcode]; 002366 } 002367 iCompare = res; 002368 VVA_ONLY( iCompareIsInit = 1; ) 002369 002370 /* Undo any changes made by applyAffinity() to the input registers. */ 002371 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 002372 pIn3->flags = flags3; 002373 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 002374 pIn1->flags = flags1; 002375 002376 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002377 if( res2 ){ 002378 goto jump_to_p2; 002379 } 002380 break; 002381 } 002382 002383 /* Opcode: ElseEq * P2 * * * 002384 ** 002385 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 002386 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 002387 ** opcodes are allowed to occur between this instruction and the previous 002388 ** OP_Lt or OP_Gt. 002389 ** 002390 ** If the result of an OP_Eq comparison on the same two operands as 002391 ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If 002392 ** the result of an OP_Eq comparison on the two previous operands 002393 ** would have been false or NULL, then fall through. 002394 */ 002395 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 002396 002397 #ifdef SQLITE_DEBUG 002398 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 002399 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 002400 int iAddr; 002401 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 002402 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 002403 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 002404 break; 002405 } 002406 #endif /* SQLITE_DEBUG */ 002407 assert( iCompareIsInit ); 002408 VdbeBranchTaken(iCompare==0, 2); 002409 if( iCompare==0 ) goto jump_to_p2; 002410 break; 002411 } 002412 002413 002414 /* Opcode: Permutation * * * P4 * 002415 ** 002416 ** Set the permutation used by the OP_Compare operator in the next 002417 ** instruction. The permutation is stored in the P4 operand. 002418 ** 002419 ** The permutation is only valid for the next opcode which must be 002420 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 002421 ** 002422 ** The first integer in the P4 integer array is the length of the array 002423 ** and does not become part of the permutation. 002424 */ 002425 case OP_Permutation: { 002426 assert( pOp->p4type==P4_INTARRAY ); 002427 assert( pOp->p4.ai ); 002428 assert( pOp[1].opcode==OP_Compare ); 002429 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 002430 break; 002431 } 002432 002433 /* Opcode: Compare P1 P2 P3 P4 P5 002434 ** Synopsis: r[P1@P3] <-> r[P2@P3] 002435 ** 002436 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 002437 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 002438 ** the comparison for use by the next OP_Jump instruct. 002439 ** 002440 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 002441 ** determined by the most recent OP_Permutation operator. If the 002442 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 002443 ** order. 002444 ** 002445 ** P4 is a KeyInfo structure that defines collating sequences and sort 002446 ** orders for the comparison. The permutation applies to registers 002447 ** only. The KeyInfo elements are used sequentially. 002448 ** 002449 ** The comparison is a sort comparison, so NULLs compare equal, 002450 ** NULLs are less than numbers, numbers are less than strings, 002451 ** and strings are less than blobs. 002452 ** 002453 ** This opcode must be immediately followed by an OP_Jump opcode. 002454 */ 002455 case OP_Compare: { 002456 int n; 002457 int i; 002458 int p1; 002459 int p2; 002460 const KeyInfo *pKeyInfo; 002461 u32 idx; 002462 CollSeq *pColl; /* Collating sequence to use on this term */ 002463 int bRev; /* True for DESCENDING sort order */ 002464 u32 *aPermute; /* The permutation */ 002465 002466 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 002467 aPermute = 0; 002468 }else{ 002469 assert( pOp>aOp ); 002470 assert( pOp[-1].opcode==OP_Permutation ); 002471 assert( pOp[-1].p4type==P4_INTARRAY ); 002472 aPermute = pOp[-1].p4.ai + 1; 002473 assert( aPermute!=0 ); 002474 } 002475 n = pOp->p3; 002476 pKeyInfo = pOp->p4.pKeyInfo; 002477 assert( n>0 ); 002478 assert( pKeyInfo!=0 ); 002479 p1 = pOp->p1; 002480 p2 = pOp->p2; 002481 #ifdef SQLITE_DEBUG 002482 if( aPermute ){ 002483 int k, mx = 0; 002484 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 002485 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 002486 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 002487 }else{ 002488 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 002489 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 002490 } 002491 #endif /* SQLITE_DEBUG */ 002492 for(i=0; i<n; i++){ 002493 idx = aPermute ? aPermute[i] : (u32)i; 002494 assert( memIsValid(&aMem[p1+idx]) ); 002495 assert( memIsValid(&aMem[p2+idx]) ); 002496 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 002497 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 002498 assert( i<pKeyInfo->nKeyField ); 002499 pColl = pKeyInfo->aColl[i]; 002500 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 002501 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 002502 VVA_ONLY( iCompareIsInit = 1; ) 002503 if( iCompare ){ 002504 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 002505 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 002506 ){ 002507 iCompare = -iCompare; 002508 } 002509 if( bRev ) iCompare = -iCompare; 002510 break; 002511 } 002512 } 002513 assert( pOp[1].opcode==OP_Jump ); 002514 break; 002515 } 002516 002517 /* Opcode: Jump P1 P2 P3 * * 002518 ** 002519 ** Jump to the instruction at address P1, P2, or P3 depending on whether 002520 ** in the most recent OP_Compare instruction the P1 vector was less than, 002521 ** equal to, or greater than the P2 vector, respectively. 002522 ** 002523 ** This opcode must immediately follow an OP_Compare opcode. 002524 */ 002525 case OP_Jump: { /* jump */ 002526 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 002527 assert( iCompareIsInit ); 002528 if( iCompare<0 ){ 002529 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 002530 }else if( iCompare==0 ){ 002531 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 002532 }else{ 002533 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 002534 } 002535 break; 002536 } 002537 002538 /* Opcode: And P1 P2 P3 * * 002539 ** Synopsis: r[P3]=(r[P1] && r[P2]) 002540 ** 002541 ** Take the logical AND of the values in registers P1 and P2 and 002542 ** write the result into register P3. 002543 ** 002544 ** If either P1 or P2 is 0 (false) then the result is 0 even if 002545 ** the other input is NULL. A NULL and true or two NULLs give 002546 ** a NULL output. 002547 */ 002548 /* Opcode: Or P1 P2 P3 * * 002549 ** Synopsis: r[P3]=(r[P1] || r[P2]) 002550 ** 002551 ** Take the logical OR of the values in register P1 and P2 and 002552 ** store the answer in register P3. 002553 ** 002554 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 002555 ** even if the other input is NULL. A NULL and false or two NULLs 002556 ** give a NULL output. 002557 */ 002558 case OP_And: /* same as TK_AND, in1, in2, out3 */ 002559 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 002560 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 002561 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 002562 002563 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 002564 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 002565 if( pOp->opcode==OP_And ){ 002566 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 002567 v1 = and_logic[v1*3+v2]; 002568 }else{ 002569 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 002570 v1 = or_logic[v1*3+v2]; 002571 } 002572 pOut = &aMem[pOp->p3]; 002573 if( v1==2 ){ 002574 MemSetTypeFlag(pOut, MEM_Null); 002575 }else{ 002576 pOut->u.i = v1; 002577 MemSetTypeFlag(pOut, MEM_Int); 002578 } 002579 break; 002580 } 002581 002582 /* Opcode: IsTrue P1 P2 P3 P4 * 002583 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 002584 ** 002585 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 002586 ** IS NOT FALSE operators. 002587 ** 002588 ** Interpret the value in register P1 as a boolean value. Store that 002589 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 002590 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 002591 ** is 1. 002592 ** 002593 ** The logic is summarized like this: 002594 ** 002595 ** <ul> 002596 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 002597 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 002598 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 002599 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 002600 ** </ul> 002601 */ 002602 case OP_IsTrue: { /* in1, out2 */ 002603 assert( pOp->p4type==P4_INT32 ); 002604 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 002605 assert( pOp->p3==0 || pOp->p3==1 ); 002606 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 002607 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 002608 break; 002609 } 002610 002611 /* Opcode: Not P1 P2 * * * 002612 ** Synopsis: r[P2]= !r[P1] 002613 ** 002614 ** Interpret the value in register P1 as a boolean value. Store the 002615 ** boolean complement in register P2. If the value in register P1 is 002616 ** NULL, then a NULL is stored in P2. 002617 */ 002618 case OP_Not: { /* same as TK_NOT, in1, out2 */ 002619 pIn1 = &aMem[pOp->p1]; 002620 pOut = &aMem[pOp->p2]; 002621 if( (pIn1->flags & MEM_Null)==0 ){ 002622 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 002623 }else{ 002624 sqlite3VdbeMemSetNull(pOut); 002625 } 002626 break; 002627 } 002628 002629 /* Opcode: BitNot P1 P2 * * * 002630 ** Synopsis: r[P2]= ~r[P1] 002631 ** 002632 ** Interpret the content of register P1 as an integer. Store the 002633 ** ones-complement of the P1 value into register P2. If P1 holds 002634 ** a NULL then store a NULL in P2. 002635 */ 002636 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 002637 pIn1 = &aMem[pOp->p1]; 002638 pOut = &aMem[pOp->p2]; 002639 sqlite3VdbeMemSetNull(pOut); 002640 if( (pIn1->flags & MEM_Null)==0 ){ 002641 pOut->flags = MEM_Int; 002642 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 002643 } 002644 break; 002645 } 002646 002647 /* Opcode: Once P1 P2 * * * 002648 ** 002649 ** Fall through to the next instruction the first time this opcode is 002650 ** encountered on each invocation of the byte-code program. Jump to P2 002651 ** on the second and all subsequent encounters during the same invocation. 002652 ** 002653 ** Top-level programs determine first invocation by comparing the P1 002654 ** operand against the P1 operand on the OP_Init opcode at the beginning 002655 ** of the program. If the P1 values differ, then fall through and make 002656 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 002657 ** the same then take the jump. 002658 ** 002659 ** For subprograms, there is a bitmask in the VdbeFrame that determines 002660 ** whether or not the jump should be taken. The bitmask is necessary 002661 ** because the self-altering code trick does not work for recursive 002662 ** triggers. 002663 */ 002664 case OP_Once: { /* jump */ 002665 u32 iAddr; /* Address of this instruction */ 002666 assert( p->aOp[0].opcode==OP_Init ); 002667 if( p->pFrame ){ 002668 iAddr = (int)(pOp - p->aOp); 002669 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 002670 VdbeBranchTaken(1, 2); 002671 goto jump_to_p2; 002672 } 002673 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 002674 }else{ 002675 if( p->aOp[0].p1==pOp->p1 ){ 002676 VdbeBranchTaken(1, 2); 002677 goto jump_to_p2; 002678 } 002679 } 002680 VdbeBranchTaken(0, 2); 002681 pOp->p1 = p->aOp[0].p1; 002682 break; 002683 } 002684 002685 /* Opcode: If P1 P2 P3 * * 002686 ** 002687 ** Jump to P2 if the value in register P1 is true. The value 002688 ** is considered true if it is numeric and non-zero. If the value 002689 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 002690 */ 002691 case OP_If: { /* jump, in1 */ 002692 int c; 002693 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 002694 VdbeBranchTaken(c!=0, 2); 002695 if( c ) goto jump_to_p2; 002696 break; 002697 } 002698 002699 /* Opcode: IfNot P1 P2 P3 * * 002700 ** 002701 ** Jump to P2 if the value in register P1 is False. The value 002702 ** is considered false if it has a numeric value of zero. If the value 002703 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 002704 */ 002705 case OP_IfNot: { /* jump, in1 */ 002706 int c; 002707 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 002708 VdbeBranchTaken(c!=0, 2); 002709 if( c ) goto jump_to_p2; 002710 break; 002711 } 002712 002713 /* Opcode: IsNull P1 P2 * * * 002714 ** Synopsis: if r[P1]==NULL goto P2 002715 ** 002716 ** Jump to P2 if the value in register P1 is NULL. 002717 */ 002718 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 002719 pIn1 = &aMem[pOp->p1]; 002720 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 002721 if( (pIn1->flags & MEM_Null)!=0 ){ 002722 goto jump_to_p2; 002723 } 002724 break; 002725 } 002726 002727 /* Opcode: IsType P1 P2 P3 P4 P5 002728 ** Synopsis: if typeof(P1.P3) in P5 goto P2 002729 ** 002730 ** Jump to P2 if the type of a column in a btree is one of the types specified 002731 ** by the P5 bitmask. 002732 ** 002733 ** P1 is normally a cursor on a btree for which the row decode cache is 002734 ** valid through at least column P3. In other words, there should have been 002735 ** a prior OP_Column for column P3 or greater. If the cursor is not valid, 002736 ** then this opcode might give spurious results. 002737 ** The the btree row has fewer than P3 columns, then use P4 as the 002738 ** datatype. 002739 ** 002740 ** If P1 is -1, then P3 is a register number and the datatype is taken 002741 ** from the value in that register. 002742 ** 002743 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant 002744 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04. 002745 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10. 002746 ** 002747 ** WARNING: This opcode does not reliably distinguish between NULL and REAL 002748 ** when P1>=0. If the database contains a NaN value, this opcode will think 002749 ** that the datatype is REAL when it should be NULL. When P1<0 and the value 002750 ** is already stored in register P3, then this opcode does reliably 002751 ** distinguish between NULL and REAL. The problem only arises then P1>=0. 002752 ** 002753 ** Take the jump to address P2 if and only if the datatype of the 002754 ** value determined by P1 and P3 corresponds to one of the bits in the 002755 ** P5 bitmask. 002756 ** 002757 */ 002758 case OP_IsType: { /* jump */ 002759 VdbeCursor *pC; 002760 u16 typeMask; 002761 u32 serialType; 002762 002763 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor ); 002764 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) ); 002765 if( pOp->p1>=0 ){ 002766 pC = p->apCsr[pOp->p1]; 002767 assert( pC!=0 ); 002768 assert( pOp->p3>=0 ); 002769 if( pOp->p3<pC->nHdrParsed ){ 002770 serialType = pC->aType[pOp->p3]; 002771 if( serialType>=12 ){ 002772 if( serialType&1 ){ 002773 typeMask = 0x04; /* SQLITE_TEXT */ 002774 }else{ 002775 typeMask = 0x08; /* SQLITE_BLOB */ 002776 } 002777 }else{ 002778 static const unsigned char aMask[] = { 002779 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2, 002780 0x01, 0x01, 0x10, 0x10 002781 }; 002782 testcase( serialType==0 ); 002783 testcase( serialType==1 ); 002784 testcase( serialType==2 ); 002785 testcase( serialType==3 ); 002786 testcase( serialType==4 ); 002787 testcase( serialType==5 ); 002788 testcase( serialType==6 ); 002789 testcase( serialType==7 ); 002790 testcase( serialType==8 ); 002791 testcase( serialType==9 ); 002792 testcase( serialType==10 ); 002793 testcase( serialType==11 ); 002794 typeMask = aMask[serialType]; 002795 } 002796 }else{ 002797 typeMask = 1 << (pOp->p4.i - 1); 002798 testcase( typeMask==0x01 ); 002799 testcase( typeMask==0x02 ); 002800 testcase( typeMask==0x04 ); 002801 testcase( typeMask==0x08 ); 002802 testcase( typeMask==0x10 ); 002803 } 002804 }else{ 002805 assert( memIsValid(&aMem[pOp->p3]) ); 002806 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1); 002807 testcase( typeMask==0x01 ); 002808 testcase( typeMask==0x02 ); 002809 testcase( typeMask==0x04 ); 002810 testcase( typeMask==0x08 ); 002811 testcase( typeMask==0x10 ); 002812 } 002813 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2); 002814 if( typeMask & pOp->p5 ){ 002815 goto jump_to_p2; 002816 } 002817 break; 002818 } 002819 002820 /* Opcode: ZeroOrNull P1 P2 P3 * * 002821 ** Synopsis: r[P2] = 0 OR NULL 002822 ** 002823 ** If both registers P1 and P3 are NOT NULL, then store a zero in 002824 ** register P2. If either registers P1 or P3 are NULL then put 002825 ** a NULL in register P2. 002826 */ 002827 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 002828 if( (aMem[pOp->p1].flags & MEM_Null)!=0 002829 || (aMem[pOp->p3].flags & MEM_Null)!=0 002830 ){ 002831 sqlite3VdbeMemSetNull(aMem + pOp->p2); 002832 }else{ 002833 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 002834 } 002835 break; 002836 } 002837 002838 /* Opcode: NotNull P1 P2 * * * 002839 ** Synopsis: if r[P1]!=NULL goto P2 002840 ** 002841 ** Jump to P2 if the value in register P1 is not NULL. 002842 */ 002843 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 002844 pIn1 = &aMem[pOp->p1]; 002845 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 002846 if( (pIn1->flags & MEM_Null)==0 ){ 002847 goto jump_to_p2; 002848 } 002849 break; 002850 } 002851 002852 /* Opcode: IfNullRow P1 P2 P3 * * 002853 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 002854 ** 002855 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 002856 ** If it is, then set register P3 to NULL and jump immediately to P2. 002857 ** If P1 is not on a NULL row, then fall through without making any 002858 ** changes. 002859 ** 002860 ** If P1 is not an open cursor, then this opcode is a no-op. 002861 */ 002862 case OP_IfNullRow: { /* jump */ 002863 VdbeCursor *pC; 002864 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002865 pC = p->apCsr[pOp->p1]; 002866 if( pC && pC->nullRow ){ 002867 sqlite3VdbeMemSetNull(aMem + pOp->p3); 002868 goto jump_to_p2; 002869 } 002870 break; 002871 } 002872 002873 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 002874 /* Opcode: Offset P1 P2 P3 * * 002875 ** Synopsis: r[P3] = sqlite_offset(P1) 002876 ** 002877 ** Store in register r[P3] the byte offset into the database file that is the 002878 ** start of the payload for the record at which that cursor P1 is currently 002879 ** pointing. 002880 ** 002881 ** P2 is the column number for the argument to the sqlite_offset() function. 002882 ** This opcode does not use P2 itself, but the P2 value is used by the 002883 ** code generator. The P1, P2, and P3 operands to this opcode are the 002884 ** same as for OP_Column. 002885 ** 002886 ** This opcode is only available if SQLite is compiled with the 002887 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 002888 */ 002889 case OP_Offset: { /* out3 */ 002890 VdbeCursor *pC; /* The VDBE cursor */ 002891 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002892 pC = p->apCsr[pOp->p1]; 002893 pOut = &p->aMem[pOp->p3]; 002894 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 002895 sqlite3VdbeMemSetNull(pOut); 002896 }else{ 002897 if( pC->deferredMoveto ){ 002898 rc = sqlite3VdbeFinishMoveto(pC); 002899 if( rc ) goto abort_due_to_error; 002900 } 002901 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 002902 sqlite3VdbeMemSetNull(pOut); 002903 }else{ 002904 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 002905 } 002906 } 002907 break; 002908 } 002909 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 002910 002911 /* Opcode: Column P1 P2 P3 P4 P5 002912 ** Synopsis: r[P3]=PX cursor P1 column P2 002913 ** 002914 ** Interpret the data that cursor P1 points to as a structure built using 002915 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 002916 ** information about the format of the data.) Extract the P2-th column 002917 ** from this record. If there are less than (P2+1) 002918 ** values in the record, extract a NULL. 002919 ** 002920 ** The value extracted is stored in register P3. 002921 ** 002922 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 002923 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 002924 ** the result. 002925 ** 002926 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed 002927 ** to only be used by the length() function or the equivalent. The content 002928 ** of large blobs is not loaded, thus saving CPU cycles. If the 002929 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the 002930 ** typeof() function or the IS NULL or IS NOT NULL operators or the 002931 ** equivalent. In this case, all content loading can be omitted. 002932 */ 002933 case OP_Column: { /* ncycle */ 002934 u32 p2; /* column number to retrieve */ 002935 VdbeCursor *pC; /* The VDBE cursor */ 002936 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 002937 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 002938 int len; /* The length of the serialized data for the column */ 002939 int i; /* Loop counter */ 002940 Mem *pDest; /* Where to write the extracted value */ 002941 Mem sMem; /* For storing the record being decoded */ 002942 const u8 *zData; /* Part of the record being decoded */ 002943 const u8 *zHdr; /* Next unparsed byte of the header */ 002944 const u8 *zEndHdr; /* Pointer to first byte after the header */ 002945 u64 offset64; /* 64-bit offset */ 002946 u32 t; /* A type code from the record header */ 002947 Mem *pReg; /* PseudoTable input register */ 002948 002949 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002950 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 002951 pC = p->apCsr[pOp->p1]; 002952 p2 = (u32)pOp->p2; 002953 002954 op_column_restart: 002955 assert( pC!=0 ); 002956 assert( p2<(u32)pC->nField 002957 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 002958 aOffset = pC->aOffset; 002959 assert( aOffset==pC->aType+pC->nField ); 002960 assert( pC->eCurType!=CURTYPE_VTAB ); 002961 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 002962 assert( pC->eCurType!=CURTYPE_SORTER ); 002963 002964 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 002965 if( pC->nullRow ){ 002966 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 002967 /* For the special case of as pseudo-cursor, the seekResult field 002968 ** identifies the register that holds the record */ 002969 pReg = &aMem[pC->seekResult]; 002970 assert( pReg->flags & MEM_Blob ); 002971 assert( memIsValid(pReg) ); 002972 pC->payloadSize = pC->szRow = pReg->n; 002973 pC->aRow = (u8*)pReg->z; 002974 }else{ 002975 pDest = &aMem[pOp->p3]; 002976 memAboutToChange(p, pDest); 002977 sqlite3VdbeMemSetNull(pDest); 002978 goto op_column_out; 002979 } 002980 }else{ 002981 pCrsr = pC->uc.pCursor; 002982 if( pC->deferredMoveto ){ 002983 u32 iMap; 002984 assert( !pC->isEphemeral ); 002985 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 002986 pC = pC->pAltCursor; 002987 p2 = iMap - 1; 002988 goto op_column_restart; 002989 } 002990 rc = sqlite3VdbeFinishMoveto(pC); 002991 if( rc ) goto abort_due_to_error; 002992 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 002993 rc = sqlite3VdbeHandleMovedCursor(pC); 002994 if( rc ) goto abort_due_to_error; 002995 goto op_column_restart; 002996 } 002997 assert( pC->eCurType==CURTYPE_BTREE ); 002998 assert( pCrsr ); 002999 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 003000 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 003001 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 003002 assert( pC->szRow<=pC->payloadSize ); 003003 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 003004 } 003005 pC->cacheStatus = p->cacheCtr; 003006 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 003007 pC->iHdrOffset = 1; 003008 }else{ 003009 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 003010 } 003011 pC->nHdrParsed = 0; 003012 003013 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 003014 /* pC->aRow does not have to hold the entire row, but it does at least 003015 ** need to cover the header of the record. If pC->aRow does not contain 003016 ** the complete header, then set it to zero, forcing the header to be 003017 ** dynamically allocated. */ 003018 pC->aRow = 0; 003019 pC->szRow = 0; 003020 003021 /* Make sure a corrupt database has not given us an oversize header. 003022 ** Do this now to avoid an oversize memory allocation. 003023 ** 003024 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 003025 ** types use so much data space that there can only be 4096 and 32 of 003026 ** them, respectively. So the maximum header length results from a 003027 ** 3-byte type for each of the maximum of 32768 columns plus three 003028 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 003029 */ 003030 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 003031 goto op_column_corrupt; 003032 } 003033 }else{ 003034 /* This is an optimization. By skipping over the first few tests 003035 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 003036 ** measurable performance gain. 003037 ** 003038 ** This branch is taken even if aOffset[0]==0. Such a record is never 003039 ** generated by SQLite, and could be considered corruption, but we 003040 ** accept it for historical reasons. When aOffset[0]==0, the code this 003041 ** branch jumps to reads past the end of the record, but never more 003042 ** than a few bytes. Even if the record occurs at the end of the page 003043 ** content area, the "page header" comes after the page content and so 003044 ** this overread is harmless. Similar overreads can occur for a corrupt 003045 ** database file. 003046 */ 003047 zData = pC->aRow; 003048 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 003049 testcase( aOffset[0]==0 ); 003050 goto op_column_read_header; 003051 } 003052 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 003053 rc = sqlite3VdbeHandleMovedCursor(pC); 003054 if( rc ) goto abort_due_to_error; 003055 goto op_column_restart; 003056 } 003057 003058 /* Make sure at least the first p2+1 entries of the header have been 003059 ** parsed and valid information is in aOffset[] and pC->aType[]. 003060 */ 003061 if( pC->nHdrParsed<=p2 ){ 003062 /* If there is more header available for parsing in the record, try 003063 ** to extract additional fields up through the p2+1-th field 003064 */ 003065 if( pC->iHdrOffset<aOffset[0] ){ 003066 /* Make sure zData points to enough of the record to cover the header. */ 003067 if( pC->aRow==0 ){ 003068 memset(&sMem, 0, sizeof(sMem)); 003069 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 003070 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003071 zData = (u8*)sMem.z; 003072 }else{ 003073 zData = pC->aRow; 003074 } 003075 003076 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 003077 op_column_read_header: 003078 i = pC->nHdrParsed; 003079 offset64 = aOffset[i]; 003080 zHdr = zData + pC->iHdrOffset; 003081 zEndHdr = zData + aOffset[0]; 003082 testcase( zHdr>=zEndHdr ); 003083 do{ 003084 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 003085 zHdr++; 003086 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 003087 }else{ 003088 zHdr += sqlite3GetVarint32(zHdr, &t); 003089 pC->aType[i] = t; 003090 offset64 += sqlite3VdbeSerialTypeLen(t); 003091 } 003092 aOffset[++i] = (u32)(offset64 & 0xffffffff); 003093 }while( (u32)i<=p2 && zHdr<zEndHdr ); 003094 003095 /* The record is corrupt if any of the following are true: 003096 ** (1) the bytes of the header extend past the declared header size 003097 ** (2) the entire header was used but not all data was used 003098 ** (3) the end of the data extends beyond the end of the record. 003099 */ 003100 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 003101 || (offset64 > pC->payloadSize) 003102 ){ 003103 if( aOffset[0]==0 ){ 003104 i = 0; 003105 zHdr = zEndHdr; 003106 }else{ 003107 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 003108 goto op_column_corrupt; 003109 } 003110 } 003111 003112 pC->nHdrParsed = i; 003113 pC->iHdrOffset = (u32)(zHdr - zData); 003114 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 003115 }else{ 003116 t = 0; 003117 } 003118 003119 /* If after trying to extract new entries from the header, nHdrParsed is 003120 ** still not up to p2, that means that the record has fewer than p2 003121 ** columns. So the result will be either the default value or a NULL. 003122 */ 003123 if( pC->nHdrParsed<=p2 ){ 003124 pDest = &aMem[pOp->p3]; 003125 memAboutToChange(p, pDest); 003126 if( pOp->p4type==P4_MEM ){ 003127 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 003128 }else{ 003129 sqlite3VdbeMemSetNull(pDest); 003130 } 003131 goto op_column_out; 003132 } 003133 }else{ 003134 t = pC->aType[p2]; 003135 } 003136 003137 /* Extract the content for the p2+1-th column. Control can only 003138 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 003139 ** all valid. 003140 */ 003141 assert( p2<pC->nHdrParsed ); 003142 assert( rc==SQLITE_OK ); 003143 pDest = &aMem[pOp->p3]; 003144 memAboutToChange(p, pDest); 003145 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 003146 if( VdbeMemDynamic(pDest) ){ 003147 sqlite3VdbeMemSetNull(pDest); 003148 } 003149 assert( t==pC->aType[p2] ); 003150 if( pC->szRow>=aOffset[p2+1] ){ 003151 /* This is the common case where the desired content fits on the original 003152 ** page - where the content is not on an overflow page */ 003153 zData = pC->aRow + aOffset[p2]; 003154 if( t<12 ){ 003155 sqlite3VdbeSerialGet(zData, t, pDest); 003156 }else{ 003157 /* If the column value is a string, we need a persistent value, not 003158 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 003159 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 003160 */ 003161 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 003162 pDest->n = len = (t-12)/2; 003163 pDest->enc = encoding; 003164 if( pDest->szMalloc < len+2 ){ 003165 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 003166 pDest->flags = MEM_Null; 003167 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 003168 }else{ 003169 pDest->z = pDest->zMalloc; 003170 } 003171 memcpy(pDest->z, zData, len); 003172 pDest->z[len] = 0; 003173 pDest->z[len+1] = 0; 003174 pDest->flags = aFlag[t&1]; 003175 } 003176 }else{ 003177 u8 p5; 003178 pDest->enc = encoding; 003179 assert( pDest->db==db ); 003180 /* This branch happens only when content is on overflow pages */ 003181 if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0 003182 && (p5==OPFLAG_TYPEOFARG 003183 || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG)) 003184 ) 003185 ) 003186 || sqlite3VdbeSerialTypeLen(t)==0 003187 ){ 003188 /* Content is irrelevant for 003189 ** 1. the typeof() function, 003190 ** 2. the length(X) function if X is a blob, and 003191 ** 3. if the content length is zero. 003192 ** So we might as well use bogus content rather than reading 003193 ** content from disk. 003194 ** 003195 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 003196 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 003197 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 003198 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 003199 ** and it begins with a bunch of zeros. 003200 */ 003201 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 003202 }else{ 003203 rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], 003204 p->cacheCtr, colCacheCtr, pDest); 003205 if( rc ){ 003206 if( rc==SQLITE_NOMEM ) goto no_mem; 003207 if( rc==SQLITE_TOOBIG ) goto too_big; 003208 goto abort_due_to_error; 003209 } 003210 } 003211 } 003212 003213 op_column_out: 003214 UPDATE_MAX_BLOBSIZE(pDest); 003215 REGISTER_TRACE(pOp->p3, pDest); 003216 break; 003217 003218 op_column_corrupt: 003219 if( aOp[0].p3>0 ){ 003220 pOp = &aOp[aOp[0].p3-1]; 003221 break; 003222 }else{ 003223 rc = SQLITE_CORRUPT_BKPT; 003224 goto abort_due_to_error; 003225 } 003226 } 003227 003228 /* Opcode: TypeCheck P1 P2 P3 P4 * 003229 ** Synopsis: typecheck(r[P1@P2]) 003230 ** 003231 ** Apply affinities to the range of P2 registers beginning with P1. 003232 ** Take the affinities from the Table object in P4. If any value 003233 ** cannot be coerced into the correct type, then raise an error. 003234 ** 003235 ** This opcode is similar to OP_Affinity except that this opcode 003236 ** forces the register type to the Table column type. This is used 003237 ** to implement "strict affinity". 