000001 /* 000002 ** 2004 May 26 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains code use to implement APIs that are part of the 000014 ** VDBE. 000015 */ 000016 #include "sqliteInt.h" 000017 #include "vdbeInt.h" 000018 #include "opcodes.h" 000019 000020 #ifndef SQLITE_OMIT_DEPRECATED 000021 /* 000022 ** Return TRUE (non-zero) of the statement supplied as an argument needs 000023 ** to be recompiled. A statement needs to be recompiled whenever the 000024 ** execution environment changes in a way that would alter the program 000025 ** that sqlite3_prepare() generates. For example, if new functions or 000026 ** collating sequences are registered or if an authorizer function is 000027 ** added or changed. 000028 */ 000029 int sqlite3_expired(sqlite3_stmt *pStmt){ 000030 Vdbe *p = (Vdbe*)pStmt; 000031 return p==0 || p->expired; 000032 } 000033 #endif 000034 000035 /* 000036 ** Check on a Vdbe to make sure it has not been finalized. Log 000037 ** an error and return true if it has been finalized (or is otherwise 000038 ** invalid). Return false if it is ok. 000039 */ 000040 static int vdbeSafety(Vdbe *p){ 000041 if( p->db==0 ){ 000042 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 000043 return 1; 000044 }else{ 000045 return 0; 000046 } 000047 } 000048 static int vdbeSafetyNotNull(Vdbe *p){ 000049 if( p==0 ){ 000050 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 000051 return 1; 000052 }else{ 000053 return vdbeSafety(p); 000054 } 000055 } 000056 000057 #ifndef SQLITE_OMIT_TRACE 000058 /* 000059 ** Invoke the profile callback. This routine is only called if we already 000060 ** know that the profile callback is defined and needs to be invoked. 000061 */ 000062 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 000063 sqlite3_int64 iNow; 000064 sqlite3_int64 iElapse; 000065 assert( p->startTime>0 ); 000066 assert( db->init.busy==0 ); 000067 assert( p->zSql!=0 ); 000068 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 000069 iElapse = (iNow - p->startTime)*1000000; 000070 #ifndef SQLITE_OMIT_DEPRECATED 000071 if( db->xProfile ){ 000072 db->xProfile(db->pProfileArg, p->zSql, iElapse); 000073 } 000074 #endif 000075 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 000076 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 000077 } 000078 p->startTime = 0; 000079 } 000080 /* 000081 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 000082 ** is needed, and it invokes the callback if it is needed. 000083 */ 000084 # define checkProfileCallback(DB,P) \ 000085 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 000086 #else 000087 # define checkProfileCallback(DB,P) /*no-op*/ 000088 #endif 000089 000090 /* 000091 ** The following routine destroys a virtual machine that is created by 000092 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 000093 ** success/failure code that describes the result of executing the virtual 000094 ** machine. 000095 ** 000096 ** This routine sets the error code and string returned by 000097 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 000098 */ 000099 int sqlite3_finalize(sqlite3_stmt *pStmt){ 000100 int rc; 000101 if( pStmt==0 ){ 000102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 000103 ** pointer is a harmless no-op. */ 000104 rc = SQLITE_OK; 000105 }else{ 000106 Vdbe *v = (Vdbe*)pStmt; 000107 sqlite3 *db = v->db; 000108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 000109 sqlite3_mutex_enter(db->mutex); 000110 checkProfileCallback(db, v); 000111 assert( v->eVdbeState>=VDBE_READY_STATE ); 000112 rc = sqlite3VdbeReset(v); 000113 sqlite3VdbeDelete(v); 000114 rc = sqlite3ApiExit(db, rc); 000115 sqlite3LeaveMutexAndCloseZombie(db); 000116 } 000117 return rc; 000118 } 000119 000120 /* 000121 ** Terminate the current execution of an SQL statement and reset it 000122 ** back to its starting state so that it can be reused. A success code from 000123 ** the prior execution is returned. 000124 ** 000125 ** This routine sets the error code and string returned by 000126 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 000127 */ 000128 int sqlite3_reset(sqlite3_stmt *pStmt){ 000129 int rc; 000130 if( pStmt==0 ){ 000131 rc = SQLITE_OK; 000132 }else{ 000133 Vdbe *v = (Vdbe*)pStmt; 000134 sqlite3 *db = v->db; 000135 sqlite3_mutex_enter(db->mutex); 000136 checkProfileCallback(db, v); 000137 rc = sqlite3VdbeReset(v); 000138 sqlite3VdbeRewind(v); 000139 assert( (rc & (db->errMask))==rc ); 000140 rc = sqlite3ApiExit(db, rc); 000141 sqlite3_mutex_leave(db->mutex); 000142 } 000143 return rc; 000144 } 000145 000146 /* 000147 ** Set all the parameters in the compiled SQL statement to NULL. 000148 */ 000149 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 000150 int i; 000151 int rc = SQLITE_OK; 000152 Vdbe *p = (Vdbe*)pStmt; 000153 #if SQLITE_THREADSAFE 000154 sqlite3_mutex *mutex; 000155 #endif 000156 #ifdef SQLITE_ENABLE_API_ARMOR 000157 if( pStmt==0 ){ 000158 return SQLITE_MISUSE_BKPT; 000159 } 000160 #endif 000161 #if SQLITE_THREADSAFE 000162 mutex = p->db->mutex; 000163 #endif 000164 sqlite3_mutex_enter(mutex); 000165 for(i=0; i<p->nVar; i++){ 000166 sqlite3VdbeMemRelease(&p->aVar[i]); 000167 p->aVar[i].flags = MEM_Null; 000168 } 000169 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 000170 if( p->expmask ){ 000171 p->expired = 1; 000172 } 000173 sqlite3_mutex_leave(mutex); 000174 return rc; 000175 } 000176 000177 000178 /**************************** sqlite3_value_ ******************************* 000179 ** The following routines extract information from a Mem or sqlite3_value 000180 ** structure. 000181 */ 000182 const void *sqlite3_value_blob(sqlite3_value *pVal){ 000183 Mem *p = (Mem*)pVal; 000184 if( p->flags & (MEM_Blob|MEM_Str) ){ 000185 if( ExpandBlob(p)!=SQLITE_OK ){ 000186 assert( p->flags==MEM_Null && p->z==0 ); 000187 return 0; 000188 } 000189 p->flags |= MEM_Blob; 000190 return p->n ? p->z : 0; 000191 }else{ 000192 return sqlite3_value_text(pVal); 000193 } 000194 } 000195 int sqlite3_value_bytes(sqlite3_value *pVal){ 000196 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 000197 } 000198 int sqlite3_value_bytes16(sqlite3_value *pVal){ 000199 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 000200 } 000201 double sqlite3_value_double(sqlite3_value *pVal){ 000202 return sqlite3VdbeRealValue((Mem*)pVal); 000203 } 000204 int sqlite3_value_int(sqlite3_value *pVal){ 000205 return (int)sqlite3VdbeIntValue((Mem*)pVal); 000206 } 000207 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 000208 return sqlite3VdbeIntValue((Mem*)pVal); 000209 } 000210 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 000211 Mem *pMem = (Mem*)pVal; 000212 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 000213 } 000214 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 000215 Mem *p = (Mem*)pVal; 000216 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 000217 (MEM_Null|MEM_Term|MEM_Subtype) 000218 && zPType!=0 000219 && p->eSubtype=='p' 000220 && strcmp(p->u.zPType, zPType)==0 000221 ){ 000222 return (void*)p->z; 000223 }else{ 000224 return 0; 000225 } 000226 } 000227 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 000228 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 000229 } 000230 #ifndef SQLITE_OMIT_UTF16 000231 const void *sqlite3_value_text16(sqlite3_value* pVal){ 000232 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 000233 } 000234 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 000235 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 000236 } 000237 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 000238 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 000239 } 000240 #endif /* SQLITE_OMIT_UTF16 */ 000241 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 000242 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 000243 ** point number string BLOB NULL 000244 */ 000245 int sqlite3_value_type(sqlite3_value* pVal){ 000246 static const u8 aType[] = { 000247 SQLITE_BLOB, /* 0x00 (not possible) */ 000248 SQLITE_NULL, /* 0x01 NULL */ 000249 SQLITE_TEXT, /* 0x02 TEXT */ 