003238 ** 003239 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 003240 ** is zero. When P3 is non-zero, no type checking occurs for 003241 ** static generated columns. Virtual columns are computed at query time 003242 ** and so they are never checked. 003243 ** 003244 ** Preconditions: 003245 ** 003246 ** <ul> 003247 ** <li> P2 should be the number of non-virtual columns in the 003248 ** table of P4. 003249 ** <li> Table P4 should be a STRICT table. 003250 ** </ul> 003251 ** 003252 ** If any precondition is false, an assertion fault occurs. 003253 */ 003254 case OP_TypeCheck: { 003255 Table *pTab; 003256 Column *aCol; 003257 int i; 003258 003259 assert( pOp->p4type==P4_TABLE ); 003260 pTab = pOp->p4.pTab; 003261 assert( pTab->tabFlags & TF_Strict ); 003262 assert( pTab->nNVCol==pOp->p2 ); 003263 aCol = pTab->aCol; 003264 pIn1 = &aMem[pOp->p1]; 003265 for(i=0; i<pTab->nCol; i++){ 003266 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 003267 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 003268 if( pOp->p3 ){ pIn1++; continue; } 003269 } 003270 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 003271 applyAffinity(pIn1, aCol[i].affinity, encoding); 003272 if( (pIn1->flags & MEM_Null)==0 ){ 003273 switch( aCol[i].eCType ){ 003274 case COLTYPE_BLOB: { 003275 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 003276 break; 003277 } 003278 case COLTYPE_INTEGER: 003279 case COLTYPE_INT: { 003280 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 003281 break; 003282 } 003283 case COLTYPE_TEXT: { 003284 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 003285 break; 003286 } 003287 case COLTYPE_REAL: { 003288 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 003289 assert( (pIn1->flags & MEM_IntReal)==0 ); 003290 if( pIn1->flags & MEM_Int ){ 003291 /* When applying REAL affinity, if the result is still an MEM_Int 003292 ** that will fit in 6 bytes, then change the type to MEM_IntReal 003293 ** so that we keep the high-resolution integer value but know that 003294 ** the type really wants to be REAL. */ 003295 testcase( pIn1->u.i==140737488355328LL ); 003296 testcase( pIn1->u.i==140737488355327LL ); 003297 testcase( pIn1->u.i==-140737488355328LL ); 003298 testcase( pIn1->u.i==-140737488355329LL ); 003299 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 003300 pIn1->flags |= MEM_IntReal; 003301 pIn1->flags &= ~MEM_Int; 003302 }else{ 003303 pIn1->u.r = (double)pIn1->u.i; 003304 pIn1->flags |= MEM_Real; 003305 pIn1->flags &= ~MEM_Int; 003306 } 003307 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 003308 goto vdbe_type_error; 003309 } 003310 break; 003311 } 003312 default: { 003313 /* COLTYPE_ANY. Accept anything. */ 003314 break; 003315 } 003316 } 003317 } 003318 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 003319 pIn1++; 003320 } 003321 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 003322 break; 003323 003324 vdbe_type_error: 003325 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 003326 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 003327 pTab->zName, aCol[i].zCnName); 003328 rc = SQLITE_CONSTRAINT_DATATYPE; 003329 goto abort_due_to_error; 003330 } 003331 003332 /* Opcode: Affinity P1 P2 * P4 * 003333 ** Synopsis: affinity(r[P1@P2]) 003334 ** 003335 ** Apply affinities to a range of P2 registers starting with P1. 003336 ** 003337 ** P4 is a string that is P2 characters long. The N-th character of the 003338 ** string indicates the column affinity that should be used for the N-th 003339 ** memory cell in the range. 003340 */ 003341 case OP_Affinity: { 003342 const char *zAffinity; /* The affinity to be applied */ 003343 003344 zAffinity = pOp->p4.z; 003345 assert( zAffinity!=0 ); 003346 assert( pOp->p2>0 ); 003347 assert( zAffinity[pOp->p2]==0 ); 003348 pIn1 = &aMem[pOp->p1]; 003349 while( 1 /*exit-by-break*/ ){ 003350 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 003351 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 003352 applyAffinity(pIn1, zAffinity[0], encoding); 003353 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 003354 /* When applying REAL affinity, if the result is still an MEM_Int 003355 ** that will fit in 6 bytes, then change the type to MEM_IntReal 003356 ** so that we keep the high-resolution integer value but know that 003357 ** the type really wants to be REAL. */ 003358 testcase( pIn1->u.i==140737488355328LL ); 003359 testcase( pIn1->u.i==140737488355327LL ); 003360 testcase( pIn1->u.i==-140737488355328LL ); 003361 testcase( pIn1->u.i==-140737488355329LL ); 003362 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 003363 pIn1->flags |= MEM_IntReal; 003364 pIn1->flags &= ~MEM_Int; 003365 }else{ 003366 pIn1->u.r = (double)pIn1->u.i; 003367 pIn1->flags |= MEM_Real; 003368 pIn1->flags &= ~(MEM_Int|MEM_Str); 003369 } 003370 } 003371 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 003372 zAffinity++; 003373 if( zAffinity[0]==0 ) break; 003374 pIn1++; 003375 } 003376 break; 003377 } 003378 003379 /* Opcode: MakeRecord P1 P2 P3 P4 * 003380 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 003381 ** 003382 ** Convert P2 registers beginning with P1 into the [record format] 003383 ** use as a data record in a database table or as a key 003384 ** in an index. The OP_Column opcode can decode the record later. 003385 ** 003386 ** P4 may be a string that is P2 characters long. The N-th character of the 003387 ** string indicates the column affinity that should be used for the N-th 003388 ** field of the index key. 003389 ** 003390 ** The mapping from character to affinity is given by the SQLITE_AFF_ 003391 ** macros defined in sqliteInt.h. 003392 ** 003393 ** If P4 is NULL then all index fields have the affinity BLOB. 003394 ** 003395 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 003396 ** compile-time option is enabled: 003397 ** 003398 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 003399 ** of the right-most table that can be null-trimmed. 003400 ** 003401 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 003402 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 003403 ** accept no-change records with serial_type 10. This value is 003404 ** only used inside an assert() and does not affect the end result. 003405 */ 003406 case OP_MakeRecord: { 003407 Mem *pRec; /* The new record */ 003408 u64 nData; /* Number of bytes of data space */ 003409 int nHdr; /* Number of bytes of header space */ 003410 i64 nByte; /* Data space required for this record */ 003411 i64 nZero; /* Number of zero bytes at the end of the record */ 003412 int nVarint; /* Number of bytes in a varint */ 003413 u32 serial_type; /* Type field */ 003414 Mem *pData0; /* First field to be combined into the record */ 003415 Mem *pLast; /* Last field of the record */ 003416 int nField; /* Number of fields in the record */ 003417 char *zAffinity; /* The affinity string for the record */ 003418 u32 len; /* Length of a field */ 003419 u8 *zHdr; /* Where to write next byte of the header */ 003420 u8 *zPayload; /* Where to write next byte of the payload */ 003421 003422 /* Assuming the record contains N fields, the record format looks 003423 ** like this: 003424 ** 003425 ** ------------------------------------------------------------------------ 003426 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 003427 ** ------------------------------------------------------------------------ 003428 ** 003429 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 003430 ** and so forth. 003431 ** 003432 ** Each type field is a varint representing the serial type of the 003433 ** corresponding data element (see sqlite3VdbeSerialType()). The 003434 ** hdr-size field is also a varint which is the offset from the beginning 003435 ** of the record to data0. 003436 */ 003437 nData = 0; /* Number of bytes of data space */ 003438 nHdr = 0; /* Number of bytes of header space */ 003439 nZero = 0; /* Number of zero bytes at the end of the record */ 003440 nField = pOp->p1; 003441 zAffinity = pOp->p4.z; 003442 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 003443 pData0 = &aMem[nField]; 003444 nField = pOp->p2; 003445 pLast = &pData0[nField-1]; 003446 003447 /* Identify the output register */ 003448 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 003449 pOut = &aMem[pOp->p3]; 003450 memAboutToChange(p, pOut); 003451 003452 /* Apply the requested affinity to all inputs 003453 */ 003454 assert( pData0<=pLast ); 003455 if( zAffinity ){ 003456 pRec = pData0; 003457 do{ 003458 applyAffinity(pRec, zAffinity[0], encoding); 003459 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 003460 pRec->flags |= MEM_IntReal; 003461 pRec->flags &= ~(MEM_Int); 003462 } 003463 REGISTER_TRACE((int)(pRec-aMem), pRec); 003464 zAffinity++; 003465 pRec++; 003466 assert( zAffinity[0]==0 || pRec<=pLast ); 003467 }while( zAffinity[0] ); 003468 } 003469 003470 #ifdef SQLITE_ENABLE_NULL_TRIM 003471 /* NULLs can be safely trimmed from the end of the record, as long as 003472 ** as the schema format is 2 or more and none of the omitted columns 003473 ** have a non-NULL default value. Also, the record must be left with 003474 ** at least one field. If P5>0 then it will be one more than the 003475 ** index of the right-most column with a non-NULL default value */ 003476 if( pOp->p5 ){ 003477 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 003478 pLast--; 003479 nField--; 003480 } 003481 } 003482 #endif 003483 003484 /* Loop through the elements that will make up the record to figure 003485 ** out how much space is required for the new record. After this loop, 003486 ** the Mem.uTemp field of each term should hold the serial-type that will 003487 ** be used for that term in the generated record: 003488 ** 003489 ** Mem.uTemp value type 003490 ** --------------- --------------- 003491 ** 0 NULL 003492 ** 1 1-byte signed integer 003493 ** 2 2-byte signed integer 003494 ** 3 3-byte signed integer 003495 ** 4 4-byte signed integer 003496 ** 5 6-byte signed integer 003497 ** 6 8-byte signed integer 003498 ** 7 IEEE float 003499 ** 8 Integer constant 0 003500 ** 9 Integer constant 1 003501 ** 10,11 reserved for expansion 003502 ** N>=12 and even BLOB 003503 ** N>=13 and odd text 003504 ** 003505 ** The following additional values are computed: 003506 ** nHdr Number of bytes needed for the record header 003507 ** nData Number of bytes of data space needed for the record 003508 ** nZero Zero bytes at the end of the record 003509 */ 003510 pRec = pLast; 003511 do{ 003512 assert( memIsValid(pRec) ); 003513 if( pRec->flags & MEM_Null ){ 003514 if( pRec->flags & MEM_Zero ){ 003515 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 003516 ** table methods that never invoke sqlite3_result_xxxxx() while 003517 ** computing an unchanging column value in an UPDATE statement. 003518 ** Give such values a special internal-use-only serial-type of 10 003519 ** so that they can be passed through to xUpdate and have 003520 ** a true sqlite3_value_nochange(). */ 003521 #ifndef SQLITE_ENABLE_NULL_TRIM 003522 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 003523 #endif 003524 pRec->uTemp = 10; 003525 }else{ 003526 pRec->uTemp = 0; 003527 } 003528 nHdr++; 003529 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 003530 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 003531 i64 i = pRec->u.i; 003532 u64 uu; 003533 testcase( pRec->flags & MEM_Int ); 003534 testcase( pRec->flags & MEM_IntReal ); 003535 if( i<0 ){ 003536 uu = ~i; 003537 }else{ 003538 uu = i; 003539 } 003540 nHdr++; 003541 testcase( uu==127 ); testcase( uu==128 ); 003542 testcase( uu==32767 ); testcase( uu==32768 ); 003543 testcase( uu==8388607 ); testcase( uu==8388608 ); 003544 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 003545 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 003546 if( uu<=127 ){ 003547 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 003548 pRec->uTemp = 8+(u32)uu; 003549 }else{ 003550 nData++; 003551 pRec->uTemp = 1; 003552 } 003553 }else if( uu<=32767 ){ 003554 nData += 2; 003555 pRec->uTemp = 2; 003556 }else if( uu<=8388607 ){ 003557 nData += 3; 003558 pRec->uTemp = 3; 003559 }else if( uu<=2147483647 ){ 003560 nData += 4; 003561 pRec->uTemp = 4; 003562 }else if( uu<=140737488355327LL ){ 003563 nData += 6; 003564 pRec->uTemp = 5; 003565 }else{ 003566 nData += 8; 003567 if( pRec->flags & MEM_IntReal ){ 003568 /* If the value is IntReal and is going to take up 8 bytes to store 003569 ** as an integer, then we might as well make it an 8-byte floating 003570 ** point value */ 003571 pRec->u.r = (double)pRec->u.i; 003572 pRec->flags &= ~MEM_IntReal; 003573 pRec->flags |= MEM_Real; 003574 pRec->uTemp = 7; 003575 }else{ 003576 pRec->uTemp = 6; 003577 } 003578 } 003579 }else if( pRec->flags & MEM_Real ){ 003580 nHdr++; 003581 nData += 8; 003582 pRec->uTemp = 7; 003583 }else{ 003584 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 003585 assert( pRec->n>=0 ); 003586 len = (u32)pRec->n; 003587 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 003588 if( pRec->flags & MEM_Zero ){ 003589 serial_type += pRec->u.nZero*2; 003590 if( nData ){ 003591 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 003592 len += pRec->u.nZero; 003593 }else{ 003594 nZero += pRec->u.nZero; 003595 } 003596 } 003597 nData += len; 003598 nHdr += sqlite3VarintLen(serial_type); 003599 pRec->uTemp = serial_type; 003600 } 003601 if( pRec==pData0 ) break; 003602 pRec--; 003603 }while(1); 003604 003605 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 003606 ** which determines the total number of bytes in the header. The varint 003607 ** value is the size of the header in bytes including the size varint 003608 ** itself. */ 003609 testcase( nHdr==126 ); 003610 testcase( nHdr==127 ); 003611 if( nHdr<=126 ){ 003612 /* The common case */ 003613 nHdr += 1; 003614 }else{ 003615 /* Rare case of a really large header */ 003616 nVarint = sqlite3VarintLen(nHdr); 003617 nHdr += nVarint; 003618 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 003619 } 003620 nByte = nHdr+nData; 003621 003622 /* Make sure the output register has a buffer large enough to store 003623 ** the new record. The output register (pOp->p3) is not allowed to 003624 ** be one of the input registers (because the following call to 003625 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 003626 */ 003627 if( nByte+nZero<=pOut->szMalloc ){ 003628 /* The output register is already large enough to hold the record. 003629 ** No error checks or buffer enlargement is required */ 003630 pOut->z = pOut->zMalloc; 003631 }else{ 003632 /* Need to make sure that the output is not too big and then enlarge 003633 ** the output register to hold the full result */ 003634 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 003635 goto too_big; 003636 } 003637 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 003638 goto no_mem; 003639 } 003640 } 003641 pOut->n = (int)nByte; 003642 pOut->flags = MEM_Blob; 003643 if( nZero ){ 003644 pOut->u.nZero = nZero; 003645 pOut->flags |= MEM_Zero; 003646 } 003647 UPDATE_MAX_BLOBSIZE(pOut); 003648 zHdr = (u8 *)pOut->z; 003649 zPayload = zHdr + nHdr; 003650 003651 /* Write the record */ 003652 if( nHdr<0x80 ){ 003653 *(zHdr++) = nHdr; 003654 }else{ 003655 zHdr += sqlite3PutVarint(zHdr,nHdr); 003656 } 003657 assert( pData0<=pLast ); 003658 pRec = pData0; 003659 while( 1 /*exit-by-break*/ ){ 003660 serial_type = pRec->uTemp; 003661 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 003662 ** additional varints, one per column. 003663 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 003664 ** immediately follow the header. */ 003665 if( serial_type<=7 ){ 003666 *(zHdr++) = serial_type; 003667 if( serial_type==0 ){ 003668 /* NULL value. No change in zPayload */ 003669 }else{ 003670 u64 v; 003671 if( serial_type==7 ){ 003672 assert( sizeof(v)==sizeof(pRec->u.r) ); 003673 memcpy(&v, &pRec->u.r, sizeof(v)); 003674 swapMixedEndianFloat(v); 003675 }else{ 003676 v = pRec->u.i; 003677 } 003678 len = sqlite3SmallTypeSizes[serial_type]; 003679 assert( len>=1 && len<=8 && len!=5 && len!=7 ); 003680 switch( len ){ 003681 default: zPayload[7] = (u8)(v&0xff); v >>= 8; 003682 zPayload[6] = (u8)(v&0xff); v >>= 8; 003683 /* no break */ deliberate_fall_through 003684 case 6: zPayload[5] = (u8)(v&0xff); v >>= 8; 003685 zPayload[4] = (u8)(v&0xff); v >>= 8; 003686 /* no break */ deliberate_fall_through 003687 case 4: zPayload[3] = (u8)(v&0xff); v >>= 8; 003688 /* no break */ deliberate_fall_through 003689 case 3: zPayload[2] = (u8)(v&0xff); v >>= 8; 003690 /* no break */ deliberate_fall_through 003691 case 2: zPayload[1] = (u8)(v&0xff); v >>= 8; 003692 /* no break */ deliberate_fall_through 003693 case 1: zPayload[0] = (u8)(v&0xff); 003694 } 003695 zPayload += len; 003696 } 003697 }else if( serial_type<0x80 ){ 003698 *(zHdr++) = serial_type; 003699 if( serial_type>=14 && pRec->n>0 ){ 003700 assert( pRec->z!=0 ); 003701 memcpy(zPayload, pRec->z, pRec->n); 003702 zPayload += pRec->n; 003703 } 003704 }else{ 003705 zHdr += sqlite3PutVarint(zHdr, serial_type); 003706 if( pRec->n ){ 003707 assert( pRec->z!=0 ); 003708 memcpy(zPayload, pRec->z, pRec->n); 003709 zPayload += pRec->n; 003710 } 003711 } 003712 if( pRec==pLast ) break; 003713 pRec++; 003714 } 003715 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 003716 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 003717 003718 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 003719 REGISTER_TRACE(pOp->p3, pOut); 003720 break; 003721 } 003722 003723 /* Opcode: Count P1 P2 P3 * * 003724 ** Synopsis: r[P2]=count() 003725 ** 003726 ** Store the number of entries (an integer value) in the table or index 003727 ** opened by cursor P1 in register P2. 003728 ** 003729 ** If P3==0, then an exact count is obtained, which involves visiting 003730 ** every btree page of the table. But if P3 is non-zero, an estimate 003731 ** is returned based on the current cursor position. 003732 */ 003733 case OP_Count: { /* out2 */ 003734 i64 nEntry; 003735 BtCursor *pCrsr; 003736 003737 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 003738 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 003739 assert( pCrsr ); 003740 if( pOp->p3 ){ 003741 nEntry = sqlite3BtreeRowCountEst(pCrsr); 003742 }else{ 003743 nEntry = 0; /* Not needed. Only used to silence a warning. */ 003744 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 003745 if( rc ) goto abort_due_to_error; 003746 } 003747 pOut = out2Prerelease(p, pOp); 003748 pOut->u.i = nEntry; 003749 goto check_for_interrupt; 003750 } 003751 003752 /* Opcode: Savepoint P1 * * P4 * 003753 ** 003754 ** Open, release or rollback the savepoint named by parameter P4, depending 003755 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 003756 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 003757 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 003758 */ 003759 case OP_Savepoint: { 003760 int p1; /* Value of P1 operand */ 003761 char *zName; /* Name of savepoint */ 003762 int nName; 003763 Savepoint *pNew; 003764 Savepoint *pSavepoint; 003765 Savepoint *pTmp; 003766 int iSavepoint; 003767 int ii; 003768 003769 p1 = pOp->p1; 003770 zName = pOp->p4.z; 003771 003772 /* Assert that the p1 parameter is valid. Also that if there is no open 003773 ** transaction, then there cannot be any savepoints. 003774 */ 003775 assert( db->pSavepoint==0 || db->autoCommit==0 ); 003776 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 003777 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 003778 assert( checkSavepointCount(db) ); 003779 assert( p->bIsReader ); 003780 003781 if( p1==SAVEPOINT_BEGIN ){ 003782 if( db->nVdbeWrite>0 ){ 003783 /* A new savepoint cannot be created if there are active write 003784 ** statements (i.e. open read/write incremental blob handles). 003785 */ 003786 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 003787 rc = SQLITE_BUSY; 003788 }else{ 003789 nName = sqlite3Strlen30(zName); 003790 003791 #ifndef SQLITE_OMIT_VIRTUALTABLE 003792 /* This call is Ok even if this savepoint is actually a transaction 003793 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 003794 ** If this is a transaction savepoint being opened, it is guaranteed 003795 ** that the db->aVTrans[] array is empty. */ 003796 assert( db->autoCommit==0 || db->nVTrans==0 ); 003797 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 003798 db->nStatement+db->nSavepoint); 003799 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003800 #endif 003801 003802 /* Create a new savepoint structure. */ 003803 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 003804 if( pNew ){ 003805 pNew->zName = (char *)&pNew[1]; 003806 memcpy(pNew->zName, zName, nName+1); 003807 003808 /* If there is no open transaction, then mark this as a special 003809 ** "transaction savepoint". */ 003810 if( db->autoCommit ){ 003811 db->autoCommit = 0; 003812 db->isTransactionSavepoint = 1; 003813 }else{ 003814 db->nSavepoint++; 003815 } 003816 003817 /* Link the new savepoint into the database handle's list. */ 003818 pNew->pNext = db->pSavepoint; 003819 db->pSavepoint = pNew; 003820 pNew->nDeferredCons = db->nDeferredCons; 003821 pNew->nDeferredImmCons = db->nDeferredImmCons; 003822 } 003823 } 003824 }else{ 003825 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 003826 iSavepoint = 0; 003827 003828 /* Find the named savepoint. If there is no such savepoint, then an 003829 ** an error is returned to the user. */ 003830 for( 003831 pSavepoint = db->pSavepoint; 003832 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 003833 pSavepoint = pSavepoint->pNext 003834 ){ 003835 iSavepoint++; 003836 } 003837 if( !pSavepoint ){ 003838 sqlite3VdbeError(p, "no such savepoint: %s", zName); 003839 rc = SQLITE_ERROR; 003840 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 003841 /* It is not possible to release (commit) a savepoint if there are 003842 ** active write statements. 003843 */ 003844 sqlite3VdbeError(p, "cannot release savepoint - " 003845 "SQL statements in progress"); 003846 rc = SQLITE_BUSY; 003847 }else{ 003848 003849 /* Determine whether or not this is a transaction savepoint. If so, 003850 ** and this is a RELEASE command, then the current transaction 003851 ** is committed. 003852 */ 003853 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 003854 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 003855 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 003856 goto vdbe_return; 003857 } 003858 db->autoCommit = 1; 003859 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 003860 p->pc = (int)(pOp - aOp); 003861 db->autoCommit = 0; 003862 p->rc = rc = SQLITE_BUSY; 003863 goto vdbe_return; 003864 } 003865 rc = p->rc; 003866 if( rc ){ 003867 db->autoCommit = 0; 003868 }else{ 003869 db->isTransactionSavepoint = 0; 003870 } 003871 }else{ 003872 int isSchemaChange; 003873 iSavepoint = db->nSavepoint - iSavepoint - 1; 003874 if( p1==SAVEPOINT_ROLLBACK ){ 003875 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 003876 for(ii=0; ii<db->nDb; ii++){ 003877 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 003878 SQLITE_ABORT_ROLLBACK, 003879 isSchemaChange==0); 003880 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003881 } 003882 }else{ 003883 assert( p1==SAVEPOINT_RELEASE ); 003884 isSchemaChange = 0; 003885 } 003886 for(ii=0; ii<db->nDb; ii++){ 003887 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 003888 if( rc!=SQLITE_OK ){ 003889 goto abort_due_to_error; 003890 } 003891 } 003892 if( isSchemaChange ){ 003893 sqlite3ExpirePreparedStatements(db, 0); 003894 sqlite3ResetAllSchemasOfConnection(db); 003895 db->mDbFlags |= DBFLAG_SchemaChange; 003896 } 003897 } 003898 if( rc ) goto abort_due_to_error; 003899 003900 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 003901 ** savepoints nested inside of the savepoint being operated on. */ 003902 while( db->pSavepoint!=pSavepoint ){ 003903 pTmp = db->pSavepoint; 003904 db->pSavepoint = pTmp->pNext; 003905 sqlite3DbFree(db, pTmp); 003906 db->nSavepoint--; 003907 } 003908 003909 /* If it is a RELEASE, then destroy the savepoint being operated on 003910 ** too. If it is a ROLLBACK TO, then set the number of deferred 003911 ** constraint violations present in the database to the value stored 003912 ** when the savepoint was created. */ 003913 if( p1==SAVEPOINT_RELEASE ){ 003914 assert( pSavepoint==db->pSavepoint ); 003915 db->pSavepoint = pSavepoint->pNext; 003916 sqlite3DbFree(db, pSavepoint); 003917 if( !isTransaction ){ 003918 db->nSavepoint--; 003919 } 003920 }else{ 003921 assert( p1==SAVEPOINT_ROLLBACK ); 003922 db->nDeferredCons = pSavepoint->nDeferredCons; 003923 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 003924 } 003925 003926 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 003927 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 003928 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003929 } 003930 } 003931 } 003932 if( rc ) goto abort_due_to_error; 003933 if( p->eVdbeState==VDBE_HALT_STATE ){ 003934 rc = SQLITE_DONE; 003935 goto vdbe_return; 003936 } 003937 break; 003938 } 003939 003940 /* Opcode: AutoCommit P1 P2 * * * 003941 ** 003942 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 003943 ** back any currently active btree transactions. If there are any active 003944 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 003945 ** there are active writing VMs or active VMs that use shared cache. 003946 ** 003947 ** This instruction causes the VM to halt. 003948 */ 003949 case OP_AutoCommit: { 003950 int desiredAutoCommit; 003951 int iRollback; 003952 003953 desiredAutoCommit = pOp->p1; 003954 iRollback = pOp->p2; 003955 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 003956 assert( desiredAutoCommit==1 || iRollback==0 ); 003957 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 003958 assert( p->bIsReader ); 003959 003960 if( desiredAutoCommit!=db->autoCommit ){ 003961 if( iRollback ){ 003962 assert( desiredAutoCommit==1 ); 003963 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003964 db->autoCommit = 1; 003965 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 003966 /* If this instruction implements a COMMIT and other VMs are writing 003967 ** return an error indicating that the other VMs must complete first. 003968 */ 003969 sqlite3VdbeError(p, "cannot commit transaction - " 003970 "SQL statements in progress"); 003971 rc = SQLITE_BUSY; 003972 goto abort_due_to_error; 003973 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 003974 goto vdbe_return; 003975 }else{ 003976 db->autoCommit = (u8)desiredAutoCommit; 003977 } 003978 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 003979 p->pc = (int)(pOp - aOp); 003980 db->autoCommit = (u8)(1-desiredAutoCommit); 003981 p->rc = rc = SQLITE_BUSY; 003982 goto vdbe_return; 003983 } 003984 sqlite3CloseSavepoints(db); 003985 if( p->rc==SQLITE_OK ){ 003986 rc = SQLITE_DONE; 003987 }else{ 003988 rc = SQLITE_ERROR; 003989 } 003990 goto vdbe_return; 003991 }else{ 003992 sqlite3VdbeError(p, 003993 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 003994 (iRollback)?"cannot rollback - no transaction is active": 003995 "cannot commit - no transaction is active")); 003996 003997 rc = SQLITE_ERROR; 003998 goto abort_due_to_error; 003999 } 004000 /*NOTREACHED*/ assert(0); 004001 } 004002 004003 /* Opcode: Transaction P1 P2 P3 P4 P5 004004 ** 004005 ** Begin a transaction on database P1 if a transaction is not already 004006 ** active. 004007 ** If P2 is non-zero, then a write-transaction is started, or if a 004008 ** read-transaction is already active, it is upgraded to a write-transaction. 004009 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 004010 ** then an exclusive transaction is started. 004011 ** 004012 ** P1 is the index of the database file on which the transaction is 004013 ** started. Index 0 is the main database file and index 1 is the 004014 ** file used for temporary tables. Indices of 2 or more are used for 004015 ** attached databases. 004016 ** 004017 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 004018 ** true (this flag is set if the Vdbe may modify more than one row and may 004019 ** throw an ABORT exception), a statement transaction may also be opened. 004020 ** More specifically, a statement transaction is opened iff the database 004021 ** connection is currently not in autocommit mode, or if there are other 004022 ** active statements. A statement transaction allows the changes made by this 004023 ** VDBE to be rolled back after an error without having to roll back the 004024 ** entire transaction. If no error is encountered, the statement transaction 004025 ** will automatically commit when the VDBE halts. 004026 ** 004027 ** If P5!=0 then this opcode also checks the schema cookie against P3 004028 ** and the schema generation counter against P4. 004029 ** The cookie changes its value whenever the database schema changes. 004030 ** This operation is used to detect when that the cookie has changed 004031 ** and that the current process needs to reread the schema. If the schema 004032 ** cookie in P3 differs from the schema cookie in the database header or 004033 ** if the schema generation counter in P4 differs from the current 004034 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 004035 ** halts. The sqlite3_step() wrapper function might then reprepare the 004036 ** statement and rerun it from the beginning. 004037 */ 004038 case OP_Transaction: { 004039 Btree *pBt; 004040 Db *pDb; 004041 int iMeta = 0; 004042 004043 assert( p->bIsReader ); 004044 assert( p->readOnly==0 || pOp->p2==0 ); 004045 assert( pOp->p2>=0 && pOp->p2<=2 ); 004046 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 004047 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 004048 assert( rc==SQLITE_OK ); 004049 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 004050 if( db->flags & SQLITE_QueryOnly ){ 004051 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 004052 rc = SQLITE_READONLY; 004053 }else{ 004054 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 004055 ** transaction */ 004056 rc = SQLITE_CORRUPT; 004057 } 004058 goto abort_due_to_error; 004059 } 004060 pDb = &db->aDb[pOp->p1]; 004061 pBt = pDb->pBt; 004062 004063 if( pBt ){ 004064 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 004065 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 004066 testcase( rc==SQLITE_BUSY_RECOVERY ); 004067 if( rc!=SQLITE_OK ){ 004068 if( (rc&0xff)==SQLITE_BUSY ){ 004069 p->pc = (int)(pOp - aOp); 004070 p->rc = rc; 004071 goto vdbe_return; 004072 } 004073 goto abort_due_to_error; 004074 } 004075 004076 if( p->usesStmtJournal 004077 && pOp->p2 004078 && (db->autoCommit==0 || db->nVdbeRead>1) 004079 ){ 004080 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 004081 if( p->iStatement==0 ){ 004082 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 004083 db->nStatement++; 004084 p->iStatement = db->nSavepoint + db->nStatement; 004085 } 004086 004087 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 004088 if( rc==SQLITE_OK ){ 004089 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 004090 } 004091 004092 /* Store the current value of the database handles deferred constraint 004093 ** counter. If the statement transaction needs to be rolled back, 004094 ** the value of this counter needs to be restored too. */ 004095 p->nStmtDefCons = db->nDeferredCons; 004096 p->nStmtDefImmCons = db->nDeferredImmCons; 004097 } 004098 } 004099 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 004100 if( rc==SQLITE_OK 004101 && pOp->p5 004102 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 004103 ){ 004104 /* 004105 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 004106 ** version is checked to ensure that the schema has not changed since the 004107 ** SQL statement was prepared. 004108 */ 004109 sqlite3DbFree(db, p->zErrMsg); 004110 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 004111 /* If the schema-cookie from the database file matches the cookie 004112 ** stored with the in-memory representation of the schema, do 004113 ** not reload the schema from the database file. 004114 ** 004115 ** If virtual-tables are in use, this is not just an optimization. 