000250 SQLITE_NULL, /* 0x03 (not possible) */ 000251 SQLITE_INTEGER, /* 0x04 INTEGER */ 000252 SQLITE_NULL, /* 0x05 (not possible) */ 000253 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 000254 SQLITE_NULL, /* 0x07 (not possible) */ 000255 SQLITE_FLOAT, /* 0x08 FLOAT */ 000256 SQLITE_NULL, /* 0x09 (not possible) */ 000257 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 000258 SQLITE_NULL, /* 0x0b (not possible) */ 000259 SQLITE_INTEGER, /* 0x0c (not possible) */ 000260 SQLITE_NULL, /* 0x0d (not possible) */ 000261 SQLITE_INTEGER, /* 0x0e (not possible) */ 000262 SQLITE_NULL, /* 0x0f (not possible) */ 000263 SQLITE_BLOB, /* 0x10 BLOB */ 000264 SQLITE_NULL, /* 0x11 (not possible) */ 000265 SQLITE_TEXT, /* 0x12 (not possible) */ 000266 SQLITE_NULL, /* 0x13 (not possible) */ 000267 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 000268 SQLITE_NULL, /* 0x15 (not possible) */ 000269 SQLITE_INTEGER, /* 0x16 (not possible) */ 000270 SQLITE_NULL, /* 0x17 (not possible) */ 000271 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 000272 SQLITE_NULL, /* 0x19 (not possible) */ 000273 SQLITE_FLOAT, /* 0x1a (not possible) */ 000274 SQLITE_NULL, /* 0x1b (not possible) */ 000275 SQLITE_INTEGER, /* 0x1c (not possible) */ 000276 SQLITE_NULL, /* 0x1d (not possible) */ 000277 SQLITE_INTEGER, /* 0x1e (not possible) */ 000278 SQLITE_NULL, /* 0x1f (not possible) */ 000279 SQLITE_FLOAT, /* 0x20 INTREAL */ 000280 SQLITE_NULL, /* 0x21 (not possible) */ 000281 SQLITE_FLOAT, /* 0x22 INTREAL + TEXT */ 000282 SQLITE_NULL, /* 0x23 (not possible) */ 000283 SQLITE_FLOAT, /* 0x24 (not possible) */ 000284 SQLITE_NULL, /* 0x25 (not possible) */ 000285 SQLITE_FLOAT, /* 0x26 (not possible) */ 000286 SQLITE_NULL, /* 0x27 (not possible) */ 000287 SQLITE_FLOAT, /* 0x28 (not possible) */ 000288 SQLITE_NULL, /* 0x29 (not possible) */ 000289 SQLITE_FLOAT, /* 0x2a (not possible) */ 000290 SQLITE_NULL, /* 0x2b (not possible) */ 000291 SQLITE_FLOAT, /* 0x2c (not possible) */ 000292 SQLITE_NULL, /* 0x2d (not possible) */ 000293 SQLITE_FLOAT, /* 0x2e (not possible) */ 000294 SQLITE_NULL, /* 0x2f (not possible) */ 000295 SQLITE_BLOB, /* 0x30 (not possible) */ 000296 SQLITE_NULL, /* 0x31 (not possible) */ 000297 SQLITE_TEXT, /* 0x32 (not possible) */ 000298 SQLITE_NULL, /* 0x33 (not possible) */ 000299 SQLITE_FLOAT, /* 0x34 (not possible) */ 000300 SQLITE_NULL, /* 0x35 (not possible) */ 000301 SQLITE_FLOAT, /* 0x36 (not possible) */ 000302 SQLITE_NULL, /* 0x37 (not possible) */ 000303 SQLITE_FLOAT, /* 0x38 (not possible) */ 000304 SQLITE_NULL, /* 0x39 (not possible) */ 000305 SQLITE_FLOAT, /* 0x3a (not possible) */ 000306 SQLITE_NULL, /* 0x3b (not possible) */ 000307 SQLITE_FLOAT, /* 0x3c (not possible) */ 000308 SQLITE_NULL, /* 0x3d (not possible) */ 000309 SQLITE_FLOAT, /* 0x3e (not possible) */ 000310 SQLITE_NULL, /* 0x3f (not possible) */ 000311 }; 000312 #ifdef SQLITE_DEBUG 000313 { 000314 int eType = SQLITE_BLOB; 000315 if( pVal->flags & MEM_Null ){ 000316 eType = SQLITE_NULL; 000317 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 000318 eType = SQLITE_FLOAT; 000319 }else if( pVal->flags & MEM_Int ){ 000320 eType = SQLITE_INTEGER; 000321 }else if( pVal->flags & MEM_Str ){ 000322 eType = SQLITE_TEXT; 000323 } 000324 assert( eType == aType[pVal->flags&MEM_AffMask] ); 000325 } 000326 #endif 000327 return aType[pVal->flags&MEM_AffMask]; 000328 } 000329 int sqlite3_value_encoding(sqlite3_value *pVal){ 000330 return pVal->enc; 000331 } 000332 000333 /* Return true if a parameter to xUpdate represents an unchanged column */ 000334 int sqlite3_value_nochange(sqlite3_value *pVal){ 000335 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 000336 } 000337 000338 /* Return true if a parameter value originated from an sqlite3_bind() */ 000339 int sqlite3_value_frombind(sqlite3_value *pVal){ 000340 return (pVal->flags&MEM_FromBind)!=0; 000341 } 000342 000343 /* Make a copy of an sqlite3_value object 000344 */ 000345 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 000346 sqlite3_value *pNew; 000347 if( pOrig==0 ) return 0; 000348 pNew = sqlite3_malloc( sizeof(*pNew) ); 000349 if( pNew==0 ) return 0; 000350 memset(pNew, 0, sizeof(*pNew)); 000351 memcpy(pNew, pOrig, MEMCELLSIZE); 000352 pNew->flags &= ~MEM_Dyn; 000353 pNew->db = 0; 000354 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 000355 pNew->flags &= ~(MEM_Static|MEM_Dyn); 000356 pNew->flags |= MEM_Ephem; 000357 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 000358 sqlite3ValueFree(pNew); 000359 pNew = 0; 000360 } 000361 }else if( pNew->flags & MEM_Null ){ 000362 /* Do not duplicate pointer values */ 000363 pNew->flags &= ~(MEM_Term|MEM_Subtype); 000364 } 000365 return pNew; 000366 } 000367 000368 /* Destroy an sqlite3_value object previously obtained from 000369 ** sqlite3_value_dup(). 000370 */ 000371 void sqlite3_value_free(sqlite3_value *pOld){ 000372 sqlite3ValueFree(pOld); 000373 } 000374 000375 000376 /**************************** sqlite3_result_ ******************************* 000377 ** The following routines are used by user-defined functions to specify 000378 ** the function result. 000379 ** 000380 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 000381 ** result as a string or blob. Appropriate errors are set if the string/blob 000382 ** is too big or if an OOM occurs. 000383 ** 000384 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 000385 ** on value P if P is not going to be used and need to be destroyed. 000386 */ 000387 static void setResultStrOrError( 000388 sqlite3_context *pCtx, /* Function context */ 000389 const char *z, /* String pointer */ 000390 int n, /* Bytes in string, or negative */ 000391 u8 enc, /* Encoding of z. 0 for BLOBs */ 000392 void (*xDel)(void*) /* Destructor function */ 000393 ){ 000394 Mem *pOut = pCtx->pOut; 000395 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 000396 if( rc ){ 000397 if( rc==SQLITE_TOOBIG ){ 000398 sqlite3_result_error_toobig(pCtx); 000399 }else{ 000400 /* The only errors possible from sqlite3VdbeMemSetStr are 000401 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 000402 assert( rc==SQLITE_NOMEM ); 000403 sqlite3_result_error_nomem(pCtx); 000404 } 000405 return; 000406 } 000407 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 000408 if( sqlite3VdbeMemTooBig(pOut) ){ 000409 sqlite3_result_error_toobig(pCtx); 000410 } 000411 } 000412 static int invokeValueDestructor( 000413 const void *p, /* Value to destroy */ 000414 void (*xDel)(void*), /* The destructor */ 000415 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if not NULL */ 000416 ){ 000417 assert( xDel!=SQLITE_DYNAMIC ); 000418 if( xDel==0 ){ 000419 /* noop */ 000420 }else if( xDel==SQLITE_TRANSIENT ){ 000421 /* noop */ 000422 }else{ 000423 xDel((void*)p); 000424 } 000425 #ifdef SQLITE_ENABLE_API_ARMOR 000426 if( pCtx!=0 ){ 000427 sqlite3_result_error_toobig(pCtx); 000428 } 000429 #else 000430 assert( pCtx!=0 ); 000431 sqlite3_result_error_toobig(pCtx); 000432 #endif 000433 return SQLITE_TOOBIG; 000434 } 000435 void sqlite3_result_blob( 000436 sqlite3_context *pCtx, 000437 const void *z, 000438 int n, 000439 void (*xDel)(void *) 000440 ){ 000441 #ifdef SQLITE_ENABLE_API_ARMOR 000442 if( pCtx==0 || n<0 ){ 000443 invokeValueDestructor(z, xDel, pCtx); 000444 return; 000445 } 000446 #endif 000447 assert( n>=0 ); 000448 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000449 setResultStrOrError(pCtx, z, n, 0, xDel); 000450 } 000451 void sqlite3_result_blob64( 000452 sqlite3_context *pCtx, 000453 const void *z, 000454 sqlite3_uint64 n, 000455 void (*xDel)(void *) 000456 ){ 000457 assert( xDel!