004116 ** Often, v-tables store their data in other SQLite tables, which 004117 ** are queried from within xNext() and other v-table methods using 004118 ** prepared queries. If such a query is out-of-date, we do not want to 004119 ** discard the database schema, as the user code implementing the 004120 ** v-table would have to be ready for the sqlite3_vtab structure itself 004121 ** to be invalidated whenever sqlite3_step() is called from within 004122 ** a v-table method. 004123 */ 004124 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 004125 sqlite3ResetOneSchema(db, pOp->p1); 004126 } 004127 p->expired = 1; 004128 rc = SQLITE_SCHEMA; 004129 004130 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 004131 ** from being modified in sqlite3VdbeHalt(). If this statement is 004132 ** reprepared, changeCntOn will be set again. */ 004133 p->changeCntOn = 0; 004134 } 004135 if( rc ) goto abort_due_to_error; 004136 break; 004137 } 004138 004139 /* Opcode: ReadCookie P1 P2 P3 * * 004140 ** 004141 ** Read cookie number P3 from database P1 and write it into register P2. 004142 ** P3==1 is the schema version. P3==2 is the database format. 004143 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 004144 ** the main database file and P1==1 is the database file used to store 004145 ** temporary tables. 004146 ** 004147 ** There must be a read-lock on the database (either a transaction 004148 ** must be started or there must be an open cursor) before 004149 ** executing this instruction. 004150 */ 004151 case OP_ReadCookie: { /* out2 */ 004152 int iMeta; 004153 int iDb; 004154 int iCookie; 004155 004156 assert( p->bIsReader ); 004157 iDb = pOp->p1; 004158 iCookie = pOp->p3; 004159 assert( pOp->p3<SQLITE_N_BTREE_META ); 004160 assert( iDb>=0 && iDb<db->nDb ); 004161 assert( db->aDb[iDb].pBt!=0 ); 004162 assert( DbMaskTest(p->btreeMask, iDb) ); 004163 004164 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 004165 pOut = out2Prerelease(p, pOp); 004166 pOut->u.i = iMeta; 004167 break; 004168 } 004169 004170 /* Opcode: SetCookie P1 P2 P3 * P5 004171 ** 004172 ** Write the integer value P3 into cookie number P2 of database P1. 004173 ** P2==1 is the schema version. P2==2 is the database format. 004174 ** P2==3 is the recommended pager cache 004175 ** size, and so forth. P1==0 is the main database file and P1==1 is the 004176 ** database file used to store temporary tables. 004177 ** 004178 ** A transaction must be started before executing this opcode. 004179 ** 004180 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 004181 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 004182 ** has P5 set to 1, so that the internal schema version will be different 004183 ** from the database schema version, resulting in a schema reset. 004184 */ 004185 case OP_SetCookie: { 004186 Db *pDb; 004187 004188 sqlite3VdbeIncrWriteCounter(p, 0); 004189 assert( pOp->p2<SQLITE_N_BTREE_META ); 004190 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 004191 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 004192 assert( p->readOnly==0 ); 004193 pDb = &db->aDb[pOp->p1]; 004194 assert( pDb->pBt!=0 ); 004195 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 004196 /* See note about index shifting on OP_ReadCookie */ 004197 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 004198 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 004199 /* When the schema cookie changes, record the new cookie internally */ 004200 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 004201 db->mDbFlags |= DBFLAG_SchemaChange; 004202 sqlite3FkClearTriggerCache(db, pOp->p1); 004203 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 004204 /* Record changes in the file format */ 004205 pDb->pSchema->file_format = pOp->p3; 004206 } 004207 if( pOp->p1==1 ){ 004208 /* Invalidate all prepared statements whenever the TEMP database 004209 ** schema is changed. Ticket #1644 */ 004210 sqlite3ExpirePreparedStatements(db, 0); 004211 p->expired = 0; 004212 } 004213 if( rc ) goto abort_due_to_error; 004214 break; 004215 } 004216 004217 /* Opcode: OpenRead P1 P2 P3 P4 P5 004218 ** Synopsis: root=P2 iDb=P3 004219 ** 004220 ** Open a read-only cursor for the database table whose root page is 004221 ** P2 in a database file. The database file is determined by P3. 004222 ** P3==0 means the main database, P3==1 means the database used for 004223 ** temporary tables, and P3>1 means used the corresponding attached 004224 ** database. Give the new cursor an identifier of P1. The P1 004225 ** values need not be contiguous but all P1 values should be small integers. 004226 ** It is an error for P1 to be negative. 004227 ** 004228 ** Allowed P5 bits: 004229 ** <ul> 004230 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004231 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004232 ** of OP_SeekLE/OP_IdxLT) 004233 ** </ul> 004234 ** 004235 ** The P4 value may be either an integer (P4_INT32) or a pointer to 004236 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 004237 ** object, then table being opened must be an [index b-tree] where the 004238 ** KeyInfo object defines the content and collating 004239 ** sequence of that index b-tree. Otherwise, if P4 is an integer 004240 ** value, then the table being opened must be a [table b-tree] with a 004241 ** number of columns no less than the value of P4. 004242 ** 004243 ** See also: OpenWrite, ReopenIdx 004244 */ 004245 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 004246 ** Synopsis: root=P2 iDb=P3 004247 ** 004248 ** The ReopenIdx opcode works like OP_OpenRead except that it first 004249 ** checks to see if the cursor on P1 is already open on the same 004250 ** b-tree and if it is this opcode becomes a no-op. In other words, 004251 ** if the cursor is already open, do not reopen it. 004252 ** 004253 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 004254 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 004255 ** be the same as every other ReopenIdx or OpenRead for the same cursor 004256 ** number. 004257 ** 004258 ** Allowed P5 bits: 004259 ** <ul> 004260 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004261 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004262 ** of OP_SeekLE/OP_IdxLT) 004263 ** </ul> 004264 ** 004265 ** See also: OP_OpenRead, OP_OpenWrite 004266 */ 004267 /* Opcode: OpenWrite P1 P2 P3 P4 P5 004268 ** Synopsis: root=P2 iDb=P3 004269 ** 004270 ** Open a read/write cursor named P1 on the table or index whose root 004271 ** page is P2 (or whose root page is held in register P2 if the 004272 ** OPFLAG_P2ISREG bit is set in P5 - see below). 004273 ** 004274 ** The P4 value may be either an integer (P4_INT32) or a pointer to 004275 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 004276 ** object, then table being opened must be an [index b-tree] where the 004277 ** KeyInfo object defines the content and collating 004278 ** sequence of that index b-tree. Otherwise, if P4 is an integer 004279 ** value, then the table being opened must be a [table b-tree] with a 004280 ** number of columns no less than the value of P4. 004281 ** 004282 ** Allowed P5 bits: 004283 ** <ul> 004284 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004285 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004286 ** of OP_SeekLE/OP_IdxLT) 004287 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 004288 ** and subsequently delete entries in an index btree. This is a 004289 ** hint to the storage engine that the storage engine is allowed to 004290 ** ignore. The hint is not used by the official SQLite b*tree storage 004291 ** engine, but is used by COMDB2. 004292 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 004293 ** as the root page, not the value of P2 itself. 004294 ** </ul> 004295 ** 004296 ** This instruction works like OpenRead except that it opens the cursor 004297 ** in read/write mode. 004298 ** 004299 ** See also: OP_OpenRead, OP_ReopenIdx 004300 */ 004301 case OP_ReopenIdx: { /* ncycle */ 004302 int nField; 004303 KeyInfo *pKeyInfo; 004304 u32 p2; 004305 int iDb; 004306 int wrFlag; 004307 Btree *pX; 004308 VdbeCursor *pCur; 004309 Db *pDb; 004310 004311 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 004312 assert( pOp->p4type==P4_KEYINFO ); 004313 pCur = p->apCsr[pOp->p1]; 004314 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 004315 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 004316 assert( pCur->eCurType==CURTYPE_BTREE ); 004317 sqlite3BtreeClearCursor(pCur->uc.pCursor); 004318 goto open_cursor_set_hints; 004319 } 004320 /* If the cursor is not currently open or is open on a different 004321 ** index, then fall through into OP_OpenRead to force a reopen */ 004322 case OP_OpenRead: /* ncycle */ 004323 case OP_OpenWrite: 004324 004325 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 004326 assert( p->bIsReader ); 004327 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 004328 || p->readOnly==0 ); 004329 004330 if( p->expired==1 ){ 004331 rc = SQLITE_ABORT_ROLLBACK; 004332 goto abort_due_to_error; 004333 } 004334 004335 nField = 0; 004336 pKeyInfo = 0; 004337 p2 = (u32)pOp->p2; 004338 iDb = pOp->p3; 004339 assert( iDb>=0 && iDb<db->nDb ); 004340 assert( DbMaskTest(p->btreeMask, iDb) ); 004341 pDb = &db->aDb[iDb]; 004342 pX = pDb->pBt; 004343 assert( pX!=0 ); 004344 if( pOp->opcode==OP_OpenWrite ){ 004345 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 004346 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 004347 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 004348 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 004349 p->minWriteFileFormat = pDb->pSchema->file_format; 004350 } 004351 if( pOp->p5 & OPFLAG_P2ISREG ){ 004352 assert( p2>0 ); 004353 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 004354 pIn2 = &aMem[p2]; 004355 assert( memIsValid(pIn2) ); 004356 assert( (pIn2->flags & MEM_Int)!=0 ); 004357 sqlite3VdbeMemIntegerify(pIn2); 004358 p2 = (int)pIn2->u.i; 004359 /* The p2 value always comes from a prior OP_CreateBtree opcode and 004360 ** that opcode will always set the p2 value to 2 or more or else fail. 004361 ** If there were a failure, the prepared statement would have halted 004362 ** before reaching this instruction. */ 004363 assert( p2>=2 ); 004364 } 004365 }else{ 004366 wrFlag = 0; 004367 assert( (pOp->p5 & OPFLAG_P2ISREG)==0 ); 004368 } 004369 if( pOp->p4type==P4_KEYINFO ){ 004370 pKeyInfo = pOp->p4.pKeyInfo; 004371 assert( pKeyInfo->enc==ENC(db) ); 004372 assert( pKeyInfo->db==db ); 004373 nField = pKeyInfo->nAllField; 004374 }else if( pOp->p4type==P4_INT32 ){ 004375 nField = pOp->p4.i; 004376 } 004377 assert( pOp->p1>=0 ); 004378 assert( nField>=0 ); 004379 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 004380 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 004381 if( pCur==0 ) goto no_mem; 004382 pCur->iDb = iDb; 004383 pCur->nullRow = 1; 004384 pCur->isOrdered = 1; 004385 pCur->pgnoRoot = p2; 004386 #ifdef SQLITE_DEBUG 004387 pCur->wrFlag = wrFlag; 004388 #endif 004389 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 004390 pCur->pKeyInfo = pKeyInfo; 004391 /* Set the VdbeCursor.isTable variable. Previous versions of 004392 ** SQLite used to check if the root-page flags were sane at this point 004393 ** and report database corruption if they were not, but this check has 004394 ** since moved into the btree layer. */ 004395 pCur->isTable = pOp->p4type!=P4_KEYINFO; 004396 004397 open_cursor_set_hints: 004398 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 004399 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 004400 testcase( pOp->p5 & OPFLAG_BULKCSR ); 004401 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 004402 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 004403 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 004404 if( rc ) goto abort_due_to_error; 004405 break; 004406 } 004407 004408 /* Opcode: OpenDup P1 P2 * * * 004409 ** 004410 ** Open a new cursor P1 that points to the same ephemeral table as 004411 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 004412 ** opcode. Only ephemeral cursors may be duplicated. 004413 ** 004414 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 004415 */ 004416 case OP_OpenDup: { /* ncycle */ 004417 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 004418 VdbeCursor *pCx; /* The new cursor */ 004419 004420 pOrig = p->apCsr[pOp->p2]; 004421 assert( pOrig ); 004422 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 004423 004424 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 004425 if( pCx==0 ) goto no_mem; 004426 pCx->nullRow = 1; 004427 pCx->isEphemeral = 1; 004428 pCx->pKeyInfo = pOrig->pKeyInfo; 004429 pCx->isTable = pOrig->isTable; 004430 pCx->pgnoRoot = pOrig->pgnoRoot; 004431 pCx->isOrdered = pOrig->isOrdered; 004432 pCx->ub.pBtx = pOrig->ub.pBtx; 004433 pCx->noReuse = 1; 004434 pOrig->noReuse = 1; 004435 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 004436 pCx->pKeyInfo, pCx->uc.pCursor); 004437 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 004438 ** opened for a database. Since there is already an open cursor when this 004439 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 004440 assert( rc==SQLITE_OK ); 004441 break; 004442 } 004443 004444 004445 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 004446 ** Synopsis: nColumn=P2 004447 ** 004448 ** Open a new cursor P1 to a transient table. 004449 ** The cursor is always opened read/write even if 004450 ** the main database is read-only. The ephemeral 004451 ** table is deleted automatically when the cursor is closed. 004452 ** 004453 ** If the cursor P1 is already opened on an ephemeral table, the table 004454 ** is cleared (all content is erased). 004455 ** 004456 ** P2 is the number of columns in the ephemeral table. 004457 ** The cursor points to a BTree table if P4==0 and to a BTree index 004458 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 004459 ** that defines the format of keys in the index. 004460 ** 004461 ** The P5 parameter can be a mask of the BTREE_* flags defined 004462 ** in btree.h. These flags control aspects of the operation of 004463 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 004464 ** added automatically. 004465 ** 004466 ** If P3 is positive, then reg[P3] is modified slightly so that it 004467 ** can be used as zero-length data for OP_Insert. This is an optimization 004468 ** that avoids an extra OP_Blob opcode to initialize that register. 004469 */ 004470 /* Opcode: OpenAutoindex P1 P2 * P4 * 004471 ** Synopsis: nColumn=P2 004472 ** 004473 ** This opcode works the same as OP_OpenEphemeral. It has a 004474 ** different name to distinguish its use. Tables created using 004475 ** by this opcode will be used for automatically created transient 004476 ** indices in joins. 004477 */ 004478 case OP_OpenAutoindex: /* ncycle */ 004479 case OP_OpenEphemeral: { /* ncycle */ 004480 VdbeCursor *pCx; 004481 KeyInfo *pKeyInfo; 004482 004483 static const int vfsFlags = 004484 SQLITE_OPEN_READWRITE | 004485 SQLITE_OPEN_CREATE | 004486 SQLITE_OPEN_EXCLUSIVE | 004487 SQLITE_OPEN_DELETEONCLOSE | 004488 SQLITE_OPEN_TRANSIENT_DB; 004489 assert( pOp->p1>=0 ); 004490 assert( pOp->p2>=0 ); 004491 if( pOp->p3>0 ){ 004492 /* Make register reg[P3] into a value that can be used as the data 004493 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 004494 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 004495 assert( pOp->opcode==OP_OpenEphemeral ); 004496 assert( aMem[pOp->p3].flags & MEM_Null ); 004497 aMem[pOp->p3].n = 0; 004498 aMem[pOp->p3].z = ""; 004499 } 004500 pCx = p->apCsr[pOp->p1]; 004501 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 004502 /* If the ephemeral table is already open and has no duplicates from 004503 ** OP_OpenDup, then erase all existing content so that the table is 004504 ** empty again, rather than creating a new table. */ 004505 assert( pCx->isEphemeral ); 004506 pCx->seqCount = 0; 004507 pCx->cacheStatus = CACHE_STALE; 004508 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 004509 }else{ 004510 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 004511 if( pCx==0 ) goto no_mem; 004512 pCx->isEphemeral = 1; 004513 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 004514 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 004515 vfsFlags); 004516 if( rc==SQLITE_OK ){ 004517 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 004518 if( rc==SQLITE_OK ){ 004519 /* If a transient index is required, create it by calling 004520 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 004521 ** opening it. If a transient table is required, just use the 004522 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 004523 */ 004524 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 004525 assert( pOp->p4type==P4_KEYINFO ); 004526 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 004527 BTREE_BLOBKEY | pOp->p5); 004528 if( rc==SQLITE_OK ){ 004529 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 004530 assert( pKeyInfo->db==db ); 004531 assert( pKeyInfo->enc==ENC(db) ); 004532 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 004533 pKeyInfo, pCx->uc.pCursor); 004534 } 004535 pCx->isTable = 0; 004536 }else{ 004537 pCx->pgnoRoot = SCHEMA_ROOT; 004538 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 004539 0, pCx->uc.pCursor); 004540 pCx->isTable = 1; 004541 } 004542 } 004543 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 004544 assert( p->apCsr[pOp->p1]==pCx ); 004545 if( rc ){ 004546 assert( !sqlite3BtreeClosesWithCursor(pCx->ub.pBtx, pCx->uc.pCursor) ); 004547 sqlite3BtreeClose(pCx->ub.pBtx); 004548 p->apCsr[pOp->p1] = 0; /* Not required; helps with static analysis */ 004549 }else{ 004550 assert( sqlite3BtreeClosesWithCursor(pCx->ub.pBtx, pCx->uc.pCursor) ); 004551 } 004552 } 004553 } 004554 if( rc ) goto abort_due_to_error; 004555 pCx->nullRow = 1; 004556 break; 004557 } 004558 004559 /* Opcode: SorterOpen P1 P2 P3 P4 * 004560 ** 004561 ** This opcode works like OP_OpenEphemeral except that it opens 004562 ** a transient index that is specifically designed to sort large 004563 ** tables using an external merge-sort algorithm. 004564 ** 004565 ** If argument P3 is non-zero, then it indicates that the sorter may 004566 ** assume that a stable sort considering the first P3 fields of each 004567 ** key is sufficient to produce the required results. 004568 */ 004569 case OP_SorterOpen: { 004570 VdbeCursor *pCx; 004571 004572 assert( pOp->p1>=0 ); 004573 assert( pOp->p2>=0 ); 004574 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 004575 if( pCx==0 ) goto no_mem; 004576 pCx->pKeyInfo = pOp->p4.pKeyInfo; 004577 assert( pCx->pKeyInfo->db==db ); 004578 assert( pCx->pKeyInfo->enc==ENC(db) ); 004579 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 004580 if( rc ) goto abort_due_to_error; 004581 break; 004582 } 004583 004584 /* Opcode: SequenceTest P1 P2 * * * 004585 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 004586 ** 004587 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 004588 ** to P2. Regardless of whether or not the jump is taken, increment the 004589 ** the sequence value. 004590 */ 004591 case OP_SequenceTest: { 004592 VdbeCursor *pC; 004593 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004594 pC = p->apCsr[pOp->p1]; 004595 assert( isSorter(pC) ); 004596 if( (pC->seqCount++)==0 ){ 004597 goto jump_to_p2; 004598 } 004599 break; 004600 } 004601 004602 /* Opcode: OpenPseudo P1 P2 P3 * * 004603 ** Synopsis: P3 columns in r[P2] 004604 ** 004605 ** Open a new cursor that points to a fake table that contains a single 004606 ** row of data. The content of that one row is the content of memory 004607 ** register P2. In other words, cursor P1 becomes an alias for the 004608 ** MEM_Blob content contained in register P2. 004609 ** 004610 ** A pseudo-table created by this opcode is used to hold a single 004611 ** row output from the sorter so that the row can be decomposed into 004612 ** individual columns using the OP_Column opcode. The OP_Column opcode 004613 ** is the only cursor opcode that works with a pseudo-table. 004614 ** 004615 ** P3 is the number of fields in the records that will be stored by 004616 ** the pseudo-table. If P2 is 0 or negative then the pseudo-cursor 004617 ** will return NULL for every column. 004618 */ 004619 case OP_OpenPseudo: { 004620 VdbeCursor *pCx; 004621 004622 assert( pOp->p1>=0 ); 004623 assert( pOp->p3>=0 ); 004624 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 004625 if( pCx==0 ) goto no_mem; 004626 pCx->nullRow = 1; 004627 pCx->seekResult = pOp->p2; 004628 pCx->isTable = 1; 004629 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 004630 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 004631 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 004632 ** which is a performance optimization */ 004633 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 004634 assert( pOp->p5==0 ); 004635 break; 004636 } 004637 004638 /* Opcode: Close P1 * * * * 004639 ** 004640 ** Close a cursor previously opened as P1. If P1 is not 004641 ** currently open, this instruction is a no-op. 004642 */ 004643 case OP_Close: { /* ncycle */ 004644 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004645 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 004646 p->apCsr[pOp->p1] = 0; 004647 break; 004648 } 004649 004650 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 004651 /* Opcode: ColumnsUsed P1 * * P4 * 004652 ** 004653 ** This opcode (which only exists if SQLite was compiled with 004654 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 004655 ** table or index for cursor P1 are used. P4 is a 64-bit integer 004656 ** (P4_INT64) in which the first 63 bits are one for each of the 004657 ** first 63 columns of the table or index that are actually used 004658 ** by the cursor. The high-order bit is set if any column after 004659 ** the 64th is used. 004660 */ 004661 case OP_ColumnsUsed: { 004662 VdbeCursor *pC; 004663 pC = p->apCsr[pOp->p1]; 004664 assert( pC->eCurType==CURTYPE_BTREE ); 004665 pC->maskUsed = *(u64*)pOp->p4.pI64; 004666 break; 004667 } 004668 #endif 004669 004670 /* Opcode: SeekGE P1 P2 P3 P4 * 004671 ** Synopsis: key=r[P3@P4] 004672 ** 004673 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004674 ** use the value in register P3 as the key. If cursor P1 refers 004675 ** to an SQL index, then P3 is the first in an array of P4 registers 004676 ** that are used as an unpacked index key. 004677 ** 004678 ** Reposition cursor P1 so that it points to the smallest entry that 004679 ** is greater than or equal to the key value. If there are no records 004680 ** greater than or equal to the key and P2 is not zero, then jump to P2. 004681 ** 004682 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 004683 ** opcode will either land on a record that exactly matches the key, or 004684 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 004685 ** this opcode must be followed by an IdxLE opcode with the same arguments. 004686 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 004687 ** IdxGT opcode will be used on subsequent loop iterations. The 004688 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 004689 ** is an equality search. 004690 ** 004691 ** This opcode leaves the cursor configured to move in forward order, 004692 ** from the beginning toward the end. In other words, the cursor is 004693 ** configured to use Next, not Prev. 004694 ** 004695 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 004696 */ 004697 /* Opcode: SeekGT P1 P2 P3 P4 * 004698 ** Synopsis: key=r[P3@P4] 004699 ** 004700 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004701 ** use the value in register P3 as a key. If cursor P1 refers 004702 ** to an SQL index, then P3 is the first in an array of P4 registers 004703 ** that are used as an unpacked index key. 004704 ** 004705 ** Reposition cursor P1 so that it points to the smallest entry that 004706 ** is greater than the key value. If there are no records greater than 004707 ** the key and P2 is not zero, then jump to P2. 004708 ** 004709 ** This opcode leaves the cursor configured to move in forward order, 004710 ** from the beginning toward the end. In other words, the cursor is 004711 ** configured to use Next, not Prev. 004712 ** 004713 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 004714 */ 004715 /* Opcode: SeekLT P1 P2 P3 P4 * 004716 ** Synopsis: key=r[P3@P4] 004717 ** 004718 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004719 ** use the value in register P3 as a key. If cursor P1 refers 004720 ** to an SQL index, then P3 is the first in an array of P4 registers 004721 ** that are used as an unpacked index key. 004722 ** 004723 ** Reposition cursor P1 so that it points to the largest entry that 004724 ** is less than the key value. If there are no records less than 004725 ** the key and P2 is not zero, then jump to P2. 004726 ** 004727 ** This opcode leaves the cursor configured to move in reverse order, 004728 ** from the end toward the beginning. In other words, the cursor is 004729 ** configured to use Prev, not Next. 004730 ** 004731 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 004732 */ 004733 /* Opcode: SeekLE P1 P2 P3 P4 * 004734 ** Synopsis: key=r[P3@P4] 004735 ** 004736 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004737 ** use the value in register P3 as a key. If cursor P1 refers 004738 ** to an SQL index, then P3 is the first in an array of P4 registers 004739 ** that are used as an unpacked index key. 004740 ** 004741 ** Reposition cursor P1 so that it points to the largest entry that 004742 ** is less than or equal to the key value. If there are no records 004743 ** less than or equal to the key and P2 is not zero, then jump to P2. 004744 ** 004745 ** This opcode leaves the cursor configured to move in reverse order, 004746 ** from the end toward the beginning. In other words, the cursor is 004747 ** configured to use Prev, not Next. 004748 ** 004749 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 004750 ** opcode will either land on a record that exactly matches the key, or 004751 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 004752 ** this opcode must be followed by an IdxLE opcode with the same arguments. 004753 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 004754 ** IdxGE opcode will be used on subsequent loop iterations. The 004755 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 004756 ** is an equality search. 004757 ** 004758 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 004759 */ 004760 case OP_SeekLT: /* jump0, in3, group, ncycle */ 004761 case OP_SeekLE: /* jump0, in3, group, ncycle */ 004762 case OP_SeekGE: /* jump0, in3, group, ncycle */ 004763 case OP_SeekGT: { /* jump0, in3, group, ncycle */ 004764 int res; /* Comparison result */ 004765 int oc; /* Opcode */ 004766 VdbeCursor *pC; /* The cursor to seek */ 004767 UnpackedRecord r; /* The key to seek for */ 004768 int nField; /* Number of columns or fields in the key */ 004769 i64 iKey; /* The rowid we are to seek to */ 004770 int eqOnly; /* Only interested in == results */ 004771 004772 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004773 assert( pOp->p2!=0 ); 004774 pC = p->apCsr[pOp->p1]; 004775 assert( pC!=0 ); 004776 assert( pC->eCurType==CURTYPE_BTREE ); 004777 assert( OP_SeekLE == OP_SeekLT+1 ); 004778 assert( OP_SeekGE == OP_SeekLT+2 ); 004779 assert( OP_SeekGT == OP_SeekLT+3 ); 004780 assert( pC->isOrdered ); 004781 assert( pC->uc.pCursor!=0 ); 004782 oc = pOp->opcode; 004783 eqOnly = 0; 004784 pC->nullRow = 0; 004785 #ifdef SQLITE_DEBUG 004786 pC->seekOp = pOp->opcode; 004787 #endif 004788 004789 pC->deferredMoveto = 0; 004790 pC->cacheStatus = CACHE_STALE; 004791 if( pC->isTable ){ 004792 u16 flags3, newType; 004793 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 004794 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 004795 || CORRUPT_DB ); 004796 004797 /* The input value in P3 might be of any type: integer, real, string, 004798 ** blob, or NULL. But it needs to be an integer before we can do 004799 ** the seek, so convert it. */ 004800 pIn3 = &aMem[pOp->p3]; 004801 flags3 = pIn3->flags; 004802 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 004803 applyNumericAffinity(pIn3, 0); 004804 } 004805 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 004806 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 004807 pIn3->flags = flags3; /* But convert the type back to its original */ 004808 004809 /* If the P3 value could not be converted into an integer without 004810 ** loss of information, then special processing is required... */ 004811 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 004812 int c; 004813 if( (newType & MEM_Real)==0 ){ 004814 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 004815 VdbeBranchTaken(1,2); 004816 goto jump_to_p2; 004817 }else{ 004818 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 004819 if( rc!=SQLITE_OK ) goto abort_due_to_error; 004820 goto seek_not_found; 004821 } 004822 } 004823 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 004824 004825 /* If the approximation iKey is larger than the actual real search 004826 ** term, substitute >= for > and < for <=. e.g. if the search term 004827 ** is 4.9 and the integer approximation 5: 004828 ** 004829 ** (x > 4.9) -> (x >= 5) 004830 ** (x <= 4.9) -> (x < 5) 004831 */ 004832 if( c>0 ){ 004833 assert( OP_SeekGE==(OP_SeekGT-1) ); 004834 assert( OP_SeekLT==(OP_SeekLE-1) ); 004835 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 004836 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 004837 } 004838 004839 /* If the approximation iKey is smaller than the actual real search 004840 ** term, substitute <= for < and > for >=. */ 004841 else if( c<0 ){ 004842 assert( OP_SeekLE==(OP_SeekLT+1) ); 004843 assert( OP_SeekGT==(OP_SeekGE+1) ); 004844 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 004845 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 004846 } 004847 } 004848 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 004849 pC->movetoTarget = iKey; /* Used by OP_Delete */ 004850 if( rc!=SQLITE_OK ){ 004851 goto abort_due_to_error; 004852 } 004853 }else{ 004854 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 004855 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 004856 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 004857 ** with the same key. 004858 */ 004859 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 004860 eqOnly = 1; 004861 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 004862 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 004863 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 004864 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 004865 assert( pOp[1].p1==pOp[0].p1 ); 004866 assert( pOp[1].p2==pOp[0].p2 ); 004867 assert( pOp[1].p3==pOp[0].p3 ); 004868 assert( pOp[1].p4.i==pOp[0].p4.i ); 004869 } 004870 004871 nField = pOp->p4.i; 004872 assert( pOp->p4type==P4_INT32 ); 004873 assert( nField>0 ); 004874 r.pKeyInfo = pC->pKeyInfo; 004875 r.nField = (u16)nField; 004876 004877 /* The next line of code computes as follows, only faster: 004878 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 004879 ** r.default_rc = -1; 004880 ** }else{ 004881 ** r.default_rc = +1; 004882 ** } 004883 */ 004884 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 004885 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 004886 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 004887 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 004888 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 004889 004890 r.aMem = &aMem[pOp->p3]; 004891 #ifdef SQLITE_DEBUG 004892 { 004893 int i; 004894 for(i=0; i<r.nField; i++){ 004895 assert( memIsValid(&r.aMem[i]) ); 004896 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); 004897 } 004898 } 004899 #endif 004900 r.eqSeen = 0; 004901 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 004902 if( rc!=SQLITE_OK ){ 004903 goto abort_due_to_error; 004904 } 004905 if( eqOnly && r.eqSeen==0 ){ 004906 assert( res!=0 ); 004907 goto seek_not_found; 004908 } 004909 } 004910 #ifdef SQLITE_TEST 004911 sqlite3_search_count++; 004912 #endif 004913 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 004914 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 004915 res = 0; 004916 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 004917 if( rc!