=SQLITE_DYNAMIC ); 000458 #ifdef SQLITE_ENABLE_API_ARMOR 000459 if( pCtx==0 ){ 000460 invokeValueDestructor(z, xDel, 0); 000461 return; 000462 } 000463 #endif 000464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000465 if( n>0x7fffffff ){ 000466 (void)invokeValueDestructor(z, xDel, pCtx); 000467 }else{ 000468 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 000469 } 000470 } 000471 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 000472 #ifdef SQLITE_ENABLE_API_ARMOR 000473 if( pCtx==0 ) return; 000474 #endif 000475 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000476 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 000477 } 000478 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 000479 #ifdef SQLITE_ENABLE_API_ARMOR 000480 if( pCtx==0 ) return; 000481 #endif 000482 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000483 pCtx->isError = SQLITE_ERROR; 000484 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 000485 } 000486 #ifndef SQLITE_OMIT_UTF16 000487 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 000488 #ifdef SQLITE_ENABLE_API_ARMOR 000489 if( pCtx==0 ) return; 000490 #endif 000491 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000492 pCtx->isError = SQLITE_ERROR; 000493 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 000494 } 000495 #endif 000496 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 000497 #ifdef SQLITE_ENABLE_API_ARMOR 000498 if( pCtx==0 ) return; 000499 #endif 000500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000501 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 000502 } 000503 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 000504 #ifdef SQLITE_ENABLE_API_ARMOR 000505 if( pCtx==0 ) return; 000506 #endif 000507 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000508 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 000509 } 000510 void sqlite3_result_null(sqlite3_context *pCtx){ 000511 #ifdef SQLITE_ENABLE_API_ARMOR 000512 if( pCtx==0 ) return; 000513 #endif 000514 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000515 sqlite3VdbeMemSetNull(pCtx->pOut); 000516 } 000517 void sqlite3_result_pointer( 000518 sqlite3_context *pCtx, 000519 void *pPtr, 000520 const char *zPType, 000521 void (*xDestructor)(void*) 000522 ){ 000523 Mem *pOut; 000524 #ifdef SQLITE_ENABLE_API_ARMOR 000525 if( pCtx==0 ){ 000526 invokeValueDestructor(pPtr, xDestructor, 0); 000527 return; 000528 } 000529 #endif 000530 pOut = pCtx->pOut; 000531 assert( sqlite3_mutex_held(pOut->db->mutex) ); 000532 sqlite3VdbeMemRelease(pOut); 000533 pOut->flags = MEM_Null; 000534 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 000535 } 000536 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 000537 Mem *pOut; 000538 #ifdef SQLITE_ENABLE_API_ARMOR 000539 if( pCtx==0 ) return; 000540 #endif 000541 #if defined(SQLITE_STRICT_SUBTYPE) && SQLITE_STRICT_SUBTYPE+0!=0 000542 if( pCtx->pFunc!=0 000543 && (pCtx->pFunc->funcFlags & SQLITE_RESULT_SUBTYPE)==0 000544 ){ 000545 char zErr[200]; 000546 sqlite3_snprintf(sizeof(zErr), zErr, 000547 "misuse of sqlite3_result_subtype() by %s()", 000548 pCtx->pFunc->zName); 000549 sqlite3_result_error(pCtx, zErr, -1); 000550 return; 000551 } 000552 #endif /* SQLITE_STRICT_SUBTYPE */ 000553 pOut = pCtx->pOut; 000554 assert( sqlite3_mutex_held(pOut->db->mutex) ); 000555 pOut->eSubtype = eSubtype & 0xff; 000556 pOut->flags |= MEM_Subtype; 000557 } 000558 void sqlite3_result_text( 000559 sqlite3_context *pCtx, 000560 const char *z, 000561 int n, 000562 void (*xDel)(void *) 000563 ){ 000564 #ifdef SQLITE_ENABLE_API_ARMOR 000565 if( pCtx==0 ){ 000566 invokeValueDestructor(z, xDel, 0); 000567 return; 000568 } 000569 #endif 000570 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000571 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 000572 } 000573 void sqlite3_result_text64( 000574 sqlite3_context *pCtx, 000575 const char *z, 000576 sqlite3_uint64 n, 000577 void (*xDel)(void *), 000578 unsigned char enc 000579 ){ 000580 #ifdef SQLITE_ENABLE_API_ARMOR 000581 if( pCtx==0 ){ 000582 invokeValueDestructor(z, xDel, 0); 000583 return; 000584 } 000585 #endif 000586 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000587 assert( xDel!=SQLITE_DYNAMIC ); 000588 if( enc!=SQLITE_UTF8 ){ 000589 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 000590 n &= ~(u64)1; 000591 } 000592 if( n>0x7fffffff ){ 000593 (void)invokeValueDestructor(z, xDel, pCtx); 000594 }else{ 000595 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 000596 sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut); 000597 } 000598 } 000599 #ifndef SQLITE_OMIT_UTF16 000600 void sqlite3_result_text16( 000601 sqlite3_context *pCtx, 000602 const void *z, 000603 int n, 000604 void (*xDel)(void *) 000605 ){ 000606 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000607 setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16NATIVE, xDel); 000608 } 000609 void sqlite3_result_text16be( 000610 sqlite3_context *pCtx, 000611 const void *z, 000612 int n, 000613 void (*xDel)(void *) 000614 ){ 000615 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000616 setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16BE, xDel); 000617 } 000618 void sqlite3_result_text16le( 000619 sqlite3_context *pCtx, 000620 const void *z, 000621 int n, 000622 void (*xDel)(void *) 000623 ){ 000624 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000625 setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16LE, xDel); 000626 } 000627 #endif /* SQLITE_OMIT_UTF16 */ 000628 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 000629 Mem *pOut; 000630 000631 #ifdef SQLITE_ENABLE_API_ARMOR 000632 if( pCtx==0 ) return; 000633 if( pValue==0 ){ 000634 sqlite3_result_null(pCtx); 000635 return; 000636 } 000637 #endif 000638 pOut = pCtx->pOut; 000639 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000640 sqlite3VdbeMemCopy(pOut, pValue); 000641 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 000642 if( sqlite3VdbeMemTooBig(pOut) ){ 000643 sqlite3_result_error_toobig(pCtx); 000644 } 000645 } 000646 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 000647 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 000648 } 000649 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 000650 Mem *pOut; 000651 000652 #ifdef SQLITE_ENABLE_API_ARMOR 000653 if( pCtx==0 ) return SQLITE_MISUSE_BKPT; 000654 #endif 000655 pOut = pCtx->pOut; 000656 assert( sqlite3_mutex_held(pOut->db->mutex) ); 000657 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 000658 sqlite3_result_error_toobig(pCtx); 000659 return SQLITE_TOOBIG; 000660 } 000661 #ifndef SQLITE_OMIT_INCRBLOB 000662 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 000663 return SQLITE_OK; 000664 #else 000665 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 000666 #endif 000667 } 000668 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 000669 #ifdef SQLITE_ENABLE_API_ARMOR 000670 if( pCtx==0 ) return; 000671 #endif 000672 pCtx->isError = errCode ? errCode : -1; 000673 #ifdef SQLITE_DEBUG 000674 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 000675 #endif 000676 if( pCtx->pOut->flags & MEM_Null ){ 000677 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 000678 SQLITE_STATIC); 000679 } 000680 } 000681 000682 /* Force an SQLITE_TOOBIG error. */ 000683 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 000684 #ifdef SQLITE_ENABLE_API_ARMOR 000685 if( pCtx==0 ) return; 000686 #endif 000687 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000688 pCtx->isError = SQLITE_TOOBIG; 000689 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 000690 SQLITE_UTF8, SQLITE_STATIC); 000691 } 000692 000693 /* An SQLITE_NOMEM error. */ 000694 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 000695 #ifdef SQLITE_ENABLE_API_ARMOR 000696 if( pCtx==0 ) return; 000697 #endif 000698 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000699 sqlite3VdbeMemSetNull(pCtx->pOut); 000700 pCtx->isError = SQLITE_NOMEM_BKPT; 000701 sqlite3OomFault(pCtx->pOut->db); 000702 } 000703 000704 #ifndef SQLITE_UNTESTABLE 000705 /* Force the INT64 value currently stored as the result to be 000706 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 000707 ** test-control. 000708 */ 000709 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 000710 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000711 if( pCtx->pOut->flags & MEM_Int ){ 000712 pCtx->pOut->flags &= ~MEM_Int; 000713 pCtx->pOut->flags |= MEM_IntReal; 000714 } 000715 } 000716 #endif 000717 000718 000719 /* 000720 ** This function is called after a transaction has been committed. It 000721 ** invokes callbacks registered with sqlite3_wal_hook() as required. 