=SQLITE_OK ){ 004918 if( rc==SQLITE_DONE ){ 004919 rc = SQLITE_OK; 004920 res = 1; 004921 }else{ 004922 goto abort_due_to_error; 004923 } 004924 } 004925 }else{ 004926 res = 0; 004927 } 004928 }else{ 004929 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 004930 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 004931 res = 0; 004932 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 004933 if( rc!=SQLITE_OK ){ 004934 if( rc==SQLITE_DONE ){ 004935 rc = SQLITE_OK; 004936 res = 1; 004937 }else{ 004938 goto abort_due_to_error; 004939 } 004940 } 004941 }else{ 004942 /* res might be negative because the table is empty. Check to 004943 ** see if this is the case. 004944 */ 004945 res = sqlite3BtreeEof(pC->uc.pCursor); 004946 } 004947 } 004948 seek_not_found: 004949 assert( pOp->p2>0 ); 004950 VdbeBranchTaken(res!=0,2); 004951 if( res ){ 004952 goto jump_to_p2; 004953 }else if( eqOnly ){ 004954 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 004955 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 004956 } 004957 break; 004958 } 004959 004960 004961 /* Opcode: SeekScan P1 P2 * * P5 004962 ** Synopsis: Scan-ahead up to P1 rows 004963 ** 004964 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 004965 ** opcode must be immediately followed by OP_SeekGE. This constraint is 004966 ** checked by assert() statements. 004967 ** 004968 ** This opcode uses the P1 through P4 operands of the subsequent 004969 ** OP_SeekGE. In the text that follows, the operands of the subsequent 004970 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 004971 ** the P1, P2 and P5 operands of this opcode are also used, and are called 004972 ** This.P1, This.P2 and This.P5. 004973 ** 004974 ** This opcode helps to optimize IN operators on a multi-column index 004975 ** where the IN operator is on the later terms of the index by avoiding 004976 ** unnecessary seeks on the btree, substituting steps to the next row 004977 ** of the b-tree instead. A correct answer is obtained if this opcode 004978 ** is omitted or is a no-op. 004979 ** 004980 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 004981 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 004982 ** to. Call this SeekGE.P3/P4 row the "target". 004983 ** 004984 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 004985 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 004986 ** 004987 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 004988 ** might be the target row, or it might be near and slightly before the 004989 ** target row, or it might be after the target row. If the cursor is 004990 ** currently before the target row, then this opcode attempts to position 004991 ** the cursor on or after the target row by invoking sqlite3BtreeStep() 004992 ** on the cursor between 1 and This.P1 times. 004993 ** 004994 ** The This.P5 parameter is a flag that indicates what to do if the 004995 ** cursor ends up pointing at a valid row that is past the target 004996 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If 004997 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 004998 ** case occurs when there are no inequality constraints to the right of 004999 ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case 005000 ** occurs when there are inequality constraints to the right of the IN 005001 ** operator. In that case, the This.P2 will point either directly to or 005002 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for 005003 ** loop terminate. 005004 ** 005005 ** Possible outcomes from this opcode:<ol> 005006 ** 005007 ** <li> If the cursor is initially not pointed to any valid row, then 005008 ** fall through into the subsequent OP_SeekGE opcode. 005009 ** 005010 ** <li> If the cursor is left pointing to a row that is before the target 005011 ** row, even after making as many as This.P1 calls to 005012 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. 005013 ** 005014 ** <li> If the cursor is left pointing at the target row, either because it 005015 ** was at the target row to begin with or because one or more 005016 ** sqlite3BtreeNext() calls moved the cursor to the target row, 005017 ** then jump to This.P2.., 005018 ** 005019 ** <li> If the cursor started out before the target row and a call to 005020 ** to sqlite3BtreeNext() moved the cursor off the end of the index 005021 ** (indicating that the target row definitely does not exist in the 005022 ** btree) then jump to SeekGE.P2, ending the loop. 005023 ** 005024 ** <li> If the cursor ends up on a valid row that is past the target row 005025 ** (indicating that the target row does not exist in the btree) then 005026 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0. 005027 ** </ol> 005028 */ 005029 case OP_SeekScan: { /* ncycle */ 005030 VdbeCursor *pC; 005031 int res; 005032 int nStep; 005033 UnpackedRecord r; 005034 005035 assert( pOp[1].opcode==OP_SeekGE ); 005036 005037 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the 005038 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first 005039 ** opcode past the OP_SeekGE itself. */ 005040 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 005041 #ifdef SQLITE_DEBUG 005042 if( pOp->p5==0 ){ 005043 /* There are no inequality constraints following the IN constraint. */ 005044 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 005045 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 005046 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 005047 assert( aOp[pOp->p2-1].opcode==OP_IdxGT 005048 || aOp[pOp->p2-1].opcode==OP_IdxGE ); 005049 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 005050 }else{ 005051 /* There are inequality constraints. */ 005052 assert( pOp->p2==(int)(pOp-aOp)+2 ); 005053 assert( aOp[pOp->p2-1].opcode==OP_SeekGE ); 005054 } 005055 #endif 005056 005057 assert( pOp->p1>0 ); 005058 pC = p->apCsr[pOp[1].p1]; 005059 assert( pC!=0 ); 005060 assert( pC->eCurType==CURTYPE_BTREE ); 005061 assert( !pC->isTable ); 005062 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 005063 #ifdef SQLITE_DEBUG 005064 if( db->flags&SQLITE_VdbeTrace ){ 005065 printf("... cursor not valid - fall through\n"); 005066 } 005067 #endif 005068 break; 005069 } 005070 nStep = pOp->p1; 005071 assert( nStep>=1 ); 005072 r.pKeyInfo = pC->pKeyInfo; 005073 r.nField = (u16)pOp[1].p4.i; 005074 r.default_rc = 0; 005075 r.aMem = &aMem[pOp[1].p3]; 005076 #ifdef SQLITE_DEBUG 005077 { 005078 int i; 005079 for(i=0; i<r.nField; i++){ 005080 assert( memIsValid(&r.aMem[i]) ); 005081 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 005082 } 005083 } 005084 #endif 005085 res = 0; /* Not needed. Only used to silence a warning. */ 005086 while(1){ 005087 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 005088 if( rc ) goto abort_due_to_error; 005089 if( res>0 && pOp->p5==0 ){ 005090 seekscan_search_fail: 005091 /* Jump to SeekGE.P2, ending the loop */ 005092 #ifdef SQLITE_DEBUG 005093 if( db->flags&SQLITE_VdbeTrace ){ 005094 printf("... %d steps and then skip\n", pOp->p1 - nStep); 005095 } 005096 #endif 005097 VdbeBranchTaken(1,3); 005098 pOp++; 005099 goto jump_to_p2; 005100 } 005101 if( res>=0 ){ 005102 /* Jump to This.P2, bypassing the OP_SeekGE opcode */ 005103 #ifdef SQLITE_DEBUG 005104 if( db->flags&SQLITE_VdbeTrace ){ 005105 printf("... %d steps and then success\n", pOp->p1 - nStep); 005106 } 005107 #endif 005108 VdbeBranchTaken(2,3); 005109 goto jump_to_p2; 005110 break; 005111 } 005112 if( nStep<=0 ){ 005113 #ifdef SQLITE_DEBUG 005114 if( db->flags&SQLITE_VdbeTrace ){ 005115 printf("... fall through after %d steps\n", pOp->p1); 005116 } 005117 #endif 005118 VdbeBranchTaken(0,3); 005119 break; 005120 } 005121 nStep--; 005122 pC->cacheStatus = CACHE_STALE; 005123 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 005124 if( rc ){ 005125 if( rc==SQLITE_DONE ){ 005126 rc = SQLITE_OK; 005127 goto seekscan_search_fail; 005128 }else{ 005129 goto abort_due_to_error; 005130 } 005131 } 005132 } 005133 005134 break; 005135 } 005136 005137 005138 /* Opcode: SeekHit P1 P2 P3 * * 005139 ** Synopsis: set P2<=seekHit<=P3 005140 ** 005141 ** Increase or decrease the seekHit value for cursor P1, if necessary, 005142 ** so that it is no less than P2 and no greater than P3. 005143 ** 005144 ** The seekHit integer represents the maximum of terms in an index for which 005145 ** there is known to be at least one match. If the seekHit value is smaller 005146 ** than the total number of equality terms in an index lookup, then the 005147 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 005148 ** early, thus saving work. This is part of the IN-early-out optimization. 005149 ** 005150 ** P1 must be a valid b-tree cursor. 005151 */ 005152 case OP_SeekHit: { /* ncycle */ 005153 VdbeCursor *pC; 005154 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005155 pC = p->apCsr[pOp->p1]; 005156 assert( pC!=0 ); 005157 assert( pOp->p3>=pOp->p2 ); 005158 if( pC->seekHit<pOp->p2 ){ 005159 #ifdef SQLITE_DEBUG 005160 if( db->flags&SQLITE_VdbeTrace ){ 005161 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 005162 } 005163 #endif 005164 pC->seekHit = pOp->p2; 005165 }else if( pC->seekHit>pOp->p3 ){ 005166 #ifdef SQLITE_DEBUG 005167 if( db->flags&SQLITE_VdbeTrace ){ 005168 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 005169 } 005170 #endif 005171 pC->seekHit = pOp->p3; 005172 } 005173 break; 005174 } 005175 005176 /* Opcode: IfNotOpen P1 P2 * * * 005177 ** Synopsis: if( !csr[P1] ) goto P2 005178 ** 005179 ** If cursor P1 is not open or if P1 is set to a NULL row using the 005180 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. 005181 */ 005182 case OP_IfNotOpen: { /* jump */ 005183 VdbeCursor *pCur; 005184 005185 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005186 pCur = p->apCsr[pOp->p1]; 005187 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); 005188 if( pCur==0 || pCur->nullRow ){ 005189 goto jump_to_p2_and_check_for_interrupt; 005190 } 005191 break; 005192 } 005193 005194 /* Opcode: Found P1 P2 P3 P4 * 005195 ** Synopsis: key=r[P3@P4] 005196 ** 005197 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005198 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005199 ** record. 005200 ** 005201 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005202 ** is a prefix of any entry in P1 then a jump is made to P2 and 005203 ** P1 is left pointing at the matching entry. 005204 ** 005205 ** This operation leaves the cursor in a state where it can be 005206 ** advanced in the forward direction. The Next instruction will work, 005207 ** but not the Prev instruction. 005208 ** 005209 ** See also: NotFound, NoConflict, NotExists. SeekGe 005210 */ 005211 /* Opcode: NotFound P1 P2 P3 P4 * 005212 ** Synopsis: key=r[P3@P4] 005213 ** 005214 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005215 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005216 ** record. 005217 ** 005218 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005219 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 005220 ** does contain an entry whose prefix matches the P3/P4 record then control 005221 ** falls through to the next instruction and P1 is left pointing at the 005222 ** matching entry. 005223 ** 005224 ** This operation leaves the cursor in a state where it cannot be 005225 ** advanced in either direction. In other words, the Next and Prev 005226 ** opcodes do not work after this operation. 005227 ** 005228 ** See also: Found, NotExists, NoConflict, IfNoHope 005229 */ 005230 /* Opcode: IfNoHope P1 P2 P3 P4 * 005231 ** Synopsis: key=r[P3@P4] 005232 ** 005233 ** Register P3 is the first of P4 registers that form an unpacked 005234 ** record. Cursor P1 is an index btree. P2 is a jump destination. 005235 ** In other words, the operands to this opcode are the same as the 005236 ** operands to OP_NotFound and OP_IdxGT. 005237 ** 005238 ** This opcode is an optimization attempt only. If this opcode always 005239 ** falls through, the correct answer is still obtained, but extra work 005240 ** is performed. 005241 ** 005242 ** A value of N in the seekHit flag of cursor P1 means that there exists 005243 ** a key P3:N that will match some record in the index. We want to know 005244 ** if it is possible for a record P3:P4 to match some record in the 005245 ** index. If it is not possible, we can skip some work. So if seekHit 005246 ** is less than P4, attempt to find out if a match is possible by running 005247 ** OP_NotFound. 005248 ** 005249 ** This opcode is used in IN clause processing for a multi-column key. 005250 ** If an IN clause is attached to an element of the key other than the 005251 ** left-most element, and if there are no matches on the most recent 005252 ** seek over the whole key, then it might be that one of the key element 005253 ** to the left is prohibiting a match, and hence there is "no hope" of 005254 ** any match regardless of how many IN clause elements are checked. 005255 ** In such a case, we abandon the IN clause search early, using this 005256 ** opcode. The opcode name comes from the fact that the 005257 ** jump is taken if there is "no hope" of achieving a match. 005258 ** 005259 ** See also: NotFound, SeekHit 005260 */ 005261 /* Opcode: NoConflict P1 P2 P3 P4 * 005262 ** Synopsis: key=r[P3@P4] 005263 ** 005264 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005265 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005266 ** record. 005267 ** 005268 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005269 ** contains any NULL value, jump immediately to P2. If all terms of the 005270 ** record are not-NULL then a check is done to determine if any row in the 005271 ** P1 index btree has a matching key prefix. If there are no matches, jump 005272 ** immediately to P2. If there is a match, fall through and leave the P1 005273 ** cursor pointing to the matching row. 005274 ** 005275 ** This opcode is similar to OP_NotFound with the exceptions that the 005276 ** branch is always taken if any part of the search key input is NULL. 005277 ** 005278 ** This operation leaves the cursor in a state where it cannot be 005279 ** advanced in either direction. In other words, the Next and Prev 005280 ** opcodes do not work after this operation. 005281 ** 005282 ** See also: NotFound, Found, NotExists 005283 */ 005284 case OP_IfNoHope: { /* jump, in3, ncycle */ 005285 VdbeCursor *pC; 005286 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005287 pC = p->apCsr[pOp->p1]; 005288 assert( pC!=0 ); 005289 #ifdef SQLITE_DEBUG 005290 if( db->flags&SQLITE_VdbeTrace ){ 005291 printf("seekHit is %d\n", pC->seekHit); 005292 } 005293 #endif 005294 if( pC->seekHit>=pOp->p4.i ) break; 005295 /* Fall through into OP_NotFound */ 005296 /* no break */ deliberate_fall_through 005297 } 005298 case OP_NoConflict: /* jump, in3, ncycle */ 005299 case OP_NotFound: /* jump, in3, ncycle */ 005300 case OP_Found: { /* jump, in3, ncycle */ 005301 int alreadyExists; 005302 int ii; 005303 VdbeCursor *pC; 005304 UnpackedRecord *pIdxKey; 005305 UnpackedRecord r; 005306 005307 #ifdef SQLITE_TEST 005308 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 005309 #endif 005310 005311 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005312 assert( pOp->p4type==P4_INT32 ); 005313 pC = p->apCsr[pOp->p1]; 005314 assert( pC!=0 ); 005315 #ifdef SQLITE_DEBUG 005316 pC->seekOp = pOp->opcode; 005317 #endif 005318 r.aMem = &aMem[pOp->p3]; 005319 assert( pC->eCurType==CURTYPE_BTREE ); 005320 assert( pC->uc.pCursor!=0 ); 005321 assert( pC->isTable==0 ); 005322 r.nField = (u16)pOp->p4.i; 005323 if( r.nField>0 ){ 005324 /* Key values in an array of registers */ 005325 r.pKeyInfo = pC->pKeyInfo; 005326 r.default_rc = 0; 005327 #ifdef SQLITE_DEBUG 005328 (void)sqlite3FaultSim(50); /* For use by --counter in TH3 */ 005329 for(ii=0; ii<r.nField; ii++){ 005330 assert( memIsValid(&r.aMem[ii]) ); 005331 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 005332 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 005333 } 005334 #endif 005335 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 005336 }else{ 005337 /* Composite key generated by OP_MakeRecord */ 005338 assert( r.aMem->flags & MEM_Blob ); 005339 assert( pOp->opcode!=OP_NoConflict ); 005340 rc = ExpandBlob(r.aMem); 005341 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 005342 if( rc ) goto no_mem; 005343 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 005344 if( pIdxKey==0 ) goto no_mem; 005345 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 005346 pIdxKey->default_rc = 0; 005347 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 005348 sqlite3DbFreeNN(db, pIdxKey); 005349 } 005350 if( rc!=SQLITE_OK ){ 005351 goto abort_due_to_error; 005352 } 005353 alreadyExists = (pC->seekResult==0); 005354 pC->nullRow = 1-alreadyExists; 005355 pC->deferredMoveto = 0; 005356 pC->cacheStatus = CACHE_STALE; 005357 if( pOp->opcode==OP_Found ){ 005358 VdbeBranchTaken(alreadyExists!=0,2); 005359 if( alreadyExists ) goto jump_to_p2; 005360 }else{ 005361 if( !alreadyExists ){ 005362 VdbeBranchTaken(1,2); 005363 goto jump_to_p2; 005364 } 005365 if( pOp->opcode==OP_NoConflict ){ 005366 /* For the OP_NoConflict opcode, take the jump if any of the 005367 ** input fields are NULL, since any key with a NULL will not 005368 ** conflict */ 005369 for(ii=0; ii<r.nField; ii++){ 005370 if( r.aMem[ii].flags & MEM_Null ){ 005371 VdbeBranchTaken(1,2); 005372 goto jump_to_p2; 005373 } 005374 } 005375 } 005376 VdbeBranchTaken(0,2); 005377 if( pOp->opcode==OP_IfNoHope ){ 005378 pC->seekHit = pOp->p4.i; 005379 } 005380 } 005381 break; 005382 } 005383 005384 /* Opcode: SeekRowid P1 P2 P3 * * 005385 ** Synopsis: intkey=r[P3] 005386 ** 005387 ** P1 is the index of a cursor open on an SQL table btree (with integer 005388 ** keys). If register P3 does not contain an integer or if P1 does not 005389 ** contain a record with rowid P3 then jump immediately to P2. 005390 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 005391 ** a record with rowid P3 then 005392 ** leave the cursor pointing at that record and fall through to the next 005393 ** instruction. 005394 ** 005395 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 005396 ** the P3 register must be guaranteed to contain an integer value. With this 005397 ** opcode, register P3 might not contain an integer. 005398 ** 005399 ** The OP_NotFound opcode performs the same operation on index btrees 005400 ** (with arbitrary multi-value keys). 005401 ** 005402 ** This opcode leaves the cursor in a state where it cannot be advanced 005403 ** in either direction. In other words, the Next and Prev opcodes will 005404 ** not work following this opcode. 005405 ** 005406 ** See also: Found, NotFound, NoConflict, SeekRowid 005407 */ 005408 /* Opcode: NotExists P1 P2 P3 * * 005409 ** Synopsis: intkey=r[P3] 005410 ** 005411 ** P1 is the index of a cursor open on an SQL table btree (with integer 005412 ** keys). P3 is an integer rowid. If P1 does not contain a record with 005413 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 005414 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 005415 ** leave the cursor pointing at that record and fall through to the next 005416 ** instruction. 005417 ** 005418 ** The OP_SeekRowid opcode performs the same operation but also allows the 005419 ** P3 register to contain a non-integer value, in which case the jump is 005420 ** always taken. This opcode requires that P3 always contain an integer. 005421 ** 005422 ** The OP_NotFound opcode performs the same operation on index btrees 005423 ** (with arbitrary multi-value keys). 005424 ** 005425 ** This opcode leaves the cursor in a state where it cannot be advanced 005426 ** in either direction. In other words, the Next and Prev opcodes will 005427 ** not work following this opcode. 005428 ** 005429 ** See also: Found, NotFound, NoConflict, SeekRowid 005430 */ 005431 case OP_SeekRowid: { /* jump0, in3, ncycle */ 005432 VdbeCursor *pC; 005433 BtCursor *pCrsr; 005434 int res; 005435 u64 iKey; 005436 005437 pIn3 = &aMem[pOp->p3]; 005438 testcase( pIn3->flags & MEM_Int ); 005439 testcase( pIn3->flags & MEM_IntReal ); 005440 testcase( pIn3->flags & MEM_Real ); 005441 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 005442 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 005443 /* If pIn3->u.i does not contain an integer, compute iKey as the 005444 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 005445 ** into an integer without loss of information. Take care to avoid 005446 ** changing the datatype of pIn3, however, as it is used by other 005447 ** parts of the prepared statement. */ 005448 Mem x = pIn3[0]; 005449 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 005450 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 005451 iKey = x.u.i; 005452 goto notExistsWithKey; 005453 } 005454 /* Fall through into OP_NotExists */ 005455 /* no break */ deliberate_fall_through 005456 case OP_NotExists: /* jump, in3, ncycle */ 005457 pIn3 = &aMem[pOp->p3]; 005458 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 005459 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005460 iKey = pIn3->u.i; 005461 notExistsWithKey: 005462 pC = p->apCsr[pOp->p1]; 005463 assert( pC!=0 ); 005464 #ifdef SQLITE_DEBUG 005465 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 005466 #endif 005467 assert( pC->isTable ); 005468 assert( pC->eCurType==CURTYPE_BTREE ); 005469 pCrsr = pC->uc.pCursor; 005470 assert( pCrsr!=0 ); 005471 res = 0; 005472 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 005473 assert( rc==SQLITE_OK || res==0 ); 005474 pC->movetoTarget = iKey; /* Used by OP_Delete */ 005475 pC->nullRow = 0; 005476 pC->cacheStatus = CACHE_STALE; 005477 pC->deferredMoveto = 0; 005478 VdbeBranchTaken(res!=0,2); 005479 pC->seekResult = res; 005480 if( res!=0 ){ 005481 assert( rc==SQLITE_OK ); 005482 if( pOp->p2==0 ){ 005483 rc = SQLITE_CORRUPT_BKPT; 005484 }else{ 005485 goto jump_to_p2; 005486 } 005487 } 005488 if( rc ) goto abort_due_to_error; 005489 break; 005490 } 005491 005492 /* Opcode: Sequence P1 P2 * * * 005493 ** Synopsis: r[P2]=cursor[P1].ctr++ 005494 ** 005495 ** Find the next available sequence number for cursor P1. 005496 ** Write the sequence number into register P2. 005497 ** The sequence number on the cursor is incremented after this 005498 ** instruction. 005499 */ 005500 case OP_Sequence: { /* out2 */ 005501 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005502 assert( p->apCsr[pOp->p1]!=0 ); 005503 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 005504 pOut = out2Prerelease(p, pOp); 005505 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 005506 break; 005507 } 005508 005509 005510 /* Opcode: NewRowid P1 P2 P3 * * 005511 ** Synopsis: r[P2]=rowid 005512 ** 005513 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 005514 ** The record number is not previously used as a key in the database 005515 ** table that cursor P1 points to. The new record number is written 005516 ** written to register P2. 005517 ** 005518 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 005519 ** the largest previously generated record number. No new record numbers are 005520 ** allowed to be less than this value. When this value reaches its maximum, 005521 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 005522 ** generated record number. This P3 mechanism is used to help implement the 005523 ** AUTOINCREMENT feature. 005524 */ 005525 case OP_NewRowid: { /* out2 */ 005526 i64 v; /* The new rowid */ 005527 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 005528 int res; /* Result of an sqlite3BtreeLast() */ 005529 int cnt; /* Counter to limit the number of searches */ 005530 #ifndef SQLITE_OMIT_AUTOINCREMENT 005531 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 005532 VdbeFrame *pFrame; /* Root frame of VDBE */ 005533 #endif 005534 005535 v = 0; 005536 res = 0; 005537 pOut = out2Prerelease(p, pOp); 005538 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005539 pC = p->apCsr[pOp->p1]; 005540 assert( pC!=0 ); 005541 assert( pC->isTable ); 005542 assert( pC->eCurType==CURTYPE_BTREE ); 005543 assert( pC->uc.pCursor!=0 ); 005544 { 005545 /* The next rowid or record number (different terms for the same 005546 ** thing) is obtained in a two-step algorithm. 005547 ** 005548 ** First we attempt to find the largest existing rowid and add one 005549 ** to that. But if the largest existing rowid is already the maximum 005550 ** positive integer, we have to fall through to the second 005551 ** probabilistic algorithm 005552 ** 005553 ** The second algorithm is to select a rowid at random and see if 005554 ** it already exists in the table. If it does not exist, we have 005555 ** succeeded. If the random rowid does exist, we select a new one 005556 ** and try again, up to 100 times. 005557 */ 005558 assert( pC->isTable ); 005559 005560 #ifdef SQLITE_32BIT_ROWID 005561 # define MAX_ROWID 0x7fffffff 005562 #else 005563 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 005564 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 005565 ** to provide the constant while making all compilers happy. 005566 */ 005567 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 005568 #endif 005569 005570 if( !pC->useRandomRowid ){ 005571 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 005572 if( rc!=SQLITE_OK ){ 005573 goto abort_due_to_error; 005574 } 005575 if( res ){ 005576 v = 1; /* IMP: R-61914-48074 */ 005577 }else{ 005578 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 005579 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005580 if( v>=MAX_ROWID ){ 005581 pC->useRandomRowid = 1; 005582 }else{ 005583 v++; /* IMP: R-29538-34987 */ 005584 } 005585 } 005586 } 005587 005588 #ifndef SQLITE_OMIT_AUTOINCREMENT 005589 if( pOp->p3 ){ 005590 /* Assert that P3 is a valid memory cell. */ 005591 assert( pOp->p3>0 ); 005592 if( p->pFrame ){ 005593 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 005594 /* Assert that P3 is a valid memory cell. */ 005595 assert( pOp->p3<=pFrame->nMem ); 005596 pMem = &pFrame->aMem[pOp->p3]; 005597 }else{ 005598 /* Assert that P3 is a valid memory cell. */ 005599 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 005600 pMem = &aMem[pOp->p3]; 005601 memAboutToChange(p, pMem); 005602 } 005603 assert( memIsValid(pMem) ); 005604 005605 REGISTER_TRACE(pOp->p3, pMem); 005606 sqlite3VdbeMemIntegerify(pMem); 005607 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 005608 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 005609 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 005610 goto abort_due_to_error; 005611 } 005612 if( v<pMem->u.i+1 ){ 005613 v = pMem->u.i + 1; 005614 } 005615 pMem->u.i = v; 005616 } 005617 #endif 005618 if( pC->useRandomRowid ){ 005619 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 005620 ** largest possible integer (9223372036854775807) then the database 005621 ** engine starts picking positive candidate ROWIDs at random until 005622 ** it finds one that is not previously used. */ 005623 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 005624 ** an AUTOINCREMENT table. */ 005625 cnt = 0; 005626 do{ 005627 sqlite3_randomness(sizeof(v), &v); 005628 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 005629 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 005630 0, &res))==SQLITE_OK) 005631 && (res==0) 005632 && (++cnt<100)); 005633 if( rc ) goto abort_due_to_error; 005634 if( res==0 ){ 005635 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 005636 goto abort_due_to_error; 005637 } 005638 assert( v>0 ); /* EV: R-40812-03570 */ 005639 } 005640 pC->deferredMoveto = 0; 005641 pC->cacheStatus = CACHE_STALE; 005642 } 005643 pOut->u.i = v; 005644 break; 005645 } 005646 005647 /* Opcode: Insert P1 P2 P3 P4 P5 005648 ** Synopsis: intkey=r[P3] data=r[P2] 005649 ** 005650 ** Write an entry into the table of cursor P1. A new entry is 005651 ** created if it doesn't already exist or the data for an existing 005652 ** entry is overwritten. The data is the value MEM_Blob stored in register 005653 ** number P2. The key is stored in register P3. The key must 005654 ** be a MEM_Int. 005655 ** 005656 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 005657 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 005658 ** then rowid is stored for subsequent return by the 005659 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 005660 ** 005661 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 005662 ** run faster by avoiding an unnecessary seek on cursor P1. However, 005663 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 005664 ** seeks on the cursor or if the most recent seek used a key equal to P3. 005665 ** 005666 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 005667 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 005668 ** is part of an INSERT operation. The difference is only important to 005669 ** the update hook. 005670 ** 005671 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 005672 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 005673 ** following a successful insert. 005674 ** 005675 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 005676 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 005677 ** and register P2 becomes ephemeral. If the cursor is changed, the 005678 ** value of register P2 will then change. Make sure this does not 005679 ** cause any problems.) 005680 ** 005681 ** This instruction only works on tables. The equivalent instruction 005682 ** for indices is OP_IdxInsert. 005683 */ 005684 case OP_Insert: { 005685 Mem *pData; /* MEM cell holding data for the record to be inserted */ 005686 Mem *pKey; /* MEM cell holding key for the record */ 005687 VdbeCursor *pC; /* Cursor to table into which insert is written */ 005688 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 005689 const char *zDb; /* database name - used by the update hook */ 005690 Table *pTab; /* Table structure - used by update and pre-update hooks */ 005691 BtreePayload x; /* Payload to be inserted */ 005692 005693 pData = &aMem[pOp->p2]; 005694 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005695 assert( memIsValid(pData) ); 005696 pC = p->apCsr[pOp->p1]; 005697 assert( pC!=0 ); 005698 assert( pC->eCurType==CURTYPE_BTREE ); 005699 assert( pC->deferredMoveto==0 ); 005700 assert( pC->uc.pCursor!=0 ); 005701 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 005702 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 005703 REGISTER_TRACE(pOp->p2, pData); 005704 sqlite3VdbeIncrWriteCounter(p, pC); 005705 005706 pKey = &aMem[pOp->p3]; 005707 assert( pKey->flags & MEM_Int ); 005708 assert( memIsValid(pKey) ); 005709 REGISTER_TRACE(pOp->p3, pKey); 005710 x.nKey = pKey->u.i; 005711 005712 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 005713 assert( pC->iDb>=0 ); 005714 zDb = db->aDb[pC->iDb].zDbSName; 005715 pTab = pOp->p4.pTab; 005716 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 005717 }else{ 005718 pTab = 0; 005719 zDb = 0; 005720 } 005721 005722 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005723 /* Invoke the pre-update hook, if any */ 005724 if( pTab ){ 005725 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 005726 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 005727 } 005728 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 005729 /* Prevent post-update hook from running in cases when it should not */ 005730 pTab = 0; 005731 } 005732 } 005733 if( pOp->p5 & OPFLAG_ISNOOP ) break; 005734 #endif 005735 005736 assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 ); 005737 if( pOp->p5 & OPFLAG_NCHANGE ){ 005738 p->nChange++; 005739 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 005740 } 005741 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 005742 x.pData = pData->z; 005743 x.nData = pData->n; 005744 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 005745 if( pData->flags & MEM_Zero ){ 005746 x.nZero = pData->u.nZero; 005747 }else{ 005748 x.nZero = 0; 005749 } 005750 x.pKey = 0; 005751 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); 005752 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 005753 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 005754 seekResult 005755 ); 005756 pC->deferredMoveto = 0; 005757 pC->cacheStatus = CACHE_STALE; 005758 colCacheCtr++; 005759 005760 /* Invoke the update-hook if required. */ 005761 if( rc ) goto abort_due_to_error; 005762 if( pTab ){ 005763 assert( db->xUpdateCallback!=0 ); 005764 assert( pTab->aCol!=0 ); 005765 db->xUpdateCallback(db->pUpdateArg, 005766 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 005767 zDb, pTab->zName, x.nKey); 005768 } 005769 break; 005770 } 005771 005772 /* Opcode: RowCell P1 P2 P3 * * 005773 ** 005774 ** P1 and P2 are both open cursors. Both must be opened on the same type 005775 ** of table - intkey or index. This opcode is used as part of copying 005776 ** the current row from P2 into P1. If the cursors are opened on intkey 005777 ** tables, register P3 contains the rowid to use with the new record in 005778 ** P1. If they are opened on index tables, P3 is not used. 005779 ** 005780 ** This opcode must be followed by either an Insert or InsertIdx opcode 005781 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 005782 */ 005783 case OP_RowCell: { 005784 VdbeCursor *pDest; /* Cursor to write to */ 005785 VdbeCursor *pSrc; /* Cursor to read from */ 005786 i64 iKey; /* Rowid value to insert with */ 005787 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 005788 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 005789 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 005790 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 005791 pDest = p->apCsr[pOp->p1]; 005792 pSrc = p->apCsr[pOp->p2]; 005793 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 005794 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 005795 if( rc!=SQLITE_OK ) goto abort_due_to_error; 005796 break; 005797 }; 005798 005799 /* Opcode: Delete P1 P2 P3 P4 P5 005800 ** 005801 ** Delete the record at which the P1 cursor is currently pointing. 005802 ** 005803 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 005804 ** the cursor will be left pointing at either the next or the previous 005805 ** record in the table. If it is left pointing at the next record, then 005806 ** the next Next instruction will be a no-op. As a result, in this case 005807 ** it is ok to delete a record from within a Next loop. If 005808 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 005809 ** left in an undefined state. 005810 ** 005811 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 005812 ** delete is one of several associated with deleting a table row and 005813 ** all its associated index entries. Exactly one of those deletes is 005814 ** the "primary" delete. The others are all on OPFLAG_FORDELETE 005815 ** cursors or else are marked with the AUXDELETE flag. 005816 ** 005817 ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then 005818 ** the row change count is incremented (otherwise not). 005819 ** 005820 ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the 005821 ** pre-update-hook for deletes is run, but the btree is otherwise unchanged. 005822 ** This happens when the OP_Delete is to be shortly followed by an OP_Insert 005823 ** with the same key, causing the btree entry to be overwritten. 005824 ** 005825 ** P1 must not be pseudo-table. It has to be a real table with 005826 ** multiple rows. 005827 ** 005828 ** If P4 is not NULL then it points to a Table object. In this case either 005829 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 005830 ** have been positioned using OP_NotFound prior to invoking this opcode in 005831 ** this case. Specifically, if one is configured, the pre-update hook is 005832 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 005833 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 005834 ** 005835 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 005836 ** of the memory cell that contains the value that the rowid of the row will 005837 ** be set to by the update. 005838 */ 005839 case OP_Delete: { 005840 VdbeCursor *pC; 005841 const char *zDb; 005842 Table *pTab; 005843 int opflags; 005844 005845 opflags = pOp->p2; 005846 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005847 pC = p->apCsr[pOp->p1]; 005848 assert( pC!=0 ); 005849 assert( pC->eCurType==CURTYPE_BTREE ); 005850 assert( pC->uc.pCursor!=0 ); 005851 assert( pC->deferredMoveto==0 ); 005852 sqlite3VdbeIncrWriteCounter(p, pC); 005853 005854 #ifdef SQLITE_DEBUG 005855 if( pOp->p4type==P4_TABLE 005856 && HasRowid(pOp->p4.pTab) 005857 && pOp->p5==0 005858 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 005859 ){ 005860 /* If p5 is zero, the seek operation that positioned the cursor prior to 005861 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 005862 ** the row that is being deleted */ 005863 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005864 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 005865 } 005866 #endif 005867 005868 /* If the update-hook or pre-update-hook will be invoked, set zDb to 005869 ** the name of the db to pass as to it. Also set local pTab to a copy 005870 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 005871 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 005872 ** VdbeCursor.movetoTarget to the current rowid. */ 005873 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 005874 assert( pC->iDb>=0 ); 005875 assert( pOp->p4.pTab!=0 ); 005876 zDb = db->aDb[pC->iDb].zDbSName; 005877 pTab = pOp->p4.pTab; 005878 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 005879 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005880 } 005881 }else{ 005882 zDb = 0; 005883 pTab = 0; 005884 } 005885 005886 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005887 /* Invoke the pre-update-hook if required. */ 005888 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 005889 if( db->xPreUpdateCallback && pTab ){ 005890 assert( !(opflags & OPFLAG_ISUPDATE) 005891 || HasRowid(pTab)==0 005892 || (aMem[pOp->p3].flags & MEM_Int) 005893 ); 005894 sqlite3VdbePreUpdateHook(p, pC, 005895 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 005896 zDb, pTab, pC->movetoTarget, 005897 pOp->p3, -1 005898 ); 005899 } 005900 if( opflags & OPFLAG_ISNOOP ) break; 005901 #endif 005902 005903 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 005904 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 005905 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 005906 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 005907 005908 #ifdef SQLITE_DEBUG 005909 if( p->pFrame==0 ){ 005910 if( pC->isEphemeral==0 005911 && (pOp->p5 & OPFLAG_AUXDELETE)==0 005912 && (pC->wrFlag & OPFLAG_FORDELETE)==0 005913 ){ 005914 nExtraDelete++; 005915 } 005916 if( pOp->p2 & OPFLAG_NCHANGE ){ 005917 nExtraDelete--; 005918 } 005919 } 005920 #endif 005921 005922 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 005923 pC->cacheStatus = CACHE_STALE; 005924 colCacheCtr++; 005925 pC->seekResult = 0; 005926 if( rc ) goto abort_due_to_error; 005927 005928 /* Invoke the update-hook if required. */ 005929 if( opflags & OPFLAG_NCHANGE ){ 005930 p->nChange++; 005931 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 005932 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 005933 pC->movetoTarget); 005934 assert( pC->iDb>=0 ); 005935 } 005936 } 005937 005938 break; 005939 } 005940 /* Opcode: ResetCount * * * * * 005941 ** 005942 ** The value of the change counter is copied to the database handle 005943 ** change counter (returned by subsequent calls to sqlite3_changes()). 005944 ** Then the VMs internal change counter resets to 0. 005945 ** This is used by trigger programs. 005946 */ 005947 case OP_ResetCount: { 005948 sqlite3VdbeSetChanges(db, p->nChange); 005949 p->nChange = 0; 005950 break; 005951 } 005952 005953 /* Opcode: SorterCompare P1 P2 P3 P4 005954 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 005955 ** 005956 ** P1 is a sorter cursor. This instruction compares a prefix of the 005957 ** record blob in register P3 against a prefix of the entry that 005958 ** the sorter cursor currently points to. Only the first P4 fields 005959 ** of r[P3] and the sorter record are compared. 005960 ** 005961 ** If either P3 or the sorter contains a NULL in one of their significant 005962 ** fields (not counting the P4 fields at the end which are ignored) then 005963 ** the comparison is assumed to be equal. 005964 ** 005965 ** Fall through to next instruction if the two records compare equal to 005966 ** each other. Jump to P2 if they are different. 005967 */ 005968 case OP_SorterCompare: { 005969 VdbeCursor *pC; 005970 int res; 005971 int nKeyCol; 005972 005973 pC = p->apCsr[pOp->p1]; 005974 assert( isSorter(pC) ); 005975 assert( pOp->p4type==P4_INT32 ); 005976 pIn3 = &aMem[pOp->p3]; 005977 nKeyCol = pOp->p4.i; 005978 res = 0; 005979 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 005980 VdbeBranchTaken(res!=0,2); 005981 if( rc ) goto abort_due_to_error; 005982 if( res ) goto jump_to_p2; 005983 break; 005984 }; 005985 005986 /* Opcode: SorterData P1 P2 P3 * * 005987 ** Synopsis: r[P2]=data 005988 ** 005989 ** Write into register P2 the current sorter data for sorter cursor P1. 005990 ** Then clear the column header cache on cursor P3. 005991 ** 005992 ** This opcode is normally used to move a record out of the sorter and into 005993 ** a register that is the source for a pseudo-table cursor created using 005994 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 005995 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 005996 ** us from having to issue a separate NullRow instruction to clear that cache. 005997 */ 005998 case OP_SorterData: { /* ncycle */ 005999 VdbeCursor *pC; 006000 006001 pOut = &aMem[pOp->p2]; 006002 pC = p->apCsr[pOp->p1]; 006003 assert( isSorter(pC) ); 006004 rc = sqlite3VdbeSorterRowkey(pC, pOut); 006005 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 006006 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006007 if( rc ) goto abort_due_to_error; 006008 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 006009 break; 006010 } 006011 006012 /* Opcode: RowData P1 P2 P3 * * 006013 ** Synopsis: r[P2]=data 006014 ** 006015 ** Write into register P2 the complete row content for the row at 006016 ** which cursor P1 is currently pointing. 006017 ** There is no interpretation of the data. 006018 ** It is just copied onto the P2 register exactly as 006019 ** it is found in the database file. 006020 ** 006021 ** If cursor P1 is an index, then the content is the key of the row. 006022 ** If cursor P2 is a table, then the content extracted is the data. 006023 ** 006024 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 006025 ** of a real table, not a pseudo-table. 006026 ** 006027 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 006028 ** into the database page. That means that the content of the output 006029 ** register will be invalidated as soon as the cursor moves - including 006030 ** moves caused by other cursors that "save" the current cursors 006031 ** position in order that they can write to the same table. If P3==0 006032 ** then a copy of the data is made into memory. P3!=0 is faster, but 006033 ** P3==0 is safer. 006034 ** 006035 ** If P3!=0 then the content of the P2 register is unsuitable for use 006036 ** in OP_Result and any OP_Result will invalidate the P2 register content. 006037 ** The P2 register content is invalidated by opcodes like OP_Function or 006038 ** by any use of another cursor pointing to the same table. 006039 */ 006040 case OP_RowData: { 006041 VdbeCursor *pC; 006042 BtCursor *pCrsr; 006043 u32 n; 006044 006045 pOut = out2Prerelease(p, pOp); 006046 006047 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006048 pC = p->apCsr[pOp->p1]; 006049 assert( pC!=0 ); 006050 assert( pC->eCurType==CURTYPE_BTREE ); 006051 assert( isSorter(pC)==0 ); 006052 assert( pC->nullRow==0 ); 006053 assert( pC->uc.pCursor!=0 ); 006054 pCrsr = pC->uc.pCursor; 006055 006056 /* The OP_RowData opcodes always follow OP_NotExists or 006057 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 006058 ** that might invalidate the cursor. 006059 ** If this where not the case, on of the following assert()s 006060 ** would fail. Should this ever change (because of changes in the code 006061 ** generator) then the fix would be to insert a call to 006062 ** sqlite3VdbeCursorMoveto(). 006063 */ 006064 assert( pC->deferredMoveto==0 ); 006065 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 006066 006067 n = sqlite3BtreePayloadSize(pCrsr); 006068 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 006069 goto too_big; 006070 } 006071 testcase( n==0 ); 006072 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 006073 if( rc ) goto abort_due_to_error; 006074 if( !pOp->p3 ) Deephemeralize(pOut); 006075 UPDATE_MAX_BLOBSIZE(pOut); 006076 REGISTER_TRACE(pOp->p2, pOut); 006077 break; 006078 } 006079 006080 /* Opcode: Rowid P1 P2 * * * 006081 ** Synopsis: r[P2]=PX rowid of P1 006082 ** 006083 ** Store in register P2 an integer which is the key of the table entry that 006084 ** P1 is currently point to. 006085 ** 006086 ** P1 can be either an ordinary table or a virtual table. There used to 006087 ** be a separate OP_VRowid opcode for use with virtual tables, but this 006088 ** one opcode now works for both table types. 006089 */ 006090 case OP_Rowid: { /* out2, ncycle */ 006091 VdbeCursor *pC; 006092 i64 v; 006093 sqlite3_vtab *pVtab; 006094 const sqlite3_module *pModule; 006095 006096 pOut = out2Prerelease(p, pOp); 006097 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006098 pC = p->apCsr[pOp->p1]; 006099 assert( pC!=0 ); 006100 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 006101 if( pC->nullRow ){ 006102 pOut->flags = MEM_Null; 006103 break; 006104 }else if( pC->deferredMoveto ){ 006105 v = pC->movetoTarget; 006106 #ifndef SQLITE_OMIT_VIRTUALTABLE 006107 }else if( pC->eCurType==CURTYPE_VTAB ){ 006108 assert( pC->uc.pVCur!=0 ); 006109 pVtab = pC->uc.pVCur->pVtab; 006110 pModule = pVtab->pModule; 006111 assert( pModule->xRowid ); 006112 rc = pModule->xRowid(pC->uc.pVCur, &v); 006113 sqlite3VtabImportErrmsg(p, pVtab); 006114 if( rc ) goto abort_due_to_error; 006115 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 006116 }else{ 006117 assert( pC->eCurType==CURTYPE_BTREE ); 006118 assert( pC->uc.pCursor!=0 ); 006119 rc = sqlite3VdbeCursorRestore(pC); 006120 if( rc ) goto abort_due_to_error; 006121 if( pC->nullRow ){ 006122 pOut->flags = MEM_Null; 006123 break; 006124 } 006125 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 006126 } 006127 pOut->u.i = v; 006128 break; 006129 } 006130 006131 /* Opcode: NullRow P1 * * * * 006132 ** 006133 ** Move the cursor P1 to a null row. Any OP_Column operations 006134 ** that occur while the cursor is on the null row will always 006135 ** write a NULL. 006136 ** 006137 ** If cursor P1 is not previously opened, open it now to a special 006138 ** pseudo-cursor that always returns NULL for every column. 006139 */ 006140 case OP_NullRow: { 006141 VdbeCursor *pC; 006142 006143 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006144 pC = p->apCsr[pOp->p1]; 006145 if( pC==0 ){ 006146 /* If the cursor is not already open, create a special kind of 006147 ** pseudo-cursor that always gives null rows. */ 006148 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 006149 if( pC==0 ) goto no_mem; 006150 pC->seekResult = 0; 006151 pC->isTable = 1; 006152 pC->noReuse = 1; 006153 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 006154 } 006155 pC->nullRow = 1; 006156 pC->cacheStatus = CACHE_STALE; 006157 if( pC->eCurType==CURTYPE_BTREE ){ 006158 assert( pC->uc.pCursor!=0 ); 006159 sqlite3BtreeClearCursor(pC->uc.pCursor); 006160 } 006161 #ifdef SQLITE_DEBUG 006162 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 006163 #endif 006164 break; 006165 } 006166 006167 /* Opcode: SeekEnd P1 * * * * 006168 ** 006169 ** Position cursor P1 at the end of the btree for the purpose of 006170 ** appending a new entry onto the btree. 006171 ** 006172 ** It is assumed that the cursor is used only for appending and so 006173 ** if the cursor is valid, then the cursor must already be pointing 006174 ** at the end of the btree and so no changes are made to 006175 ** the cursor. 006176 */ 006177 /* Opcode: Last P1 P2 * * * 006178 ** 006179 ** The next use of the Rowid or Column or Prev instruction for P1 006180 ** will refer to the last entry in the database table or index. 006181 ** If the table or index is empty and P2>0, then jump immediately to P2. 006182 ** If P2 is 0 or if the table or index is not empty, fall through 006183 ** to the following instruction. 006184 ** 006185 ** This opcode leaves the cursor configured to move in reverse order, 006186 ** from the end toward the beginning. In other words, the cursor is 006187 ** configured to use Prev, not Next. 006188 */ 006189 case OP_SeekEnd: /* ncycle */ 006190 case OP_Last: { /* jump0, ncycle */ 006191 VdbeCursor *pC; 006192 BtCursor *pCrsr; 006193 int res; 006194 006195 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006196 pC = p->apCsr[pOp->p1]; 006197 assert( pC!=0 ); 006198 assert( pC->eCurType==CURTYPE_BTREE ); 006199 pCrsr = pC->uc.pCursor; 006200 res = 0; 006201 assert( pCrsr!=0 ); 006202 #ifdef SQLITE_DEBUG 006203 pC->seekOp = pOp->opcode; 006204 #endif 006205 if( pOp->opcode==OP_SeekEnd ){ 006206 assert( pOp->p2==0 ); 006207 pC->seekResult = -1; 006208 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 006209 break; 006210 } 006211 } 006212 rc = sqlite3BtreeLast(pCrsr, &res); 006213 pC->nullRow = (u8)res; 006214 pC->deferredMoveto = 0; 006215 pC->cacheStatus = CACHE_STALE; 006216 if( rc ) goto abort_due_to_error; 006217 if( pOp->p2>0 ){ 006218 VdbeBranchTaken(res!=0,2); 006219 if( res ) goto jump_to_p2; 006220 } 006221 break; 006222 } 006223 006224 /* Opcode: IfSizeBetween P1 P2 P3 P4 * 006225 ** 006226 ** Let N be the approximate number of rows in the table or index 006227 ** with cursor P1 and let X be 10*log2(N) if N is positive or -1 006228 ** if N is zero. 006229 ** 006230 ** Jump to P2 if X is in between P3 and P4, inclusive. 006231 */ 006232 case OP_IfSizeBetween: { /* jump */ 006233 VdbeCursor *pC; 006234 BtCursor *pCrsr; 006235 int res; 006236 i64 sz; 006237 006238 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006239 assert( pOp->p4type==P4_INT32 ); 006240 assert( pOp->p3>=-1 && pOp->p3<=640*2 ); 006241 assert( pOp->p4.i>=-1 && pOp->p4.i<=640*2 ); 006242 pC = p->apCsr[pOp->p1]; 006243 assert( pC!=0 ); 006244 pCrsr = pC->uc.pCursor; 006245 assert( pCrsr ); 006246 rc = sqlite3BtreeFirst(pCrsr, &res); 006247 if( rc ) goto abort_due_to_error; 006248 if( res!=0 ){ 006249 sz = -1; /* -Infinity encoding */ 006250 }else{ 006251 sz = sqlite3BtreeRowCountEst(pCrsr); 006252 assert( sz>0 ); 006253 sz = sqlite3LogEst((u64)sz); 006254 } 006255 res = sz>=pOp->p3 && sz<=pOp->p4.i; 006256 VdbeBranchTaken(res!=0,2); 006257 if( res ) goto jump_to_p2; 006258 break; 006259 } 006260 006261 006262 /* Opcode: SorterSort P1 P2 * * * 006263 ** 006264 ** After all records have been inserted into the Sorter object 006265 ** identified by P1, invoke this opcode to actually do the sorting. 006266 ** Jump to P2 if there are no records to be sorted. 006267 ** 006268 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 006269 ** for Sorter objects. 006270 */ 006271 /* Opcode: Sort P1 P2 * * * 006272 ** 006273 ** This opcode does exactly the same thing as OP_Rewind except that 006274 ** it increments an undocumented global variable used for testing. 006275 ** 006276 ** Sorting is accomplished by writing records into a sorting index, 006277 ** then rewinding that index and playing it back from beginning to 006278 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 006279 ** rewinding so that the global variable will be incremented and 006280 ** regression tests can determine whether or not the optimizer is 006281 ** correctly optimizing out sorts. 006282 */ 006283 case OP_SorterSort: /* jump ncycle */ 006284 case OP_Sort: { /* jump ncycle */ 006285 #ifdef SQLITE_TEST 006286 sqlite3_sort_count++; 006287 sqlite3_search_count--; 006288 #endif 006289 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 006290 /* Fall through into OP_Rewind */ 006291 /* no break */ deliberate_fall_through 006292 } 006293 /* Opcode: Rewind P1 P2 * * * 006294 ** 006295 ** The next use of the Rowid or Column or Next instruction for P1 006296 ** will refer to the first entry in the database table or index. 006297 ** If the table or index is empty, jump immediately to P2. 006298 ** If the table or index is not empty, fall through to the following 006299 ** instruction. 006300 ** 006301 ** If P2 is zero, that is an assertion that the P1 table is never 006302 ** empty and hence the jump will never be taken. 006303 ** 006304 ** This opcode leaves the cursor configured to move in forward order, 006305 ** from the beginning toward the end. In other words, the cursor is 006306 ** configured to use Next, not Prev. 006307 */ 006308 case OP_Rewind: { /* jump0, ncycle */ 006309 VdbeCursor *pC; 006310 BtCursor *pCrsr; 006311 int res; 006312 006313 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006314 assert( pOp->p5==0 ); 006315 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 006316 006317 pC = p->apCsr[pOp->p1]; 006318 assert( pC!=0 ); 006319 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 006320 res = 1; 006321 #ifdef SQLITE_DEBUG 006322 pC->seekOp = OP_Rewind; 006323 #endif 006324 if( isSorter(pC) ){ 006325 rc = sqlite3VdbeSorterRewind(pC, &res); 006326 }else{ 006327 assert( pC->eCurType==CURTYPE_BTREE ); 006328 pCrsr = pC->uc.pCursor; 006329 assert( pCrsr ); 006330 rc = sqlite3BtreeFirst(pCrsr, &res); 006331 pC->deferredMoveto = 0; 006332 pC->cacheStatus = CACHE_STALE; 006333 } 006334 if( rc ) goto abort_due_to_error; 006335 pC->nullRow = (u8)res; 006336 if( pOp->p2>0 ){ 006337 VdbeBranchTaken(res!=0,2); 006338 if( res ) goto jump_to_p2; 006339 } 006340 break; 006341 } 006342 006343 /* Opcode: Next P1 P2 P3 * P5 006344 ** 006345 ** Advance cursor P1 so that it points to the next key/data pair in its 006346 ** table or index. If there are no more key/value pairs then fall through 006347 ** to the following instruction. But if the cursor advance was successful, 006348 ** jump immediately to P2. 006349 ** 006350 ** The Next opcode is only valid following an SeekGT, SeekGE, or 006351 ** OP_Rewind opcode used to position the cursor. Next is not allowed 006352 ** to follow SeekLT, SeekLE, or OP_Last. 006353 ** 006354 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 006355 ** been opened prior to this opcode or the program will segfault. 006356 ** 006357 ** The P3 value is a hint to the btree implementation. If P3==1, that 006358 ** means P1 is an SQL index and that this instruction could have been 006359 ** omitted if that index had been unique. P3 is usually 0. P3 is 006360 ** always either 0 or 1. 006361 ** 006362 ** If P5 is positive and the jump is taken, then event counter 006363 ** number P5-1 in the prepared statement is incremented. 006364 ** 006365 ** See also: Prev 006366 */ 006367 /* Opcode: Prev P1 P2 P3 * P5 006368 ** 006369 ** Back up cursor P1 so that it points to the previous key/data pair in its 006370 ** table or index. If there is no previous key/value pairs then fall through 006371 ** to the following instruction. But if the cursor backup was successful, 006372 ** jump immediately to P2. 006373 ** 006374 ** 006375 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 006376 ** OP_Last opcode used to position the cursor. Prev is not allowed 006377 ** to follow SeekGT, SeekGE, or OP_Rewind. 006378 ** 006379 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 006380 ** not open then the behavior is undefined. 006381 ** 006382 ** The P3 value is a hint to the btree implementation. If P3==1, that 006383 ** means P1 is an SQL index and that this instruction could have been 006384 ** omitted if that index had been unique. P3 is usually 0. P3 is 006385 ** always either 0 or 1. 006386 ** 006387 ** If P5 is positive and the jump is taken, then event counter 006388 ** number P5-1 in the prepared statement is incremented. 006389 */ 006390 /* Opcode: SorterNext P1 P2 * * P5 006391 ** 006392 ** This opcode works just like OP_Next except that P1 must be a 006393 ** sorter object for which the OP_SorterSort opcode has been 006394 ** invoked. This opcode advances the cursor to the next sorted 006395 ** record, or jumps to P2 if there are no more sorted records. 006396 */ 006397 case OP_SorterNext: { /* jump */ 006398 VdbeCursor *pC; 006399 006400 pC = p->apCsr[pOp->p1]; 006401 assert( isSorter(pC) ); 006402 rc = sqlite3VdbeSorterNext(db, pC); 006403 goto next_tail; 006404 006405 case OP_Prev: /* jump, ncycle */ 006406 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006407 assert( pOp->p5==0 006408 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 006409 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 006410 pC = p->apCsr[pOp->p1]; 006411 assert( pC!=0 ); 006412 assert( pC->deferredMoveto==0 ); 006413 assert( pC->eCurType==CURTYPE_BTREE ); 006414 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 006415 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 006416 || pC->seekOp==OP_NullRow); 006417 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 006418 goto next_tail; 006419 006420 case OP_Next: /* jump, ncycle */ 006421 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006422 assert( pOp->p5==0 006423 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 006424 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 006425 pC = p->apCsr[pOp->p1]; 006426 assert( pC!=0 ); 006427 assert( pC->deferredMoveto==0 ); 006428 assert( pC->eCurType==CURTYPE_BTREE ); 006429 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 006430 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 006431 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 006432 || pC->seekOp==OP_IfNoHope); 006433 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 006434 006435 next_tail: 006436 pC->cacheStatus = CACHE_STALE; 006437 VdbeBranchTaken(rc==SQLITE_OK,2); 006438 if( rc==SQLITE_OK ){ 006439 pC->nullRow = 0; 006440 p->aCounter[pOp->p5]++; 006441 #ifdef SQLITE_TEST 006442 sqlite3_search_count++; 006443 #endif 006444 goto jump_to_p2_and_check_for_interrupt; 006445 } 006446 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 006447 rc = SQLITE_OK; 006448 pC->nullRow = 1; 006449 goto check_for_interrupt; 006450 } 006451 006452 /* Opcode: IdxInsert P1 P2 P3 P4 P5 006453 ** Synopsis: key=r[P2] 006454 ** 006455 ** Register P2 holds an SQL index key made using the 006456 ** MakeRecord instructions. This opcode writes that key 006457 ** into the index P1. Data for the entry is nil. 006458 ** 006459 ** If P4 is not zero, then it is the number of values in the unpacked 006460 ** key of reg(P2). In that case, P3 is the index of the first register 006461 ** for the unpacked key. The availability of the unpacked key can sometimes 006462 ** be an optimization. 006463 ** 006464 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 006465 ** that this insert is likely to be an append. 006466 ** 006467 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 006468 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 006469 ** then the change counter is unchanged. 006470 ** 006471 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 006472 ** run faster by avoiding an unnecessary seek on cursor P1. However, 006473 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 006474 ** seeks on the cursor or if the most recent seek used a key equivalent 006475 ** to P2. 006476 ** 006477 ** This instruction only works for indices. The equivalent instruction 006478 ** for tables is OP_Insert. 006479 */ 006480 case OP_IdxInsert: { /* in2 */ 006481 VdbeCursor *pC; 006482 BtreePayload x; 006483 006484 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006485 pC = p->apCsr[pOp->p1]; 006486 sqlite3VdbeIncrWriteCounter(p, pC); 006487 assert( pC!=0 ); 006488 assert( !isSorter(pC) ); 006489 pIn2 = &aMem[pOp->p2]; 006490 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 006491 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 006492 assert( pC->eCurType==CURTYPE_BTREE ); 006493 assert( pC->isTable==0 ); 006494 rc = ExpandBlob(pIn2); 006495 if( rc ) goto abort_due_to_error; 006496 x.nKey = pIn2->n; 006497 x.pKey = pIn2->z; 006498 x.aMem = aMem + pOp->p3; 006499 x.nMem = (u16)pOp->p4.i; 006500 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 006501 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 006502 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 006503 ); 006504 assert( pC->deferredMoveto==0 ); 006505 pC->cacheStatus = CACHE_STALE; 006506 if( rc) goto abort_due_to_error; 006507 break; 006508 } 006509 006510 /* Opcode: SorterInsert P1 P2 * * * 006511 ** Synopsis: key=r[P2] 006512 ** 006513 ** Register P2 holds an SQL index key made using the 006514 ** MakeRecord instructions. This opcode writes that key 006515 ** into the sorter P1. Data for the entry is nil. 006516 */ 006517 case OP_SorterInsert: { /* in2 */ 006518 VdbeCursor *pC; 006519 006520 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006521 pC = p->apCsr[pOp->p1]; 006522 sqlite3VdbeIncrWriteCounter(p, pC); 006523 assert( pC!=0 ); 006524 assert( isSorter(pC) ); 006525 pIn2 = &aMem[pOp->p2]; 006526 assert( pIn2->flags & MEM_Blob ); 006527 assert( pC->isTable==0 ); 006528 rc = ExpandBlob(pIn2); 006529 if( rc ) goto abort_due_to_error; 006530 rc = sqlite3VdbeSorterWrite(pC, pIn2); 006531 if( rc) goto abort_due_to_error; 006532 break; 006533 } 006534 006535 /* Opcode: IdxDelete P1 P2 P3 * P5 006536 ** Synopsis: key=r[P2@P3] 006537 ** 006538 ** The content of P3 registers starting at register P2 form 006539 ** an unpacked index key. This opcode removes that entry from the 006540 ** index opened by cursor P1. 006541 ** 006542 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 006543 ** if no matching index entry is found. This happens when running 006544 ** an UPDATE or DELETE statement and the index entry to be updated 006545 ** or deleted is not found. For some uses of IdxDelete 006546 ** (example: the EXCEPT operator) it does not matter that no matching 006547 ** entry is found. For those cases, P5 is zero. Also, do not raise 006548 ** this (self-correcting and non-critical) error if in writable_schema mode. 006549 */ 006550 case OP_IdxDelete: { 006551 VdbeCursor *pC; 006552 BtCursor *pCrsr; 006553 int res; 006554 UnpackedRecord r; 006555 006556 assert( pOp->p3>0 ); 006557 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 006558 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006559 pC = p->apCsr[pOp->p1]; 006560 assert( pC!=0 ); 006561 assert( pC->eCurType==CURTYPE_BTREE ); 006562 sqlite3VdbeIncrWriteCounter(p, pC); 006563 pCrsr = pC->uc.pCursor; 006564 assert( pCrsr!=0 ); 006565 r.pKeyInfo = pC->pKeyInfo; 006566 r.nField = (u16)pOp->p3; 006567 r.default_rc = 0; 006568 r.aMem = &aMem[pOp->p2]; 006569 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 006570 if( rc ) goto abort_due_to_error; 006571 if( res==0 ){ 006572 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 006573 if( rc ) goto abort_due_to_error; 006574 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 006575 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 006576 goto abort_due_to_error; 006577 } 006578 assert( pC->deferredMoveto==0 ); 006579 pC->cacheStatus = CACHE_STALE; 006580 pC->seekResult = 0; 006581 break; 006582 } 006583 006584 /* Opcode: DeferredSeek P1 * P3 P4 * 006585 ** Synopsis: Move P3 to P1.rowid if needed 006586 ** 006587 ** P1 is an open index cursor and P3 is a cursor on the corresponding 006588 ** table. This opcode does a deferred seek of the P3 table cursor 006589 ** to the row that corresponds to the current row of P1. 006590 ** 006591 ** This is a deferred seek. Nothing actually happens until 006592 ** the cursor is used to read a record. That way, if no reads 006593 ** occur, no unnecessary I/O happens. 006594 ** 006595 ** P4 may be an array of integers (type P4_INTARRAY) containing 006596 ** one entry for each column in the P3 table. If array entry a(i) 006597 ** is non-zero, then reading column a(i)-1 from cursor P3 is 006598 ** equivalent to performing the deferred seek and then reading column i 006599 ** from P1. This information is stored in P3 and used to redirect 006600 ** reads against P3 over to P1, thus possibly avoiding the need to 006601 ** seek and read cursor P3. 006602 */ 006603 /* Opcode: IdxRowid P1 P2 * * * 006604 ** Synopsis: r[P2]=rowid 006605 ** 006606 ** Write into register P2 an integer which is the last entry in the record at 006607 ** the end of the index key pointed to by cursor P1. This integer should be 006608 ** the rowid of the table entry to which this index entry points. 006609 ** 006610 ** See also: Rowid, MakeRecord. 006611 */ 006612 case OP_DeferredSeek: /* ncycle */ 006613 case OP_IdxRowid: { /* out2, ncycle */ 006614 VdbeCursor *pC; /* The P1 index cursor */ 006615 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 006616 i64 rowid; /* Rowid that P1 current points to */ 006617 006618 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006619 pC = p->apCsr[pOp->p1]; 006620 assert( pC!=0 ); 006621 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 006622 assert( pC->uc.pCursor!=0 ); 006623 assert( pC->isTable==0 || IsNullCursor(pC) ); 006624 assert( pC->deferredMoveto==0 ); 006625 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 006626 006627 /* The IdxRowid and Seek opcodes are combined because of the commonality 006628 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 006629 rc = sqlite3VdbeCursorRestore(pC); 006630 006631 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed 006632 ** since it was last positioned and an error (e.g. OOM or an IO error) 006633 ** occurs while trying to reposition it. */ 006634 if( rc!=SQLITE_OK ) goto abort_due_to_error; 006635 006636 if( !pC->nullRow ){ 006637 rowid = 0; /* Not needed. Only used to silence a warning. */ 006638 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 006639 if( rc!=SQLITE_OK ){ 006640 goto abort_due_to_error; 006641 } 006642 if( pOp->opcode==OP_DeferredSeek ){ 006643 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 006644 pTabCur = p->apCsr[pOp->p3]; 006645 assert( pTabCur!=0 ); 006646 assert( pTabCur->eCurType==CURTYPE_BTREE ); 006647 assert( pTabCur->uc.pCursor!=0 ); 006648 assert( pTabCur->isTable ); 006649 pTabCur->nullRow = 0; 006650 pTabCur->movetoTarget = rowid; 006651 pTabCur->deferredMoveto = 1; 006652 pTabCur->cacheStatus = CACHE_STALE; 006653 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 006654 assert( !pTabCur->isEphemeral ); 006655 pTabCur->ub.aAltMap = pOp->p4.ai; 006656 assert( !pC->isEphemeral ); 006657 pTabCur->pAltCursor = pC; 006658 }else{ 006659 pOut = out2Prerelease(p, pOp); 006660 pOut->u.i = rowid; 006661 } 006662 }else{ 006663 assert( pOp->opcode==OP_IdxRowid ); 006664 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 006665 } 006666 break; 006667 } 006668 006669 /* Opcode: FinishSeek P1 * * * * 006670 ** 006671 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 006672 ** seek operation now, without further delay. If the cursor seek has 006673 ** already occurred, this instruction is a no-op. 006674 */ 006675 case OP_FinishSeek: { /* ncycle */ 006676 VdbeCursor *pC; /* The P1 index cursor */ 006677 006678 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006679 pC = p->apCsr[pOp->p1]; 006680 if( pC->deferredMoveto ){ 006681 rc = sqlite3VdbeFinishMoveto(pC); 006682 if( rc ) goto abort_due_to_error; 006683 } 006684 break; 006685 } 006686 006687 /* Opcode: IdxGE P1 P2 P3 P4 * 006688 ** Synopsis: key=r[P3@P4] 006689 ** 006690 ** The P4 register values beginning with P3 form an unpacked index 006691 ** key that omits the PRIMARY KEY. Compare this key value against the index 006692 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 006693 ** fields at the end. 006694 ** 006695 ** If the P1 index entry is greater than or equal to the key value 006696 ** then jump to P2. Otherwise fall through to the next instruction. 006697 */ 006698 /* Opcode: IdxGT P1 P2 P3 P4 * 006699 ** Synopsis: key=r[P3@P4] 006700 ** 006701 ** The P4 register values beginning with P3 form an unpacked index 006702 ** key that omits the PRIMARY KEY. Compare this key value against the index 006703 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 006704 ** fields at the end. 006705 ** 006706 ** If the P1 index entry is greater than the key value 006707 ** then jump to P2. Otherwise fall through to the next instruction. 006708 */ 006709 /* Opcode: IdxLT P1 P2 P3 P4 * 006710 ** Synopsis: key=r[P3@P4] 006711 ** 006712 ** The P4 register values beginning with P3 form an unpacked index 006713 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 006714 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 006715 ** ROWID on the P1 index. 006716 ** 006717 ** If the P1 index entry is less than the key value then jump to P2. 006718 ** Otherwise fall through to the next instruction. 006719 */ 006720 /* Opcode: IdxLE P1 P2 P3 P4 * 006721 ** Synopsis: key=r[P3@P4] 006722 ** 006723 ** The P4 register values beginning with P3 form an unpacked index 006724 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 006725 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 006726 ** ROWID on the P1 index. 006727 ** 006728 ** If the P1 index entry is less than or equal to the key value then jump 006729 ** to P2. Otherwise fall through to the next instruction. 006730 */ 006731 case OP_IdxLE: /* jump, ncycle */ 006732 case OP_IdxGT: /* jump, ncycle */ 006733 case OP_IdxLT: /* jump, ncycle */ 006734 case OP_IdxGE: { /* jump, ncycle */ 006735 VdbeCursor *pC; 006736 int res; 006737 UnpackedRecord r; 006738 006739 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006740 pC = p->apCsr[pOp->p1]; 006741 assert( pC!=0 ); 006742 assert( pC->isOrdered ); 006743 assert( pC->eCurType==CURTYPE_BTREE ); 006744 assert( pC->uc.pCursor!=0); 006745 assert( pC->deferredMoveto==0 ); 006746 assert( pOp->p4type==P4_INT32 ); 006747 r.pKeyInfo = pC->pKeyInfo; 006748 r.nField = (u16)pOp->p4.i; 006749 if( pOp->opcode<OP_IdxLT ){ 006750 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 006751 r.default_rc = -1; 006752 }else{ 006753 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 006754 r.default_rc = 0; 006755 } 006756 r.aMem = &aMem[pOp->p3]; 006757 #ifdef SQLITE_DEBUG 006758 { 006759 int i; 006760 for(i=0; i<r.nField; i++){ 006761 assert( memIsValid(&r.aMem[i]) ); 006762 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 006763 } 006764 } 006765 #endif 006766 006767 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 006768 { 006769 i64 nCellKey = 0; 006770 BtCursor *pCur; 006771 Mem m; 006772 006773 assert( pC->eCurType==CURTYPE_BTREE ); 006774 pCur = pC->uc.pCursor; 006775 assert( sqlite3BtreeCursorIsValid(pCur) ); 006776 nCellKey = sqlite3BtreePayloadSize(pCur); 006777 /* nCellKey will always be between 0 and 0xffffffff because of the way 006778 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 006779 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 006780 rc = SQLITE_CORRUPT_BKPT; 006781 goto abort_due_to_error; 006782 } 006783 sqlite3VdbeMemInit(&m, db, 0); 006784 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 006785 if( rc ) goto abort_due_to_error; 006786 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 006787 sqlite3VdbeMemReleaseMalloc(&m); 006788 } 006789 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 006790 006791 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 006792 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 006793 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 006794 res = -res; 006795 }else{ 006796 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 006797 res++; 006798 } 006799 VdbeBranchTaken(res>0,2); 006800 assert( rc==SQLITE_OK ); 006801 if( res>0 ) goto jump_to_p2; 006802 break; 006803 } 006804 006805 /* Opcode: Destroy P1 P2 P3 * * 006806 ** 006807 ** Delete an entire database table or index whose root page in the database 006808 ** file is given by P1. 006809 ** 006810 ** The table being destroyed is in the main database file if P3==0. If 006811 ** P3==1 then the table to be destroyed is in the auxiliary database file 006812 ** that is used to store tables create using CREATE TEMPORARY TABLE. 006813 ** 006814 ** If AUTOVACUUM is enabled then it is possible that another root page 006815 ** might be moved into the newly deleted root page in order to keep all 006816 ** root pages contiguous at the beginning of the database. The former 006817 ** value of the root page that moved - its value before the move occurred - 006818 ** is stored in register P2. If no page movement was required (because the 006819 ** table being dropped was already the last one in the database) then a 006820 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 006821 ** is stored in register P2. 006822 ** 006823 ** This opcode throws an error if there are any active reader VMs when 006824 ** it is invoked. This is done to avoid the difficulty associated with 006825 ** updating existing cursors when a root page is moved in an AUTOVACUUM 006826 ** database. This error is thrown even if the database is not an AUTOVACUUM 006827 ** db in order to avoid introducing an incompatibility between autovacuum 006828 ** and non-autovacuum modes. 006829 ** 006830 ** See also: Clear 006831 */ 006832 case OP_Destroy: { /* out2 */ 006833 int iMoved; 006834 int iDb; 006835 006836 sqlite3VdbeIncrWriteCounter(p, 0); 006837 assert( p->readOnly==0 ); 006838 assert( pOp->p1>1 ); 006839 pOut = out2Prerelease(p, pOp); 006840 pOut->flags = MEM_Null; 006841 if( db->nVdbeRead > db->nVDestroy+1 ){ 006842 rc = SQLITE_LOCKED; 006843 p->errorAction = OE_Abort; 006844 goto abort_due_to_error; 006845 }else{ 006846 iDb = pOp->p3; 006847 assert( DbMaskTest(p->btreeMask, iDb) ); 006848 iMoved = 0; /* Not needed. Only to silence a warning. */ 006849 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 006850 pOut->flags = MEM_Int; 006851 pOut->u.i = iMoved; 006852 if( rc ) goto abort_due_to_error; 006853 #ifndef SQLITE_OMIT_AUTOVACUUM 006854 if( iMoved!=0 ){ 006855 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 006856 /* All OP_Destroy operations occur on the same btree */ 006857 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 006858 resetSchemaOnFault = iDb+1; 006859 } 006860 #endif 006861 } 006862 break; 006863 } 006864 006865 /* Opcode: Clear P1 P2 P3 006866 ** 006867 ** Delete all contents of the database table or index whose root page 006868 ** in the database file is given by P1. But, unlike Destroy, do not 006869 ** remove the table or index from the database file. 006870 ** 006871 ** The table being cleared is in the main database file if P2==0. If 006872 ** P2==1 then the table to be cleared is in the auxiliary database file 006873 ** that is used to store tables create using CREATE TEMPORARY TABLE. 006874 ** 006875 ** If the P3 value is non-zero, then the row change count is incremented 006876 ** by the number of rows in the table being cleared. If P3 is greater 006877 ** than zero, then the value stored in register P3 is also incremented 006878 ** by the number of rows in the table being cleared. 006879 ** 006880 ** See also: Destroy 006881 */ 006882 case OP_Clear: { 006883 i64 nChange; 006884 006885 sqlite3VdbeIncrWriteCounter(p, 0); 006886 nChange = 0; 006887 assert( p->readOnly==0 ); 006888 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 006889 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 006890 if( pOp->p3 ){ 006891 p->nChange += nChange; 006892 if( pOp->p3>0 ){ 006893 assert( memIsValid(&aMem[pOp->p3]) ); 006894 memAboutToChange(p, &aMem[pOp->p3]); 006895 aMem[pOp->p3].u.i += nChange; 006896 } 006897 } 006898 if( rc ) goto abort_due_to_error; 006899 break; 006900 } 006901 006902 /* Opcode: ResetSorter P1 * * * * 006903 ** 006904 ** Delete all contents from the ephemeral table or sorter 006905 ** that is open on cursor P1. 006906 ** 006907 ** This opcode only works for cursors used for sorting and 006908 ** opened with OP_OpenEphemeral or OP_SorterOpen. 006909 */ 006910 case OP_ResetSorter: { 006911 VdbeCursor *pC; 006912 006913 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006914 pC = p->apCsr[pOp->p1]; 006915 assert( pC!=0 ); 006916 if( isSorter(pC) ){ 006917 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 006918 }else{ 006919 assert( pC->eCurType==CURTYPE_BTREE ); 006920 assert( pC->isEphemeral ); 006921 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 006922 if( rc ) goto abort_due_to_error; 006923 } 006924 break; 006925 } 006926 006927 /* Opcode: CreateBtree P1 P2 P3 * * 006928 ** Synopsis: r[P2]=root iDb=P1 flags=P3 006929 ** 006930 ** Allocate a new b-tree in the main database file if P1==0 or in the 006931 ** TEMP database file if P1==1 or in an attached database if 006932 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 006933 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 006934 ** The root page number of the new b-tree is stored in register P2. 006935 */ 006936 case OP_CreateBtree: { /* out2 */ 006937 Pgno pgno; 006938 Db *pDb; 006939 006940 sqlite3VdbeIncrWriteCounter(p, 0); 006941 pOut = out2Prerelease(p, pOp); 006942 pgno = 0; 006943 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 006944 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 006945 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 006946 assert( p->readOnly==0 ); 006947 pDb = &db->aDb[pOp->p1]; 006948 assert( pDb->pBt!=0 ); 006949 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 006950 if( rc ) goto abort_due_to_error; 006951 pOut->u.i = pgno; 006952 break; 006953 } 006954 006955 /* Opcode: SqlExec P1 P2 * P4 * 006956 ** 006957 ** Run the SQL statement or statements specified in the P4 string. 006958 ** 006959 ** The P1 parameter is a bitmask of options: 006960 ** 006961 ** 0x0001 Disable Auth and Trace callbacks while the statements 006962 ** in P4 are running. 006963 ** 006964 ** 0x0002 Set db->nAnalysisLimit to P2 while the statements in 006965 ** P4 are running. 006966 ** 006967 */ 006968 case OP_SqlExec: { 006969 char *zErr; 006970 #ifndef SQLITE_OMIT_AUTHORIZATION 006971 sqlite3_xauth xAuth; 006972 #endif 006973 u8 mTrace; 006974 int savedAnalysisLimit; 006975 006976 sqlite3VdbeIncrWriteCounter(p, 0); 006977 db->nSqlExec++; 006978 zErr = 0; 006979 #ifndef SQLITE_OMIT_AUTHORIZATION 006980 xAuth = db->xAuth; 006981 #endif 006982 mTrace = db->mTrace; 006983 savedAnalysisLimit = db->nAnalysisLimit; 006984 if( pOp->p1 & 0x0001 ){ 006985 #ifndef SQLITE_OMIT_AUTHORIZATION 006986 db->xAuth = 0; 006987 #endif 006988 db->mTrace = 0; 006989 } 006990 if( pOp->p1 & 0x0002 ){ 006991 db->nAnalysisLimit = pOp->p2; 006992 } 006993 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr); 006994 db->nSqlExec--; 006995 #ifndef SQLITE_OMIT_AUTHORIZATION 006996 db->xAuth = xAuth; 006997 #endif 006998 db->mTrace = mTrace; 006999 db->nAnalysisLimit = savedAnalysisLimit; 007000 if( zErr || rc ){ 007001 sqlite3VdbeError(p, "%s", zErr); 007002 sqlite3_free(zErr); 007003 if( rc==SQLITE_NOMEM ) goto no_mem; 007004 goto abort_due_to_error; 007005 } 007006 break; 007007 } 007008 007009 /* Opcode: ParseSchema P1 * * P4 * 007010 ** 007011 ** Read and parse all entries from the schema table of database P1 007012 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 007013 ** entire schema for P1 is reparsed. 007014 ** 007015 ** This opcode invokes the parser to create a new virtual machine, 007016 ** then runs the new virtual machine. It is thus a re-entrant opcode. 007017 */ 007018 case OP_ParseSchema: { 007019 int iDb; 007020 const char *zSchema; 007021 char *zSql; 007022 InitData initData; 007023 007024 /* Any prepared statement that invokes this opcode will hold mutexes 007025 ** on every btree. This is a prerequisite for invoking 007026 ** sqlite3InitCallback(). 007027 */ 007028 #ifdef SQLITE_DEBUG 007029 for(iDb=0; iDb<db->nDb; iDb++){ 007030 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 007031 } 007032 #endif 007033 007034 iDb = pOp->p1; 007035 assert( iDb>=0 && iDb<db->nDb ); 007036 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 007037 || db->mallocFailed 007038 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 007039 007040 #ifndef SQLITE_OMIT_ALTERTABLE 007041 if( pOp->p4.z==0 ){ 007042 sqlite3SchemaClear(db->aDb[iDb].pSchema); 007043 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 007044 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 007045 db->mDbFlags |= DBFLAG_SchemaChange; 007046 p->expired = 0; 007047 }else 007048 #endif 007049 { 007050 zSchema = LEGACY_SCHEMA_TABLE; 007051 initData.db = db; 007052 initData.iDb = iDb; 007053 initData.pzErrMsg = &p->zErrMsg; 007054 initData.mInitFlags = 0; 007055 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 007056 zSql = sqlite3MPrintf(db, 007057 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 007058 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 007059 if( zSql==0 ){ 007060 rc = SQLITE_NOMEM_BKPT; 007061 }else{ 007062 assert( db->init.busy==0 ); 007063 db->init.busy = 1; 007064 initData.rc = SQLITE_OK; 007065 initData.nInitRow = 0; 007066 assert( !db->mallocFailed ); 007067 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 007068 if( rc==SQLITE_OK ) rc = initData.rc; 007069 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 007070 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 007071 ** at least one SQL statement. Any less than that indicates that 007072 ** the sqlite_schema table is corrupt. */ 007073 rc = SQLITE_CORRUPT_BKPT; 007074 } 007075 sqlite3DbFreeNN(db, zSql); 007076 db->init.busy = 0; 007077 } 007078 } 007079 if( rc ){ 007080 sqlite3ResetAllSchemasOfConnection(db); 007081 if( rc==SQLITE_NOMEM ){ 007082 goto no_mem; 007083 } 007084 goto abort_due_to_error; 007085 } 007086 break; 007087 } 007088 007089 #if !defined(SQLITE_OMIT_ANALYZE) 007090 /* Opcode: LoadAnalysis P1 * * * * 007091 ** 007092 ** Read the sqlite_stat1 table for database P1 and load the content 007093 ** of that table into the internal index hash table. This will cause 007094 ** the analysis to be used when preparing all subsequent queries. 007095 */ 007096 case OP_LoadAnalysis: { 007097 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007098 rc = sqlite3AnalysisLoad(db, pOp->p1); 007099 if( rc ) goto abort_due_to_error; 007100 break; 007101 } 007102 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 007103 007104 /* Opcode: DropTable P1 * * P4 * 007105 ** 007106 ** Remove the internal (in-memory) data structures that describe 007107 ** the table named P4 in database P1. This is called after a table 007108 ** is dropped from disk (using the Destroy opcode) in order to keep 007109 ** the internal representation of the 007110 ** schema consistent with what is on disk. 007111 */ 007112 case OP_DropTable: { 007113 sqlite3VdbeIncrWriteCounter(p, 0); 007114 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 007115 break; 007116 } 007117 007118 /* Opcode: DropIndex P1 * * P4 * 007119 ** 007120 ** Remove the internal (in-memory) data structures that describe 007121 ** the index named P4 in database P1. This is called after an index 007122 ** is dropped from disk (using the Destroy opcode) 007123 ** in order to keep the internal representation of the 007124 ** schema consistent with what is on disk. 007125 */ 007126 case OP_DropIndex: { 007127 sqlite3VdbeIncrWriteCounter(p, 0); 007128 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 007129 break; 007130 } 007131 007132 /* Opcode: DropTrigger P1 * * P4 * 007133 ** 007134 ** Remove the internal (in-memory) data structures that describe 007135 ** the trigger named P4 in database P1. This is called after a trigger 007136 ** is dropped from disk (using the Destroy opcode) in order to keep 007137 ** the internal representation of the 007138 ** schema consistent with what is on disk. 007139 */ 007140 case OP_DropTrigger: { 007141 sqlite3VdbeIncrWriteCounter(p, 0); 007142 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 007143 break; 007144 } 007145 007146 007147 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 007148 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 007149 ** 007150 ** Do an analysis of the currently open database. Store in 007151 ** register (P1+1) the text of an error message describing any problems. 007152 ** If no problems are found, store a NULL in register (P1+1). 007153 ** 007154 ** The register (P1) contains one less than the maximum number of allowed 007155 ** errors. At most reg(P1) errors will be reported. 007156 ** In other words, the analysis stops as soon as reg(P1) errors are 007157 ** seen. Reg(P1) is updated with the number of errors remaining. 007158 ** 007159 ** The root page numbers of all tables in the database are integers 007160 ** stored in P4_INTARRAY argument. 007161 ** 007162 ** If P5 is not zero, the check is done on the auxiliary database 007163 ** file, not the main database file. 007164 ** 007165 ** This opcode is used to implement the integrity_check pragma. 007166 */ 007167 case OP_IntegrityCk: { 007168 int nRoot; /* Number of tables to check. (Number of root pages.) */ 007169 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 007170 int nErr; /* Number of errors reported */ 007171 char *z; /* Text of the error report */ 007172 Mem *pnErr; /* Register keeping track of errors remaining */ 007173 007174 assert( p->bIsReader ); 007175 assert( pOp->p4type==P4_INTARRAY ); 007176 nRoot = pOp->p2; 007177 aRoot = pOp->p4.ai; 007178 assert( nRoot>0 ); 007179 assert( aRoot!=0 ); 007180 assert( aRoot[0]==(Pgno)nRoot ); 007181 assert( pOp->p1>0 && (pOp->p1+1)<=(p->nMem+1 - p->nCursor) ); 007182 pnErr = &aMem[pOp->p1]; 007183 assert( (pnErr->flags & MEM_Int)!=0 ); 007184 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 007185 pIn1 = &aMem[pOp->p1+1]; 007186 assert( pOp->p5<db->nDb ); 007187 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 007188 rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], 007189 &aMem[pOp->p3], nRoot, (int)pnErr->u.i+1, &nErr, &z); 007190 sqlite3VdbeMemSetNull(pIn1); 007191 if( nErr==0 ){ 007192 assert( z==0 ); 007193 }else if( rc ){ 007194 sqlite3_free(z); 007195 goto abort_due_to_error; 007196 }else{ 007197 pnErr->u.i -= nErr-1; 007198 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 007199 } 007200 UPDATE_MAX_BLOBSIZE(pIn1); 007201 sqlite3VdbeChangeEncoding(pIn1, encoding); 007202 goto check_for_interrupt; 007203 } 007204 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 007205 007206 /* Opcode: RowSetAdd P1 P2 * * * 007207 ** Synopsis: rowset(P1)=r[P2] 007208 ** 007209 ** Insert the integer value held by register P2 into a RowSet object 007210 ** held in register P1. 007211 ** 007212 ** An assertion fails if P2 is not an integer. 007213 */ 007214 case OP_RowSetAdd: { /* in1, in2 */ 007215 pIn1 = &aMem[pOp->p1]; 007216 pIn2 = &aMem[pOp->p2]; 007217 assert( (pIn2->flags & MEM_Int)!=0 ); 007218 if( (pIn1->flags & MEM_Blob)==0 ){ 007219 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 007220 } 007221 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 007222 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 007223 break; 007224 } 007225 007226 /* Opcode: RowSetRead P1 P2 P3 * * 007227 ** Synopsis: r[P3]=rowset(P1) 007228 ** 007229 ** Extract the smallest value from the RowSet object in P1 007230 ** and put that value into register P3. 007231 ** Or, if RowSet object P1 is initially empty, leave P3 007232 ** unchanged and jump to instruction P2. 007233 */ 007234 case OP_RowSetRead: { /* jump, in1, out3 */ 007235 i64 val; 007236 007237 pIn1 = &aMem[pOp->p1]; 007238 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 007239 if( (pIn1->flags & MEM_Blob)==0 007240 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 007241 ){ 007242 /* The boolean index is empty */ 007243 sqlite3VdbeMemSetNull(pIn1); 007244 VdbeBranchTaken(1,2); 007245 goto jump_to_p2_and_check_for_interrupt; 007246 }else{ 007247 /* A value was pulled from the index */ 007248 VdbeBranchTaken(0,2); 007249 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 007250 } 007251 goto check_for_interrupt; 007252 } 007253 007254 /* Opcode: RowSetTest P1 P2 P3 P4 007255 ** Synopsis: if r[P3] in rowset(P1) goto P2 007256 ** 007257 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 007258 ** contains a RowSet object and that RowSet object contains 007259 ** the value held in P3, jump to register P2. Otherwise, insert the 007260 ** integer in P3 into the RowSet and continue on to the 007261 ** next opcode. 007262 ** 007263 ** The RowSet object is optimized for the case where sets of integers 007264 ** are inserted in distinct phases, which each set contains no duplicates. 007265 ** Each set is identified by a unique P4 value. The first set 007266 ** must have P4==0, the final set must have P4==-1, and for all other sets 007267 ** must have P4>0. 007268 ** 007269 ** This allows optimizations: (a) when P4==0 there is no need to test 007270 ** the RowSet object for P3, as it is guaranteed not to contain it, 007271 ** (b) when P4==-1 there is no need to insert the value, as it will 007272 ** never be tested for, and (c) when a value that is part of set X is 007273 ** inserted, there is no need to search to see if the same value was 007274 ** previously inserted as part of set X (only if it was previously 007275 ** inserted as part of some other set). 007276 */ 007277 case OP_RowSetTest: { /* jump, in1, in3 */ 007278 int iSet; 007279 int exists; 007280 007281 pIn1 = &aMem[pOp->p1]; 007282 pIn3 = &aMem[pOp->p3]; 007283 iSet = pOp->p4.i; 007284 assert( pIn3->flags&MEM_Int ); 007285 007286 /* If there is anything other than a rowset object in memory cell P1, 007287 ** delete it now and initialize P1 with an empty rowset 007288 */ 007289 if( (pIn1->flags & MEM_Blob)==0 ){ 007290 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 007291 } 007292 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 007293 assert( pOp->p4type==P4_INT32 ); 007294 assert( iSet==-1 || iSet>=0 ); 007295 if( iSet ){ 007296 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 007297 VdbeBranchTaken(exists!=0,2); 007298 if( exists ) goto jump_to_p2; 007299 } 007300 if( iSet>=0 ){ 007301 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 007302 } 007303 break; 007304 } 007305 007306 007307 #ifndef SQLITE_OMIT_TRIGGER 007308 007309 /* Opcode: Program P1 P2 P3 P4 P5 007310 ** 007311 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 007312 ** 007313 ** P1 contains the address of the memory cell that contains the first memory 007314 ** cell in an array of values used as arguments to the sub-program. P2 007315 ** contains the address to jump to if the sub-program throws an IGNORE 007316 ** exception using the RAISE() function. P2 might be zero, if there is 007317 ** no possibility that an IGNORE exception will be raised. 007318 ** Register P3 contains the address 007319 ** of a memory cell in this (the parent) VM that is used to allocate the 007320 ** memory required by the sub-vdbe at runtime. 007321 ** 007322 ** P4 is a pointer to the VM containing the trigger program. 007323 ** 007324 ** If P5 is non-zero, then recursive program invocation is enabled. 007325 */ 007326 case OP_Program: { /* jump0 */ 007327 int nMem; /* Number of memory registers for sub-program */ 007328 int nByte; /* Bytes of runtime space required for sub-program */ 007329 Mem *pRt; /* Register to allocate runtime space */ 007330 Mem *pMem; /* Used to iterate through memory cells */ 007331 Mem *pEnd; /* Last memory cell in new array */ 007332 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 007333 SubProgram *pProgram; /* Sub-program to execute */ 007334 void *t; /* Token identifying trigger */ 007335 007336 pProgram = pOp->p4.pProgram; 007337 pRt = &aMem[pOp->p3]; 007338 assert( pProgram->nOp>0 ); 007339 007340 /* If the p5 flag is clear, then recursive invocation of triggers is 007341 ** disabled for backwards compatibility (p5 is set if this sub-program 007342 ** is really a trigger, not a foreign key action, and the flag set 007343 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 007344 ** 007345 ** It is recursive invocation of triggers, at the SQL level, that is 007346 ** disabled. In some cases a single trigger may generate more than one 007347 ** SubProgram (if the trigger may be executed with more than one different 007348 ** ON CONFLICT algorithm). SubProgram structures associated with a 007349 ** single trigger all have the same value for the SubProgram.token 007350 ** variable. */ 007351 if( pOp->p5 ){ 007352 t = pProgram->token; 007353 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 007354 if( pFrame ) break; 007355 } 007356 007357 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 007358 rc = SQLITE_ERROR; 007359 sqlite3VdbeError(p, "too many levels of trigger recursion"); 007360 goto abort_due_to_error; 007361 } 007362 007363 /* Register pRt is used to store the memory required to save the state 007364 ** of the current program, and the memory required at runtime to execute 007365 ** the trigger program. If this trigger has been fired before, then pRt 007366 ** is already allocated. Otherwise, it must be initialized. */ 007367 if( (pRt->flags&MEM_Blob)==0 ){ 007368 /* SubProgram.nMem is set to the number of memory cells used by the 007369 ** program stored in SubProgram.aOp. As well as these, one memory 007370 ** cell is required for each cursor used by the program. Set local 007371 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 007372 */ 007373 nMem = pProgram->nMem + pProgram->nCsr; 007374 assert( nMem>0 ); 007375 if( pProgram->nCsr==0 ) nMem++; 007376 nByte = ROUND8(sizeof(VdbeFrame)) 007377 + nMem * sizeof(Mem) 007378 + pProgram->nCsr * sizeof(VdbeCursor*) 007379 + (pProgram->nOp + 7)/8; 007380 pFrame = sqlite3DbMallocZero(db, nByte); 007381 if( !pFrame ){ 007382 goto no_mem; 007383 } 007384 sqlite3VdbeMemRelease(pRt); 007385 pRt->flags = MEM_Blob|MEM_Dyn; 007386 pRt->z = (char*)pFrame; 007387 pRt->n = nByte; 007388 pRt->xDel = sqlite3VdbeFrameMemDel; 007389 007390 pFrame->v = p; 007391 pFrame->nChildMem = nMem; 007392 pFrame->nChildCsr = pProgram->nCsr; 007393 pFrame->pc = (int)(pOp - aOp); 007394 pFrame->aMem = p->aMem; 007395 pFrame->nMem = p->nMem; 007396 pFrame->apCsr = p->apCsr; 007397 pFrame->nCursor = p->nCursor; 007398 pFrame->aOp = p->aOp; 007399 pFrame->nOp = p->nOp; 007400 pFrame->token = pProgram->token; 007401 #ifdef SQLITE_DEBUG 007402 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 007403 #endif 007404 007405 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 007406 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 007407 pMem->flags = MEM_Undefined; 007408 pMem->db = db; 007409 } 007410 }else{ 007411 pFrame = (VdbeFrame*)pRt->z; 007412 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 007413 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 007414 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 007415 assert( pProgram->nCsr==pFrame->nChildCsr ); 007416 assert( (int)(pOp - aOp)==pFrame->pc ); 007417 } 007418 007419 p->nFrame++; 007420 pFrame->pParent = p->pFrame; 007421 pFrame->lastRowid = db->lastRowid; 007422 pFrame->nChange = p->nChange; 007423 pFrame->nDbChange = p->db->nChange; 007424 assert( pFrame->pAuxData==0 ); 007425 pFrame->pAuxData = p->pAuxData; 007426 p->pAuxData = 0; 007427 p->nChange = 0; 007428 p->pFrame = pFrame; 007429 p->aMem = aMem = VdbeFrameMem(pFrame); 007430 p->nMem = pFrame->nChildMem; 007431 p->nCursor = (u16)pFrame->nChildCsr; 007432 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 007433 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 007434 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 007435 p->aOp = aOp = pProgram->aOp; 007436 p->nOp = pProgram->nOp; 007437 #ifdef SQLITE_DEBUG 007438 /* Verify that second and subsequent executions of the same trigger do not 007439 ** try to reuse register values from the first use. */ 007440 { 007441 int i; 007442 for(i=0; i<p->nMem; i++){ 007443 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 007444 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 007445 } 007446 } 007447 #endif 007448 pOp = &aOp[-1]; 007449 goto check_for_interrupt; 007450 } 007451 007452 /* Opcode: Param P1 P2 * * * 007453 ** 007454 ** This opcode is only ever present in sub-programs called via the 007455 ** OP_Program instruction. Copy a value currently stored in a memory 007456 ** cell of the calling (parent) frame to cell P2 in the current frames 007457 ** address space. This is used by trigger programs to access the new.* 007458 ** and old.* values. 007459 ** 007460 ** The address of the cell in the parent frame is determined by adding 007461 ** the value of the P1 argument to the value of the P1 argument to the 007462 ** calling OP_Program instruction. 007463 */ 007464 case OP_Param: { /* out2 */ 007465 VdbeFrame *pFrame; 007466 Mem *pIn; 007467 pOut = out2Prerelease(p, pOp); 007468 pFrame = p->pFrame; 007469 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 007470 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 007471 break; 007472 } 007473 007474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 007475 007476 #ifndef SQLITE_OMIT_FOREIGN_KEY 007477 /* Opcode: FkCounter P1 P2 * * * 007478 ** Synopsis: fkctr[P1]+=P2 007479 ** 007480 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 007481 ** If P1 is non-zero, the database constraint counter is incremented 007482 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 007483 ** statement counter is incremented (immediate foreign key constraints). 007484 */ 007485 case OP_FkCounter: { 007486 if( db->flags & SQLITE_DeferFKs ){ 007487 db->nDeferredImmCons += pOp->p2; 007488 }else if( pOp->p1 ){ 007489 db->nDeferredCons += pOp->p2; 007490 }else{ 007491 p->nFkConstraint += pOp->p2; 007492 } 007493 break; 007494 } 007495 007496 /* Opcode: FkIfZero P1 P2 * * * 007497 ** Synopsis: if fkctr[P1]==0 goto P2 007498 ** 007499 ** This opcode tests if a foreign key constraint-counter is currently zero. 007500 ** If so, jump to instruction P2. Otherwise, fall through to the next 007501 ** instruction. 007502 ** 007503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 007504 ** is zero (the one that counts deferred constraint violations). If P1 is 007505 ** zero, the jump is taken if the statement constraint-counter is zero 007506 ** (immediate foreign key constraint violations). 007507 */ 007508 case OP_FkIfZero: { /* jump */ 007509 if( pOp->p1 ){ 007510 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 007511 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 007512 }else{ 007513 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 007514 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 007515 } 007516 break; 007517 } 007518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 007519 007520 #ifndef SQLITE_OMIT_AUTOINCREMENT 007521 /* Opcode: MemMax P1 P2 * * * 007522 ** Synopsis: r[P1]=max(r[P1],r[P2]) 007523 ** 007524 ** P1 is a register in the root frame of this VM (the root frame is 007525 ** different from the current frame if this instruction is being executed 007526 ** within a sub-program). Set the value of register P1 to the maximum of 007527 ** its current value and the value in register P2. 007528 ** 007529 ** This instruction throws an error if the memory cell is not initially 007530 ** an integer. 007531 */ 007532 case OP_MemMax: { /* in2 */ 007533 VdbeFrame *pFrame; 007534 if( p->pFrame ){ 007535 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 007536 pIn1 = &pFrame->aMem[pOp->p1]; 007537 }else{ 007538 pIn1 = &aMem[pOp->p1]; 007539 } 007540 assert( memIsValid(pIn1) ); 007541 sqlite3VdbeMemIntegerify(pIn1); 007542 pIn2 = &aMem[pOp->p2]; 007543 sqlite3VdbeMemIntegerify(pIn2); 007544 if( pIn1->u.i<pIn2->u.i){ 007545 pIn1->u.i = pIn2->u.i; 007546 } 007547 break; 007548 } 007549 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 007550 007551 /* Opcode: IfPos P1 P2 P3 * * 007552 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 007553 ** 007554 ** Register P1 must contain an integer. 007555 ** If the value of register P1 is 1 or greater, subtract P3 from the 007556 ** value in P1 and jump to P2. 007557 ** 007558 ** If the initial value of register P1 is less than 1, then the 007559 ** value is unchanged and control passes through to the next instruction. 007560 */ 007561 case OP_IfPos: { /* jump, in1 */ 007562 pIn1 = &aMem[pOp->p1]; 007563 assert( pIn1->flags&MEM_Int ); 007564 VdbeBranchTaken( pIn1->u.i>0, 2); 007565 if( pIn1->u.i>0 ){ 007566 pIn1->u.i -= pOp->p3; 007567 goto jump_to_p2; 007568 } 007569 break; 007570 } 007571 007572 /* Opcode: OffsetLimit P1 P2 P3 * * 007573 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 007574 ** 007575 ** This opcode performs a commonly used computation associated with 007576 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] 007577 ** holds the offset counter. The opcode computes the combined value 007578 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 007579 ** value computed is the total number of rows that will need to be 007580 ** visited in order to complete the query. 007581 ** 007582 ** If r[P3] is zero or negative, that means there is no OFFSET 007583 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 007584 ** 007585 ** if r[P1] is zero or negative, that means there is no LIMIT 007586 ** and r[P2] is set to -1. 007587 ** 007588 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 007589 */ 007590 case OP_OffsetLimit: { /* in1, out2, in3 */ 007591 i64 x; 007592 pIn1 = &aMem[pOp->p1]; 007593 pIn3 = &aMem[pOp->p3]; 007594 pOut = out2Prerelease(p, pOp); 007595 assert( pIn1->flags & MEM_Int ); 007596 assert( pIn3->flags & MEM_Int ); 007597 x = pIn1->u.i; 007598 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 007599 /* If the LIMIT is less than or equal to zero, loop forever. This 007600 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 007601 ** also loop forever. This is undocumented. In fact, one could argue 007602 ** that the loop should terminate. But assuming 1 billion iterations 007603 ** per second (far exceeding the capabilities of any current hardware) 007604 ** it would take nearly 300 years to actually reach the limit. So 007605 ** looping forever is a reasonable approximation. */ 007606 pOut->u.i = -1; 007607 }else{ 007608 pOut->u.i = x; 007609 } 007610 break; 007611 } 007612 007613 /* Opcode: IfNotZero P1 P2 * * * 007614 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 007615 ** 007616 ** Register P1 must contain an integer. If the content of register P1 is 007617 ** initially greater than zero, then decrement the value in register P1. 007618 ** If it is non-zero (negative or positive) and then also jump to P2. 007619 ** If register P1 is initially zero, leave it unchanged and fall through. 007620 */ 007621 case OP_IfNotZero: { /* jump, in1 */ 007622 pIn1 = &aMem[pOp->p1]; 007623 assert( pIn1->flags&MEM_Int ); 007624 VdbeBranchTaken(pIn1->u.i<0, 2); 007625 if( pIn1->u.i ){ 007626 if( pIn1->u.i>0 ) pIn1->u.i--; 007627 goto jump_to_p2; 007628 } 007629 break; 007630 } 007631 007632 /* Opcode: DecrJumpZero P1 P2 * * * 007633 ** Synopsis: if (--r[P1])==0 goto P2 007634 ** 007635 ** Register P1 must hold an integer. Decrement the value in P1 007636 ** and jump to P2 if the new value is exactly zero. 007637 */ 007638 case OP_DecrJumpZero: { /* jump, in1 */ 007639 pIn1 = &aMem[pOp->p1]; 007640 assert( pIn1->flags&MEM_Int ); 007641 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 007642 VdbeBranchTaken(pIn1->u.i==0, 2); 007643 if( pIn1->u.i==0 ) goto jump_to_p2; 007644 break; 007645 } 007646 007647 007648 /* Opcode: AggStep * P2 P3 P4 P5 007649 ** Synopsis: accum=r[P3] step(r[P2@P5]) 007650 ** 007651 ** Execute the xStep function for an aggregate. 007652 ** The function has P5 arguments. P4 is a pointer to the 007653 ** FuncDef structure that specifies the function. Register P3 is the 007654 ** accumulator. 007655 ** 007656 ** The P5 arguments are taken from register P2 and its 007657 ** successors. 007658 */ 007659 /* Opcode: AggInverse * P2 P3 P4 P5 007660 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 007661 ** 007662 ** Execute the xInverse function for an aggregate. 007663 ** The function has P5 arguments. P4 is a pointer to the 007664 ** FuncDef structure that specifies the function. Register P3 is the 007665 ** accumulator. 007666 ** 007667 ** The P5 arguments are taken from register P2 and its 007668 ** successors. 007669 */ 007670 /* Opcode: AggStep1 P1 P2 P3 P4 P5 007671 ** Synopsis: accum=r[P3] step(r[P2@P5]) 007672 ** 007673 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 007674 ** aggregate. The function has P5 arguments. P4 is a pointer to the 007675 ** FuncDef structure that specifies the function. Register P3 is the 007676 ** accumulator. 007677 ** 007678 ** The P5 arguments are taken from register P2 and its 007679 ** successors. 007680 ** 007681 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 007682 ** the FuncDef stored in P4 is converted into an sqlite3_context and 007683 ** the opcode is changed. In this way, the initialization of the 007684 ** sqlite3_context only happens once, instead of on each call to the 007685 ** step function. 007686 */ 007687 case OP_AggInverse: 007688 case OP_AggStep: { 007689 int n; 007690 sqlite3_context *pCtx; 007691 u64 nAlloc; 007692 007693 assert( pOp->p4type==P4_FUNCDEF ); 007694 n = pOp->p5; 007695 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 007696 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 007697 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 007698 007699 /* Allocate space for (a) the context object and (n-1) extra pointers 007700 ** to append to the sqlite3_context.argv[1] array, and (b) a memory 007701 ** cell in which to store the accumulation. Be careful that the memory 007702 ** cell is 8-byte aligned, even on platforms where a pointer is 32-bits. 007703 ** 007704 ** Note: We could avoid this by using a regular memory cell from aMem[] for 007705 ** the accumulator, instead of allocating one here. */ 007706 nAlloc = ROUND8P( sizeof(pCtx[0]) + (n-1)*sizeof(sqlite3_value*) ); 007707 pCtx = sqlite3DbMallocRawNN(db, nAlloc + sizeof(Mem)); 007708 if( pCtx==0 ) goto no_mem; 007709 pCtx->pOut = (Mem*)((u8*)pCtx + nAlloc); 007710 assert( EIGHT_BYTE_ALIGNMENT(pCtx->pOut) ); 007711 007712 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 007713 pCtx->pMem = 0; 007714 pCtx->pFunc = pOp->p4.pFunc; 007715 pCtx->iOp = (int)(pOp - aOp); 007716 pCtx->pVdbe = p; 007717 pCtx->skipFlag = 0; 007718 pCtx->isError = 0; 007719 pCtx->enc = encoding; 007720 pCtx->argc = n; 007721 pOp->p4type = P4_FUNCCTX; 007722 pOp->p4.pCtx = pCtx; 007723 007724 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 007725 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 007726 007727 pOp->opcode = OP_AggStep1; 007728 /* Fall through into OP_AggStep */ 007729 /* no break */ deliberate_fall_through 007730 } 007731 case OP_AggStep1: { 007732 int i; 007733 sqlite3_context *pCtx; 007734 Mem *pMem; 007735 007736 assert( pOp->p4type==P4_FUNCCTX ); 007737 pCtx = pOp->p4.pCtx; 007738 pMem = &aMem[pOp->p3]; 007739 007740 #ifdef SQLITE_DEBUG 007741 if( pOp->p1 ){ 007742 /* This is an OP_AggInverse call. Verify that xStep has always 007743 ** been called at least once prior to any xInverse call. */ 007744 assert( pMem->uTemp==0x1122e0e3 ); 007745 }else{ 007746 /* This is an OP_AggStep call. Mark it as such. */ 007747 pMem->uTemp = 0x1122e0e3; 007748 } 007749 #endif 007750 007751 /* If this function is inside of a trigger, the register array in aMem[] 007752 ** might change from one evaluation to the next. The next block of code 007753 ** checks to see if the register array has changed, and if so it 007754 ** reinitializes the relevant parts of the sqlite3_context object */ 007755 if( pCtx->pMem != pMem ){ 007756 pCtx->pMem = pMem; 007757 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 007758 } 007759 007760 #ifdef SQLITE_DEBUG 007761 for(i=0; i<pCtx->argc; i++){ 007762 assert( memIsValid(pCtx->argv[i]) ); 007763 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 007764 } 007765 #endif 007766 007767 pMem->n++; 007768 assert( pCtx->pOut->flags==MEM_Null ); 007769 assert( pCtx->isError==0 ); 007770 assert( pCtx->skipFlag==0 ); 007771 #ifndef SQLITE_OMIT_WINDOWFUNC 007772 if( pOp->p1 ){ 007773 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 007774 }else 007775 #endif 007776 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 007777 007778 if( pCtx->isError ){ 007779 if( pCtx->isError>0 ){ 007780 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 007781 rc = pCtx->isError; 007782 } 007783 if( pCtx->skipFlag ){ 007784 assert( pOp[-1].opcode==OP_CollSeq ); 007785 i = pOp[-1].p1; 007786 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 007787 pCtx->skipFlag = 0; 007788 } 007789 sqlite3VdbeMemRelease(pCtx->pOut); 007790 pCtx->pOut->flags = MEM_Null; 007791 pCtx->isError = 0; 007792 if( rc ) goto abort_due_to_error; 007793 } 007794 assert( pCtx->pOut->flags==MEM_Null ); 007795 assert( pCtx->skipFlag==0 ); 007796 break; 007797 } 007798 007799 /* Opcode: AggFinal P1 P2 * P4 * 007800 ** Synopsis: accum=r[P1] N=P2 007801 ** 007802 ** P1 is the memory location that is the accumulator for an aggregate 007803 ** or window function. Execute the finalizer function 007804 ** for an aggregate and store the result in P1. 007805 ** 007806 ** P2 is the number of arguments that the step function takes and 007807 ** P4 is a pointer to the FuncDef for this function. The P2 007808 ** argument is not used by this opcode. It is only there to disambiguate 007809 ** functions that can take varying numbers of arguments. The 007810 ** P4 argument is only needed for the case where 007811 ** the step function was not previously called. 007812 */ 007813 /* Opcode: AggValue * P2 P3 P4 * 007814 ** Synopsis: r[P3]=value N=P2 007815 ** 007816 ** Invoke the xValue() function and store the result in register P3. 007817 ** 007818 ** P2 is the number of arguments that the step function takes and 007819 ** P4 is a pointer to the FuncDef for this function. The P2 007820 ** argument is not used by this opcode. It is only there to disambiguate 007821 ** functions that can take varying numbers of arguments. The 007822 ** P4 argument is only needed for the case where 007823 ** the step function was not previously called. 007824 */ 007825 case OP_AggValue: 007826 case OP_AggFinal: { 007827 Mem *pMem; 007828 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 007829 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 007830 pMem = &aMem[pOp->p1]; 007831 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 007832 #ifndef SQLITE_OMIT_WINDOWFUNC 007833 if( pOp->p3 ){ 007834 memAboutToChange(p, &aMem[pOp->p3]); 007835 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 007836 pMem = &aMem[pOp->p3]; 007837 }else 007838 #endif 007839 { 007840 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 007841 } 007842 007843 if( rc ){ 007844 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 007845 goto abort_due_to_error; 007846 } 007847 sqlite3VdbeChangeEncoding(pMem, encoding); 007848 UPDATE_MAX_BLOBSIZE(pMem); 007849 REGISTER_TRACE((int)(pMem-aMem), pMem); 007850 break; 007851 } 007852 007853 #ifndef SQLITE_OMIT_WAL 007854 /* Opcode: Checkpoint P1 P2 P3 * * 007855 ** 007856 ** Checkpoint database P1. This is a no-op if P1 is not currently in 007857 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 007858 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 007859 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 007860 ** WAL after the checkpoint into mem[P3+1] and the number of pages 007861 ** in the WAL that have been checkpointed after the checkpoint 007862 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 007863 ** mem[P3+2] are initialized to -1. 007864 */ 007865 case OP_Checkpoint: { 007866 int i; /* Loop counter */ 007867 int aRes[3]; /* Results */ 007868 Mem *pMem; /* Write results here */ 007869 007870 assert( p->readOnly==0 ); 007871 aRes[0] = 0; 007872 aRes[1] = aRes[2] = -1; 007873 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 007874 || pOp->p2==SQLITE_CHECKPOINT_FULL 007875 || pOp->p2==SQLITE_CHECKPOINT_RESTART 007876 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 007877 ); 007878 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 007879 if( rc ){ 007880 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 007881 rc = SQLITE_OK; 007882 aRes[0] = 1; 007883 } 007884 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 007885 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 007886 } 007887 break; 007888 }; 007889 #endif 007890 007891 #ifndef SQLITE_OMIT_PRAGMA 007892 /* Opcode: JournalMode P1 P2 P3 * * 007893 ** 007894 ** Change the journal mode of database P1 to P3. P3 must be one of the 007895 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 007896 ** modes (delete, truncate, persist, off and memory), this is a simple 007897 ** operation. No IO is required. 007898 ** 007899 ** If changing into or out of WAL mode the procedure is more complicated. 007900 ** 007901 ** Write a string containing the final journal-mode to register P2. 007902 */ 007903 case OP_JournalMode: { /* out2 */ 007904 Btree *pBt; /* Btree to change journal mode of */ 007905 Pager *pPager; /* Pager associated with pBt */ 007906 int eNew; /* New journal mode */ 007907 int eOld; /* The old journal mode */ 007908 #ifndef SQLITE_OMIT_WAL 007909 const char *zFilename; /* Name of database file for pPager */ 007910 #endif 007911 007912 pOut = out2Prerelease(p, pOp); 007913 eNew = pOp->p3; 007914 assert( eNew==PAGER_JOURNALMODE_DELETE 007915 || eNew==PAGER_JOURNALMODE_TRUNCATE 007916 || eNew==PAGER_JOURNALMODE_PERSIST 007917 || eNew==PAGER_JOURNALMODE_OFF 007918 || eNew==PAGER_JOURNALMODE_MEMORY 007919 || eNew==PAGER_JOURNALMODE_WAL 007920 || eNew==PAGER_JOURNALMODE_QUERY 007921 ); 007922 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007923 assert( p->readOnly==0 ); 007924 007925 pBt = db->aDb[pOp->p1].pBt; 007926 pPager = sqlite3BtreePager(pBt); 007927 eOld = sqlite3PagerGetJournalMode(pPager); 007928 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 007929 assert( sqlite3BtreeHoldsMutex(pBt) ); 007930 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 007931 007932 #ifndef SQLITE_OMIT_WAL 007933 zFilename = sqlite3PagerFilename(pPager, 1); 007934 007935 /* Do not allow a transition to journal_mode=WAL for a database 007936 ** in temporary storage or if the VFS does not support shared memory 007937 */ 007938 if( eNew==PAGER_JOURNALMODE_WAL 007939 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 007940 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 007941 ){ 007942 eNew = eOld; 007943 } 007944 007945 if( (eNew!=eOld) 007946 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 007947 ){ 007948 if( !db->autoCommit || db->nVdbeRead>1 ){ 007949 rc = SQLITE_ERROR; 007950 sqlite3VdbeError(p, 007951 "cannot change %s wal mode from within a transaction", 007952 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 007953 ); 007954 goto abort_due_to_error; 007955 }else{ 007956 007957 if( eOld==PAGER_JOURNALMODE_WAL ){ 007958 /* If leaving WAL mode, close the log file. If successful, the call 007959 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 007960 ** file. An EXCLUSIVE lock may still be held on the database file 007961 ** after a successful return. 007962 */ 007963 rc = sqlite3PagerCloseWal(pPager, db); 007964 if( rc==SQLITE_OK ){ 007965 sqlite3PagerSetJournalMode(pPager, eNew); 007966 } 007967 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 007968 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 007969 ** as an intermediate */ 007970 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 007971 } 007972 007973 /* Open a transaction on the database file. Regardless of the journal 007974 ** mode, this transaction always uses a rollback journal. 007975 */ 007976 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 007977 if( rc==SQLITE_OK ){ 007978 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 007979 } 007980 } 007981 } 007982 #endif /* ifndef SQLITE_OMIT_WAL */ 007983 007984 if( rc ) eNew = eOld; 007985 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 007986 007987 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 007988 pOut->z = (char *)sqlite3JournalModename(eNew); 007989 pOut->n = sqlite3Strlen30(pOut->z); 007990 pOut->enc = SQLITE_UTF8; 007991 sqlite3VdbeChangeEncoding(pOut, encoding); 007992 if( rc ) goto abort_due_to_error; 007993 break; 007994 }; 007995 #endif /* SQLITE_OMIT_PRAGMA */ 007996 007997 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 007998 /* Opcode: Vacuum P1 P2 * * * 007999 ** 008000 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 008001 ** for an attached database. The "temp" database may not be vacuumed. 008002 ** 008003 ** If P2 is not zero, then it is a register holding a string which is 008004 ** the file into which the result of vacuum should be written. When 008005 ** P2 is zero, the vacuum overwrites the original database. 008006 */ 008007 case OP_Vacuum: { 008008 assert( p->readOnly==0 ); 008009 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 008010 pOp->p2 ? &aMem[pOp->p2] : 0); 008011 if( rc ) goto abort_due_to_error; 008012 break; 008013 } 008014 #endif 008015 008016 #if !defined(SQLITE_OMIT_AUTOVACUUM) 008017 /* Opcode: IncrVacuum P1 P2 * * * 008018 ** 008019 ** Perform a single step of the incremental vacuum procedure on 008020 ** the P1 database. If the vacuum has finished, jump to instruction 008021 ** P2. Otherwise, fall through to the next instruction. 008022 */ 008023 case OP_IncrVacuum: { /* jump */ 008024 Btree *pBt; 008025 008026 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 008027 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 008028 assert( p->readOnly==0 ); 008029 pBt = db->aDb[pOp->p1].pBt; 008030 rc = sqlite3BtreeIncrVacuum(pBt); 008031 VdbeBranchTaken(rc==SQLITE_DONE,2); 008032 if( rc ){ 008033 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 008034 rc = SQLITE_OK; 008035 goto jump_to_p2; 008036 } 008037 break; 008038 } 008039 #endif 008040 008041 /* Opcode: Expire P1 P2 * * * 008042 ** 008043 ** Cause precompiled statements to expire. When an expired statement 008044 ** is executed using sqlite3_step() it will either automatically 008045 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 008046 ** or it will fail with SQLITE_SCHEMA. 008047 ** 008048 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 008049 ** then only the currently executing statement is expired. 008050 ** 008051 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 008052 ** then running SQL statements are allowed to continue to run to completion. 008053 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 008054 ** that might help the statement run faster but which does not affect the 008055 ** correctness of operation. 008056 */ 008057 case OP_Expire: { 008058 assert( pOp->p2==0 || pOp->p2==1 ); 008059 if( !pOp->p1 ){ 008060 sqlite3ExpirePreparedStatements(db, pOp->p2); 008061 }else{ 008062 p->expired = pOp->p2+1; 008063 } 008064 break; 008065 } 008066 008067 /* Opcode: CursorLock P1 * * * * 008068 ** 008069 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 008070 ** written by an other cursor. 008071 */ 008072 case OP_CursorLock: { 008073 VdbeCursor *pC; 008074 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008075 pC = p->apCsr[pOp->p1]; 008076 assert( pC!=0 ); 008077 assert( pC->eCurType==CURTYPE_BTREE ); 008078 sqlite3BtreeCursorPin(pC->uc.pCursor); 008079 break; 008080 } 008081 008082 /* Opcode: CursorUnlock P1 * * * * 008083 ** 008084 ** Unlock the btree to which cursor P1 is pointing so that it can be 008085 ** written by other cursors. 008086 */ 008087 case OP_CursorUnlock: { 008088 VdbeCursor *pC; 008089 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008090 pC = p->apCsr[pOp->p1]; 008091 assert( pC!=0 ); 008092 assert( pC->eCurType==CURTYPE_BTREE ); 008093 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 008094 break; 008095 } 008096 008097 #ifndef SQLITE_OMIT_SHARED_CACHE 008098 /* Opcode: TableLock P1 P2 P3 P4 * 008099 ** Synopsis: iDb=P1 root=P2 write=P3 008100 ** 008101 ** Obtain a lock on a particular table. This instruction is only used when 008102 ** the shared-cache feature is enabled. 008103 ** 008104 ** P1 is the index of the database in sqlite3.aDb[] of the database 008105 ** on which the lock is acquired. A readlock is obtained if P3==0 or 008106 ** a write lock if P3==1. 008107 ** 008108 ** P2 contains the root-page of the table to lock. 008109 ** 008110 ** P4 contains a pointer to the name of the table being locked. This is only 008111 ** used to generate an error message if the lock cannot be obtained. 008112 */ 008113 case OP_TableLock: { 008114 u8 isWriteLock = (u8)pOp->p3; 008115 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 008116 int p1 = pOp->p1; 008117 assert( p1>=0 && p1<db->nDb ); 008118 assert( DbMaskTest(p->btreeMask, p1) ); 008119 assert( isWriteLock==0 || isWriteLock==1 ); 008120 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 008121 if( rc ){ 008122 if( (rc&0xFF)==SQLITE_LOCKED ){ 008123 const char *z = pOp->p4.z; 008124 sqlite3VdbeError(p, "database table is locked: %s", z); 008125 } 008126 goto abort_due_to_error; 008127 } 008128 } 008129 break; 008130 } 008131 #endif /* SQLITE_OMIT_SHARED_CACHE */ 008132 008133 #ifndef SQLITE_OMIT_VIRTUALTABLE 008134 /* Opcode: VBegin * * * P4 * 008135 ** 008136 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 008137 ** xBegin method for that table. 008138 ** 008139 ** Also, whether or not P4 is set, check that this is not being called from 008140 ** within a callback to a virtual table xSync() method. If it is, the error 008141 ** code will be set to SQLITE_LOCKED. 008142 */ 008143 case OP_VBegin: { 008144 VTable *pVTab; 008145 pVTab = pOp->p4.pVtab; 008146 rc = sqlite3VtabBegin(db, pVTab); 008147 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 008148 if( rc ) goto abort_due_to_error; 008149 break; 008150 } 008151 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008152 008153 #ifndef SQLITE_OMIT_VIRTUALTABLE 008154 /* Opcode: VCreate P1 P2 * * * 008155 ** 008156 ** P2 is a register that holds the name of a virtual table in database 008157 ** P1. Call the xCreate method for that table. 008158 */ 008159 case OP_VCreate: { 008160 Mem sMem; /* For storing the record being decoded */ 008161 const char *zTab; /* Name of the virtual table */ 008162 008163 memset(&sMem, 0, sizeof(sMem)); 008164 sMem.db = db; 008165 /* Because P2 is always a static string, it is impossible for the 008166 ** sqlite3VdbeMemCopy() to fail */ 008167 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 008168 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 008169 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 008170 assert( rc==SQLITE_OK ); 008171 zTab = (const char*)sqlite3_value_text(&sMem); 008172 assert( zTab || db->mallocFailed ); 008173 if( zTab ){ 008174 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 008175 } 008176 sqlite3VdbeMemRelease(&sMem); 008177 if( rc ) goto abort_due_to_error; 008178 break; 008179 } 008180 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008181 008182 #ifndef SQLITE_OMIT_VIRTUALTABLE 008183 /* Opcode: VDestroy P1 * * P4 * 008184 ** 008185 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 008186 ** of that table. 008187 */ 008188 case OP_VDestroy: { 008189 db->nVDestroy++; 008190 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 008191 db->nVDestroy--; 008192 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 008193 if( rc ) goto abort_due_to_error; 008194 break; 008195 } 008196 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008197 008198 #ifndef SQLITE_OMIT_VIRTUALTABLE 008199 /* Opcode: VOpen P1 * * P4 * 008200 ** 008201 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008202 ** P1 is a cursor number. This opcode opens a cursor to the virtual 008203 ** table and stores that cursor in P1. 008204 */ 008205 case OP_VOpen: { /* ncycle */ 008206 VdbeCursor *pCur; 008207 sqlite3_vtab_cursor *pVCur; 008208 sqlite3_vtab *pVtab; 008209 const sqlite3_module *pModule; 008210 008211 assert( p->bIsReader ); 008212 pCur = 0; 008213 pVCur = 0; 008214 pVtab = pOp->p4.pVtab->pVtab; 008215 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 008216 rc = SQLITE_LOCKED; 008217 goto abort_due_to_error; 008218 } 008219 pModule = pVtab->pModule; 008220 rc = pModule->xOpen(pVtab, &pVCur); 008221 sqlite3VtabImportErrmsg(p, pVtab); 008222 if( rc ) goto abort_due_to_error; 008223 008224 /* Initialize sqlite3_vtab_cursor base class */ 008225 pVCur->pVtab = pVtab; 008226 008227 /* Initialize vdbe cursor object */ 008228 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 008229 if( pCur ){ 008230 pCur->uc.pVCur = pVCur; 008231 pVtab->nRef++; 008232 }else{ 008233 assert( db->mallocFailed ); 008234 pModule->xClose(pVCur); 008235 goto no_mem; 008236 } 008237 break; 008238 } 008239 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008240 008241 #ifndef SQLITE_OMIT_VIRTUALTABLE 008242 /* Opcode: VCheck P1 P2 P3 P4 * 008243 ** 008244 ** P4 is a pointer to a Table object that is a virtual table in schema P1 008245 ** that supports the xIntegrity() method. This opcode runs the xIntegrity() 008246 ** method for that virtual table, using P3 as the integer argument. If 008247 ** an error is reported back, the table name is prepended to the error 008248 ** message and that message is stored in P2. If no errors are seen, 008249 ** register P2 is set to NULL. 008250 */ 008251 case OP_VCheck: { /* out2 */ 008252 Table *pTab; 008253 sqlite3_vtab *pVtab; 008254 const sqlite3_module *pModule; 008255 char *zErr = 0; 008256 008257 pOut = &aMem[pOp->p2]; 008258 sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */ 008259 assert( pOp->p4type==P4_TABLEREF ); 008260 pTab = pOp->p4.pTab; 008261 assert( pTab!=0 ); 008262 assert( pTab->nTabRef>0 ); 008263 assert( IsVirtual(pTab) ); 008264 if( pTab->u.vtab.p==0 ) break; 008265 pVtab = pTab->u.vtab.p->pVtab; 008266 assert( pVtab!=0 ); 008267 pModule = pVtab->pModule; 008268 assert( pModule!=0 ); 008269 assert( pModule->iVersion>=4 ); 008270 assert( pModule->xIntegrity!=0 ); 008271 sqlite3VtabLock(pTab->u.vtab.p); 008272 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 008273 rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName, 008274 pOp->p3, &zErr); 008275 sqlite3VtabUnlock(pTab->u.vtab.p); 008276 if( rc ){ 008277 sqlite3_free(zErr); 008278 goto abort_due_to_error; 008279 } 008280 if( zErr ){ 008281 sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free); 008282 } 008283 break; 008284 } 008285 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008286 008287 #ifndef SQLITE_OMIT_VIRTUALTABLE 008288 /* Opcode: VInitIn P1 P2 P3 * * 008289 ** Synopsis: r[P2]=ValueList(P1,P3) 008290 ** 008291 ** Set register P2 to be a pointer to a ValueList object for cursor P1 008292 ** with cache register P3 and output register P3+1. This ValueList object 008293 ** can be used as the first argument to sqlite3_vtab_in_first() and 008294 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 008295 ** cursor. Register P3 is used to hold the values returned by 008296 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 008297 */ 008298 case OP_VInitIn: { /* out2, ncycle */ 008299 VdbeCursor *pC; /* The cursor containing the RHS values */ 008300 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 008301 008302 pC = p->apCsr[pOp->p1]; 008303 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 008304 if( pRhs==0 ) goto no_mem; 008305 pRhs->pCsr = pC->uc.pCursor; 008306 pRhs->pOut = &aMem[pOp->p3]; 008307 pOut = out2Prerelease(p, pOp); 008308 pOut->flags = MEM_Null; 008309 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree); 008310 break; 008311 } 008312 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008313 008314 008315 #ifndef SQLITE_OMIT_VIRTUALTABLE 008316 /* Opcode: VFilter P1 P2 P3 P4 * 008317 ** Synopsis: iplan=r[P3] zplan='P4' 008318 ** 008319 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 008320 ** the filtered result set is empty. 008321 ** 008322 ** P4 is either NULL or a string that was generated by the xBestIndex 008323 ** method of the module. The interpretation of the P4 string is left 008324 ** to the module implementation. 008325 ** 008326 ** This opcode invokes the xFilter method on the virtual table specified 008327 ** by P1. The integer query plan parameter to xFilter is stored in register 008328 ** P3. Register P3+1 stores the argc parameter to be passed to the 008329 ** xFilter method. Registers P3+2..P3+1+argc are the argc 008330 ** additional parameters which are passed to 008331 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 008332 ** 008333 ** A jump is made to P2 if the result set after filtering would be empty. 008334 */ 008335 case OP_VFilter: { /* jump, ncycle */ 008336 int nArg; 008337 int iQuery; 008338 const sqlite3_module *pModule; 008339 Mem *pQuery; 008340 Mem *pArgc; 008341 sqlite3_vtab_cursor *pVCur; 008342 sqlite3_vtab *pVtab; 008343 VdbeCursor *pCur; 008344 int res; 008345 int i; 008346 Mem **apArg; 008347 008348 pQuery = &aMem[pOp->p3]; 008349 pArgc = &pQuery[1]; 008350 pCur = p->apCsr[pOp->p1]; 008351 assert( memIsValid(pQuery) ); 008352 REGISTER_TRACE(pOp->p3, pQuery); 008353 assert( pCur!=0 ); 008354 assert( pCur->eCurType==CURTYPE_VTAB ); 008355 pVCur = pCur->uc.pVCur; 008356 pVtab = pVCur->pVtab; 008357 pModule = pVtab->pModule; 008358 008359 /* Grab the index number and argc parameters */ 008360 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 008361 nArg = (int)pArgc->u.i; 008362 iQuery = (int)pQuery->u.i; 008363 008364 /* Invoke the xFilter method */ 008365 apArg = p->apArg; 008366 for(i = 0; i<nArg; i++){ 008367 apArg[i] = &pArgc[i+1]; 008368 } 008369 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 008370 sqlite3VtabImportErrmsg(p, pVtab); 008371 if( rc ) goto abort_due_to_error; 008372 res = pModule->xEof(pVCur); 008373 pCur->nullRow = 0; 008374 VdbeBranchTaken(res!=0,2); 008375 if( res ) goto jump_to_p2; 008376 break; 008377 } 008378 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008379 008380 #ifndef SQLITE_OMIT_VIRTUALTABLE 008381 /* Opcode: VColumn P1 P2 P3 * P5 008382 ** Synopsis: r[P3]=vcolumn(P2) 008383 ** 008384 ** Store in register P3 the value of the P2-th column of 008385 ** the current row of the virtual-table of cursor P1. 008386 ** 008387 ** If the VColumn opcode is being used to fetch the value of 008388 ** an unchanging column during an UPDATE operation, then the P5 008389 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 008390 ** function to return true inside the xColumn method of the virtual 008391 ** table implementation. The P5 column might also contain other 008392 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 008393 ** unused by OP_VColumn. 008394 */ 008395 case OP_VColumn: { /* ncycle */ 008396 sqlite3_vtab *pVtab; 008397 const sqlite3_module *pModule; 008398 Mem *pDest; 008399 sqlite3_context sContext; 008400 FuncDef nullFunc; 008401 008402 VdbeCursor *pCur = p->apCsr[pOp->p1]; 008403 assert( pCur!=0 ); 008404 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 008405 pDest = &aMem[pOp->p3]; 008406 memAboutToChange(p, pDest); 008407 if( pCur->nullRow ){ 008408 sqlite3VdbeMemSetNull(pDest); 008409 break; 008410 } 008411 assert( pCur->eCurType==CURTYPE_VTAB ); 008412 pVtab = pCur->uc.pVCur->pVtab; 008413 pModule = pVtab->pModule; 008414 assert( pModule->xColumn ); 008415 memset(&sContext, 0, sizeof(sContext)); 008416 sContext.pOut = pDest; 008417 sContext.enc = encoding; 008418 nullFunc.pUserData = 0; 008419 nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE; 008420 sContext.pFunc = &nullFunc; 008421 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 008422 if( pOp->p5 & OPFLAG_NOCHNG ){ 008423 sqlite3VdbeMemSetNull(pDest); 008424 pDest->flags = MEM_Null|MEM_Zero; 008425 pDest->u.nZero = 0; 008426 }else{ 008427 MemSetTypeFlag(pDest, MEM_Null); 008428 } 008429 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 008430 sqlite3VtabImportErrmsg(p, pVtab); 008431 if( sContext.isError>0 ){ 008432 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 008433 rc = sContext.isError; 008434 } 008435 sqlite3VdbeChangeEncoding(pDest, encoding); 008436 REGISTER_TRACE(pOp->p3, pDest); 008437 UPDATE_MAX_BLOBSIZE(pDest); 008438 008439 if( rc ) goto abort_due_to_error; 008440 break; 008441 } 008442 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008443 008444 #ifndef SQLITE_OMIT_VIRTUALTABLE 008445 /* Opcode: VNext P1 P2 * * * 008446 ** 008447 ** Advance virtual table P1 to the next row in its result set and 008448 ** jump to instruction P2. Or, if the virtual table has reached 008449 ** the end of its result set, then fall through to the next instruction. 008450 */ 008451 case OP_VNext: { /* jump, ncycle */ 008452 sqlite3_vtab *pVtab; 008453 const sqlite3_module *pModule; 008454 int res; 008455 VdbeCursor *pCur; 008456 008457 pCur = p->apCsr[pOp->p1]; 008458 assert( pCur!=0 ); 008459 assert( pCur->eCurType==CURTYPE_VTAB ); 008460 if( pCur->nullRow ){ 008461 break; 008462 } 008463 pVtab = pCur->uc.pVCur->pVtab; 008464 pModule = pVtab->pModule; 008465 assert( pModule->xNext ); 008466 008467 /* Invoke the xNext() method of the module. There is no way for the 008468 ** underlying implementation to return an error if one occurs during 008469 ** xNext(). Instead, if an error occurs, true is returned (indicating that 008470 ** data is available) and the error code returned when xColumn or 008471 ** some other method is next invoked on the save virtual table cursor. 008472 */ 008473 rc = pModule->xNext(pCur->uc.pVCur); 008474 sqlite3VtabImportErrmsg(p, pVtab); 008475 if( rc ) goto abort_due_to_error; 008476 res = pModule->xEof(pCur->uc.pVCur); 008477 VdbeBranchTaken(!res,2); 008478 if( !res ){ 008479 /* If there is data, jump to P2 */ 008480 goto jump_to_p2_and_check_for_interrupt; 008481 } 008482 goto check_for_interrupt; 008483 } 008484 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008485 008486 #ifndef SQLITE_OMIT_VIRTUALTABLE 008487 /* Opcode: VRename P1 * * P4 * 008488 ** 008489 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008490 ** This opcode invokes the corresponding xRename method. The value 008491 ** in register P1 is passed as the zName argument to the xRename method. 008492 */ 008493 case OP_VRename: { 008494 sqlite3_vtab *pVtab; 008495 Mem *pName; 008496 int isLegacy; 008497 008498 isLegacy = (db->flags & SQLITE_LegacyAlter); 008499 db->flags |= SQLITE_LegacyAlter; 008500 pVtab = pOp->p4.pVtab->pVtab; 008501 pName = &aMem[pOp->p1]; 008502 assert( pVtab->pModule->xRename ); 008503 assert( memIsValid(pName) ); 008504 assert( p->readOnly==0 ); 008505 REGISTER_TRACE(pOp->p1, pName); 008506 assert( pName->flags & MEM_Str ); 008507 testcase( pName->enc==SQLITE_UTF8 ); 008508 testcase( pName->enc==SQLITE_UTF16BE ); 008509 testcase( pName->enc==SQLITE_UTF16LE ); 008510 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 008511 if( rc ) goto abort_due_to_error; 008512 rc = pVtab->pModule->xRename(pVtab, pName->z); 008513 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 008514 sqlite3VtabImportErrmsg(p, pVtab); 008515 p->expired = 0; 008516 if( rc ) goto abort_due_to_error; 008517 break; 008518 } 008519 #endif 008520 008521 #ifndef SQLITE_OMIT_VIRTUALTABLE 008522 /* Opcode: VUpdate P1 P2 P3 P4 P5 008523 ** Synopsis: data=r[P3@P2] 008524 ** 008525 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008526 ** This opcode invokes the corresponding xUpdate method. P2 values 008527 ** are contiguous memory cells starting at P3 to pass to the xUpdate 008528 ** invocation. The value in register (P3+P2-1) corresponds to the 008529 ** p2th element of the argv array passed to xUpdate. 008530 ** 008531 ** The xUpdate method will do a DELETE or an INSERT or both. 008532 ** The argv[0] element (which corresponds to memory cell P3) 008533 ** is the rowid of a row to delete. If argv[0] is NULL then no 008534 ** deletion occurs. The argv[1] element is the rowid of the new 008535 ** row. This can be NULL to have the virtual table select the new 008536 ** rowid for itself. The subsequent elements in the array are 008537 ** the values of columns in the new row. 008538 ** 008539 ** If P2==1 then no insert is performed. argv[0] is the rowid of 008540 ** a row to delete. 008541 ** 008542 ** P1 is a boolean flag. If it is set to true and the xUpdate call 008543 ** is successful, then the value returned by sqlite3_last_insert_rowid() 008544 ** is set to the value of the rowid for the row just inserted. 008545 ** 008546 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 008547 ** apply in the case of a constraint failure on an insert or update. 008548 */ 008549 case OP_VUpdate: { 008550 sqlite3_vtab *pVtab; 008551 const sqlite3_module *pModule; 008552 int nArg; 008553 int i; 008554 sqlite_int64 rowid = 0; 008555 Mem **apArg; 008556 Mem *pX; 008557 008558 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 008559 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 008560 ); 008561 assert( p->readOnly==0 ); 008562 if( db->mallocFailed ) goto no_mem; 008563 sqlite3VdbeIncrWriteCounter(p, 0); 008564 pVtab = pOp->p4.pVtab->pVtab; 008565 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 008566 rc = SQLITE_LOCKED; 008567 goto abort_due_to_error; 008568 } 008569 pModule = pVtab->pModule; 008570 nArg = pOp->p2; 008571 assert( pOp->p4type==P4_VTAB ); 008572 if( ALWAYS(pModule->xUpdate) ){ 008573 u8 vtabOnConflict = db->vtabOnConflict; 008574 apArg = p->apArg; 008575 pX = &aMem[pOp->p3]; 008576 for(i=0; i<nArg; i++){ 008577 assert( memIsValid(pX) ); 008578 memAboutToChange(p, pX); 008579 apArg[i] = pX; 008580 pX++; 008581 } 008582 db->vtabOnConflict = pOp->p5; 008583 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 008584 db->vtabOnConflict = vtabOnConflict; 008585 sqlite3VtabImportErrmsg(p, pVtab); 008586 if( rc==SQLITE_OK && pOp->p1 ){ 008587 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 008588 db->lastRowid = rowid; 008589 } 008590 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 008591 if( pOp->p5==OE_Ignore ){ 008592 rc = SQLITE_OK; 008593 }else{ 008594 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 008595 } 008596 }else{ 008597 p->nChange++; 008598 } 008599 if( rc ) goto abort_due_to_error; 008600 } 008601 break; 008602 } 008603 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008604 008605 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 008606 /* Opcode: Pagecount P1 P2 * * * 008607 ** 008608 ** Write the current number of pages in database P1 to memory cell P2. 008609 */ 008610 case OP_Pagecount: { /* out2 */ 008611 pOut = out2Prerelease(p, pOp); 008612 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 008613 break; 008614 } 008615 #endif 008616 008617 008618 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 008619 /* Opcode: MaxPgcnt P1 P2 P3 * * 008620 ** 008621 ** Try to set the maximum page count for database P1 to the value in P3. 008622 ** Do not let the maximum page count fall below the current page count and 008623 ** do not change the maximum page count value if P3==0. 008624 ** 008625 ** Store the maximum page count after the change in register P2. 008626 */ 008627 case OP_MaxPgcnt: { /* out2 */ 008628 unsigned int newMax; 008629 Btree *pBt; 008630 008631 pOut = out2Prerelease(p, pOp); 008632 pBt = db->aDb[pOp->p1].pBt; 008633 newMax = 0; 008634 if( pOp->p3 ){ 008635 newMax = sqlite3BtreeLastPage(pBt); 008636 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 008637 } 008638 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 008639 break; 008640 } 008641 #endif 008642 008643 /* Opcode: Function P1 P2 P3 P4 * 008644 ** Synopsis: r[P3]=func(r[P2@NP]) 008645 ** 008646 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 008647 ** contains a pointer to the function to be run) with arguments taken 008648 ** from register P2 and successors. The number of arguments is in 008649 ** the sqlite3_context object that P4 points to. 008650 ** The result of the function is stored 008651 ** in register P3. Register P3 must not be one of the function inputs. 008652 ** 008653 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 008654 ** function was determined to be constant at compile time. If the first 008655 ** argument was constant then bit 0 of P1 is set. This is used to determine 008656 ** whether meta data associated with a user function argument using the 008657 ** sqlite3_set_auxdata() API may be safely retained until the next 008658 ** invocation of this opcode. 008659 ** 008660 ** See also: AggStep, AggFinal, PureFunc 008661 */ 008662 /* Opcode: PureFunc P1 P2 P3 P4 * 008663 ** Synopsis: r[P3]=func(r[P2@NP]) 008664 ** 008665 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 008666 ** contains a pointer to the function to be run) with arguments taken 008667 ** from register P2 and successors. The number of arguments is in 008668 ** the sqlite3_context object that P4 points to. 008669 ** The result of the function is stored 008670 ** in register P3. Register P3 must not be one of the function inputs. 008671 ** 008672 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 008673 ** function was determined to be constant at compile time. If the first 008674 ** argument was constant then bit 0 of P1 is set. This is used to determine 008675 ** whether meta data associated with a user function argument using the 008676 ** sqlite3_set_auxdata() API may be safely retained until the next 008677 ** invocation of this opcode. 008678 ** 008679 ** This opcode works exactly like OP_Function. The only difference is in 008680 ** its name. This opcode is used in places where the function must be 008681 ** purely non-deterministic. Some built-in date/time functions can be 008682 ** either deterministic of non-deterministic, depending on their arguments. 008683 ** When those function are used in a non-deterministic way, they will check 008684 ** to see if they were called using OP_PureFunc instead of OP_Function, and 008685 ** if they were, they throw an error. 008686 ** 008687 ** See also: AggStep, AggFinal, Function 008688 */ 008689 case OP_PureFunc: /* group */ 008690 case OP_Function: { /* group */ 008691 int i; 008692 sqlite3_context *pCtx; 008693 008694 assert( pOp->p4type==P4_FUNCCTX ); 008695 pCtx = pOp->p4.pCtx; 008696 008697 /* If this function is inside of a trigger, the register array in aMem[] 008698 ** might change from one evaluation to the next. The next block of code 008699 ** checks to see if the register array has changed, and if so it 008700 ** reinitializes the relevant parts of the sqlite3_context object */ 008701 pOut = &aMem[pOp->p3]; 008702 if( pCtx->pOut != pOut ){ 008703 pCtx->pVdbe = p; 008704 pCtx->pOut = pOut; 008705 pCtx->enc = encoding; 008706 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 008707 } 008708 assert( pCtx->pVdbe==p ); 008709 008710 memAboutToChange(p, pOut); 008711 #ifdef SQLITE_DEBUG 008712 for(i=0; i<pCtx->argc; i++){ 008713 assert( memIsValid(pCtx->argv[i]) ); 008714 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 008715 } 008716 #endif 008717 MemSetTypeFlag(pOut, MEM_Null); 008718 assert( pCtx->isError==0 ); 008719 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 008720 008721 /* If the function returned an error, throw an exception */ 008722 if( pCtx->isError ){ 008723 if( pCtx->isError>0 ){ 008724 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 008725 rc = pCtx->isError; 008726 } 008727 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 008728 pCtx->isError = 0; 008729 if( rc ) goto abort_due_to_error; 008730 } 008731 008732 assert( (pOut->flags&MEM_Str)==0 008733 || pOut->enc==encoding 008734 || db->mallocFailed ); 008735 assert( !sqlite3VdbeMemTooBig(pOut) ); 008736 008737 REGISTER_TRACE(pOp->p3, pOut); 008738 UPDATE_MAX_BLOBSIZE(pOut); 008739 break; 008740 } 008741 008742 /* Opcode: ClrSubtype P1 * * * * 008743 ** Synopsis: r[P1].subtype = 0 008744 ** 008745 ** Clear the subtype from register P1. 008746 */ 008747 case OP_ClrSubtype: { /* in1 */ 008748 pIn1 = &aMem[pOp->p1]; 008749 pIn1->flags &= ~MEM_Subtype; 008750 break; 008751 } 008752 008753 /* Opcode: GetSubtype P1 P2 * * * 008754 ** Synopsis: r[P2] = r[P1].subtype 008755 ** 008756 ** Extract the subtype value from register P1 and write that subtype 008757 ** into register P2. If P1 has no subtype, then P1 gets a NULL. 008758 */ 008759 case OP_GetSubtype: { /* in1 out2 */ 008760 pIn1 = &aMem[pOp->p1]; 008761 pOut = &aMem[pOp->p2]; 008762 if( pIn1->flags & MEM_Subtype ){ 008763 sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype); 008764 }else{ 008765 sqlite3VdbeMemSetNull(pOut); 008766 } 008767 break; 008768 } 008769 008770 /* Opcode: SetSubtype P1 P2 * * * 008771 ** Synopsis: r[P2].subtype = r[P1] 008772 ** 008773 ** Set the subtype value of register P2 to the integer from register P1. 008774 ** If P1 is NULL, clear the subtype from p2. 008775 */ 008776 case OP_SetSubtype: { /* in1 out2 */ 008777 pIn1 = &aMem[pOp->p1]; 008778 pOut = &aMem[pOp->p2]; 008779 if( pIn1->flags & MEM_Null ){ 008780 pOut->flags &= ~MEM_Subtype; 008781 }else{ 008782 assert( pIn1->flags & MEM_Int ); 008783 pOut->flags |= MEM_Subtype; 008784 pOut->eSubtype = (u8)(pIn1->u.i & 0xff); 008785 } 008786 break; 008787 } 008788 008789 /* Opcode: FilterAdd P1 * P3 P4 * 008790 ** Synopsis: filter(P1) += key(P3@P4) 008791 ** 008792 ** Compute a hash on the P4 registers starting with r[P3] and 008793 ** add that hash to the bloom filter contained in r[P1]. 008794 */ 008795 case OP_FilterAdd: { 008796 u64 h; 008797 008798 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 008799 pIn1 = &aMem[pOp->p1]; 008800 assert( pIn1->flags & MEM_Blob ); 008801 assert( pIn1->n>0 ); 008802 h = filterHash(aMem, pOp); 008803 #ifdef SQLITE_DEBUG 008804 if( db->flags&SQLITE_VdbeTrace ){ 008805 int ii; 008806 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 008807 registerTrace(ii, &aMem[ii]); 008808 } 008809 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 008810 } 008811 #endif 008812 h %= (pIn1->n*8); 008813 pIn1->z[h/8] |= 1<<(h&7); 008814 break; 008815 } 008816 008817 /* Opcode: Filter P1 P2 P3 P4 * 008818 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 008819 ** 008820 ** Compute a hash on the key contained in the P4 registers starting 008821 ** with r[P3]. Check to see if that hash is found in the 008822 ** bloom filter hosted by register P1. If it is not present then 008823 ** maybe jump to P2. Otherwise fall through. 008824 ** 008825 ** False negatives are harmless. It is always safe to fall through, 008826 ** even if the value is in the bloom filter. A false negative causes 008827 ** more CPU cycles to be used, but it should still yield the correct 008828 ** answer. However, an incorrect answer may well arise from a 008829 ** false positive - if the jump is taken when it should fall through. 008830 */ 008831 case OP_Filter: { /* jump */ 008832 u64 h; 008833 008834 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 008835 pIn1 = &aMem[pOp->p1]; 008836 assert( (pIn1->flags & MEM_Blob)!=0 ); 008837 assert( pIn1->n >= 1 ); 008838 h = filterHash(aMem, pOp); 008839 #ifdef SQLITE_DEBUG 008840 if( db->flags&SQLITE_VdbeTrace ){ 008841 int ii; 008842 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 008843 registerTrace(ii, &aMem[ii]); 008844 } 008845 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 008846 } 008847 #endif 008848 h %= (pIn1->n*8); 008849 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 008850 VdbeBranchTaken(1, 2); 008851 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 008852 goto jump_to_p2; 008853 }else{ 008854 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 008855 VdbeBranchTaken(0, 2); 008856 } 008857 break; 008858 } 008859 008860 /* Opcode: Trace P1 P2 * P4 * 008861 ** 008862 ** Write P4 on the statement trace output if statement tracing is 008863 ** enabled. 008864 ** 008865 ** Operand P1 must be 0x7fffffff and P2 must positive. 008866 */ 008867 /* Opcode: Init P1 P2 P3 P4 * 008868 ** Synopsis: Start at P2 008869 ** 008870 ** Programs contain a single instance of this opcode as the very first 008871 ** opcode. 008872 ** 008873 ** If tracing is enabled (by the sqlite3_trace()) interface, then 008874 ** the UTF-8 string contained in P4 is emitted on the trace callback. 008875 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 008876 ** 008877 ** If P2 is not zero, jump to instruction P2. 008878 ** 008879 ** Increment the value of P1 so that OP_Once opcodes will jump the 008880 ** first time they are evaluated for this run. 008881 ** 008882 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 008883 ** error is encountered. 008884 */ 008885 case OP_Trace: 008886 case OP_Init: { /* jump0 */ 008887 int i; 008888 #ifndef SQLITE_OMIT_TRACE 008889 char *zTrace; 008890 #endif 008891 008892 /* If the P4 argument is not NULL, then it must be an SQL comment string. 008893 ** The "--" string is broken up to prevent false-positives with srcck1.c. 008894 ** 008895 ** This assert() provides evidence for: 008896 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 008897 ** would have been returned by the legacy sqlite3_trace() interface by 008898 ** using the X argument when X begins with "--" and invoking 008899 ** sqlite3_expanded_sql(P) otherwise. 008900 */ 008901 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 008902 008903 /* OP_Init is always instruction 0 */ 008904 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 008905 008906 #ifndef SQLITE_OMIT_TRACE 008907 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 008908 && p->minWriteFileFormat!=254 /* tag-20220401a */ 008909 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 008910 ){ 008911 #ifndef SQLITE_OMIT_DEPRECATED 008912 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 008913 char *z = sqlite3VdbeExpandSql(p, zTrace); 008914 db->trace.xLegacy(db->pTraceArg, z); 008915 sqlite3_free(z); 008916 }else 008917 #endif 008918 if( db->nVdbeExec>1 ){ 008919 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 008920 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 008921 sqlite3DbFree(db, z); 008922 }else{ 008923 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 008924 } 008925 } 008926 #ifdef SQLITE_USE_FCNTL_TRACE 008927 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 008928 if( zTrace ){ 008929 int j; 008930 for(j=0; j<db->nDb; j++){ 008931 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 008932 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 008933 } 008934 } 008935 #endif /* SQLITE_USE_FCNTL_TRACE */ 008936 #ifdef SQLITE_DEBUG 008937 if( (db->flags & SQLITE_SqlTrace)!=0 008938 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 008939 ){ 008940 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 008941 } 008942 #endif /* SQLITE_DEBUG */ 008943 #endif /* SQLITE_OMIT_TRACE */ 008944 assert( pOp->p2>0 ); 008945 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 008946 if( pOp->opcode==OP_Trace ) break; 008947 for(i=1; i<p->nOp; i++){ 008948 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 008949 } 008950 pOp->p1 = 0; 008951 } 008952 pOp->p1++; 008953 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 008954 goto jump_to_p2; 008955 } 008956 008957 #ifdef SQLITE_ENABLE_CURSOR_HINTS 008958 /* Opcode: CursorHint P1 * * P4 * 008959 ** 008960 ** Provide a hint to cursor P1 that it only needs to return rows that 008961 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 008962 ** to values currently held in registers. TK_COLUMN terms in the P4 008963 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 008964 */ 008965 case OP_CursorHint: { 008966 VdbeCursor *pC; 008967 008968 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008969 assert( pOp->p4type==P4_EXPR ); 008970 pC = p->apCsr[pOp->p1]; 008971 if( pC ){ 008972 assert( pC->eCurType==CURTYPE_BTREE ); 008973 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 008974 pOp->p4.pExpr, aMem); 008975 } 008976 break; 008977 } 008978 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 008979 008980 #ifdef SQLITE_DEBUG 008981 /* Opcode: Abortable * * * * * 008982 ** 008983 ** Verify that an Abort can happen. Assert if an Abort at this point 008984 ** might cause database corruption. This opcode only appears in debugging 008985 ** builds. 008986 ** 008987 ** An Abort is safe if either there have been no writes, or if there is 008988 ** an active statement journal. 008989 */ 008990 case OP_Abortable: { 008991 sqlite3VdbeAssertAbortable(p); 008992 break; 008993 } 008994 #endif 008995 008996 #ifdef SQLITE_DEBUG 008997 /* Opcode: ReleaseReg P1 P2 P3 * P5 008998 ** Synopsis: release r[P1@P2] mask P3 008999 ** 009000 ** Release registers from service. Any content that was in the 009001 ** the registers is unreliable after this opcode completes. 009002 ** 009003 ** The registers released will be the P2 registers starting at P1, 009004 ** except if bit ii of P3 set, then do not release register P1+ii. 009005 ** In other words, P3 is a mask of registers to preserve. 009006 ** 009007 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 009008 ** that if the content of the released register was set using OP_SCopy, 009009 ** a change to the value of the source register for the OP_SCopy will no longer 009010 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 009011 ** 009012 ** If P5 is set, then all released registers have their type set 009013 ** to MEM_Undefined so that any subsequent attempt to read the released 009014 ** register (before it is reinitialized) will generate an assertion fault. 009015 ** 009016 ** P5 ought to be set on every call to this opcode. 009017 ** However, there are places in the code generator will release registers 009018 ** before their are used, under the (valid) assumption that the registers 009019 ** will not be reallocated for some other purpose before they are used and 009020 ** hence are safe to release. 009021 ** 009022 ** This opcode is only available in testing and debugging builds. It is 009023 ** not generated for release builds. The purpose of this opcode is to help 009024 ** validate the generated bytecode. This opcode does not actually contribute 009025 ** to computing an answer. 009026 */ 009027 case OP_ReleaseReg: { 009028 Mem *pMem; 009029 int i; 009030 u32 constMask; 009031 assert( pOp->p1>0 ); 009032 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 009033 pMem = &aMem[pOp->p1]; 009034 constMask = pOp->p3; 009035 for(i=0; i<pOp->p2; i++, pMem++){ 009036 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 009037 pMem->pScopyFrom = 0; 009038 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 009039 } 009040 } 009041 break; 009042 } 009043 #endif 009044 009045 /* Opcode: Noop * * * * * 009046 ** 009047 ** Do nothing. Continue downward to the next opcode. 009048 */ 009049 /* Opcode: Explain P1 P2 P3 P4 * 009050 ** 009051 ** This is the same as OP_Noop during normal query execution. The 009052 ** purpose of this opcode is to hold information about the query 009053 ** plan for the purpose of EXPLAIN QUERY PLAN output. 009054 ** 009055 ** The P4 value is human-readable text that describes the query plan 009056 ** element. Something like "SCAN t1" or "SEARCH t2 USING INDEX t2x1". 009057 ** 009058 ** The P1 value is the ID of the current element and P2 is the parent 009059 ** element for the case of nested query plan elements. If P2 is zero 009060 ** then this element is a top-level element. 009061 ** 009062 ** For loop elements, P3 is the estimated code of each invocation of this 009063 ** element. 009064 ** 009065 ** As with all opcodes, the meanings of the parameters for OP_Explain 009066 ** are subject to change from one release to the next. Applications 009067 ** should not attempt to interpret or use any of the information 009068 ** contained in the OP_Explain opcode. The information provided by this 009069 ** opcode is intended for testing and debugging use only. 009070 */ 009071 default: { /* This is really OP_Noop, OP_Explain */ 009072 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 009073 009074 break; 009075 } 009076 009077 /***************************************************************************** 009078 ** The cases of the switch statement above this line should all be indented 009079 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 009080 ** readability. From this point on down, the normal indentation rules are 009081 ** restored. 009082 *****************************************************************************/ 009083 } 009084 009085 #if defined(VDBE_PROFILE) 009086 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 009087 pnCycle = 0; 009088 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 009089 if( pnCycle ){ 009090 *pnCycle += sqlite3Hwtime(); 009091 pnCycle = 0; 009092 } 009093 #endif 009094 009095 /* The following code adds nothing to the actual functionality 009096 ** of the program. It is only here for testing and debugging. 009097 ** On the other hand, it does burn CPU cycles every time through 009098 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 009099 */ 009100 #ifndef NDEBUG 009101 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 009102 009103 #ifdef SQLITE_DEBUG 009104 if( db->flags & SQLITE_VdbeTrace ){ 009105 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 009106 if( rc!=0 ) printf("rc=%d\n",rc); 009107 if( opProperty & (OPFLG_OUT2) ){ 009108 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 009109 } 009110 if( opProperty & OPFLG_OUT3 ){ 009111 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 009112 } 009113 if( opProperty==0xff ){ 009114 /* Never happens. This code exists to avoid a harmless linkage 009115 ** warning about sqlite3VdbeRegisterDump() being defined but not 009116 ** used. */ 009117 sqlite3VdbeRegisterDump(p); 009118 } 009119 } 009120 #endif /* SQLITE_DEBUG */ 009121 #endif /* NDEBUG */ 009122 } /* The end of the for(;;) loop the loops through opcodes */ 009123 009124 /* If we reach this point, it means that execution is finished with 009125 ** an error of some kind. 009126 */ 009127 abort_due_to_error: 009128 if( db->mallocFailed ){ 009129 rc = SQLITE_NOMEM_BKPT; 009130 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 009131 rc = SQLITE_CORRUPT_BKPT; 009132 } 009133 assert( rc ); 009134 #ifdef SQLITE_DEBUG 009135 if( db->flags & SQLITE_VdbeTrace ){ 009136 const char *zTrace = p->zSql; 009137 if( zTrace==0 ){ 009138 if( aOp[0].opcode==OP_Trace ){ 009139 zTrace = aOp[0].p4.z; 009140 } 009141 if( zTrace==0 ) zTrace = "???"; 009142 } 009143 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 009144 } 009145 #endif 009146 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 009147 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 009148 } 009149 p->rc = rc; 009150 sqlite3SystemError(db, rc); 009151 testcase( sqlite3GlobalConfig.xLog!=0 ); 009152 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 009153 (int)(pOp - aOp), p->zSql, p->zErrMsg); 009154 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 009155 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 009156 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 009157 db->flags |= SQLITE_CorruptRdOnly; 009158 } 009159 rc = SQLITE_ERROR; 009160 if( resetSchemaOnFault>0 ){ 009161 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 009162 } 009163 009164 /* This is the only way out of this procedure. We have to 009165 ** release the mutexes on btrees that were acquired at the 009166 ** top. */ 009167 vdbe_return: 009168 #if defined(VDBE_PROFILE) 009169 if( pnCycle ){ 009170 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 009171 pnCycle = 0; 009172 } 009173 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 009174 if( pnCycle ){ 009175 *pnCycle += sqlite3Hwtime(); 009176 pnCycle = 0; 009177 } 009178 #endif 009179 009180 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 009181 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 009182 nProgressLimit += db->nProgressOps; 009183 if( db->xProgress(db->pProgressArg) ){ 009184 nProgressLimit = LARGEST_UINT64; 009185 rc = SQLITE_INTERRUPT; 009186 goto abort_due_to_error; 009187 } 009188 } 009189 #endif 009190 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 009191 if( DbMaskNonZero(p->lockMask) ){ 009192 sqlite3VdbeLeave(p); 009193 } 009194 assert( rc!=SQLITE_OK || nExtraDelete==0 009195 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 009196 ); 009197 return rc; 009198 009199 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 009200 ** is encountered. 009201 */ 009202 too_big: 009203 sqlite3VdbeError(p, "string or blob too big"); 009204 rc = SQLITE_TOOBIG; 009205 goto abort_due_to_error; 009206 009207 /* Jump to here if a malloc() fails. 009208 */ 009209 no_mem: 009210 sqlite3OomFault(db); 009211 sqlite3VdbeError(p, "out of memory"); 009212 rc = SQLITE_NOMEM_BKPT; 009213 goto abort_due_to_error; 009214 009215 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 009216 ** flag. 009217 */ 009218 abort_due_to_interrupt: 009219 assert( AtomicLoad(&db->u1.isInterrupted) ); 009220 rc = SQLITE_INTERRUPT; 009221 goto abort_due_to_error; 009222 }