000722 */ 000723 static int doWalCallbacks(sqlite3 *db){ 000724 int rc = SQLITE_OK; 000725 #ifndef SQLITE_OMIT_WAL 000726 int i; 000727 for(i=0; i<db->nDb; i++){ 000728 Btree *pBt = db->aDb[i].pBt; 000729 if( pBt ){ 000730 int nEntry; 000731 sqlite3BtreeEnter(pBt); 000732 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 000733 sqlite3BtreeLeave(pBt); 000734 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 000735 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 000736 } 000737 } 000738 } 000739 #endif 000740 return rc; 000741 } 000742 000743 000744 /* 000745 ** Execute the statement pStmt, either until a row of data is ready, the 000746 ** statement is completely executed or an error occurs. 000747 ** 000748 ** This routine implements the bulk of the logic behind the sqlite_step() 000749 ** API. The only thing omitted is the automatic recompile if a 000750 ** schema change has occurred. That detail is handled by the 000751 ** outer sqlite3_step() wrapper procedure. 000752 */ 000753 static int sqlite3Step(Vdbe *p){ 000754 sqlite3 *db; 000755 int rc; 000756 000757 assert(p); 000758 db = p->db; 000759 if( p->eVdbeState!=VDBE_RUN_STATE ){ 000760 restart_step: 000761 if( p->eVdbeState==VDBE_READY_STATE ){ 000762 if( p->expired ){ 000763 p->rc = SQLITE_SCHEMA; 000764 rc = SQLITE_ERROR; 000765 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 000766 /* If this statement was prepared using saved SQL and an 000767 ** error has occurred, then return the error code in p->rc to the 000768 ** caller. Set the error code in the database handle to the same 000769 ** value. 000770 */ 000771 rc = sqlite3VdbeTransferError(p); 000772 } 000773 goto end_of_step; 000774 } 000775 000776 /* If there are no other statements currently running, then 000777 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 000778 ** from interrupting a statement that has not yet started. 000779 */ 000780 if( db->nVdbeActive==0 ){ 000781 AtomicStore(&db->u1.isInterrupted, 0); 000782 } 000783 000784 assert( db->nVdbeWrite>0 || db->autoCommit==0 000785 || ((db->nDeferredCons + db->nDeferredImmCons)==0) 000786 ); 000787 000788 #ifndef SQLITE_OMIT_TRACE 000789 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 000790 && !db->init.busy && p->zSql ){ 000791 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 000792 }else{ 000793 assert( p->startTime==0 ); 000794 } 000795 #endif 000796 000797 db->nVdbeActive++; 000798 if( p->readOnly==0 ) db->nVdbeWrite++; 000799 if( p->bIsReader ) db->nVdbeRead++; 000800 p->pc = 0; 000801 p->eVdbeState = VDBE_RUN_STATE; 000802 }else 000803 000804 if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){ 000805 /* We used to require that sqlite3_reset() be called before retrying 000806 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 000807 ** with version 3.7.0, we changed this so that sqlite3_reset() would 000808 ** be called automatically instead of throwing the SQLITE_MISUSE error. 000809 ** This "automatic-reset" change is not technically an incompatibility, 000810 ** since any application that receives an SQLITE_MISUSE is broken by 000811 ** definition. 000812 ** 000813 ** Nevertheless, some published applications that were originally written 000814 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 000815 ** returns, and those were broken by the automatic-reset change. As a 000816 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 000817 ** legacy behavior of returning SQLITE_MISUSE for cases where the 000818 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 000819 ** or SQLITE_BUSY error. 000820 */ 000821 #ifdef SQLITE_OMIT_AUTORESET 000822 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 000823 sqlite3_reset((sqlite3_stmt*)p); 000824 }else{ 000825 return SQLITE_MISUSE_BKPT; 000826 } 000827 #else 000828 sqlite3_reset((sqlite3_stmt*)p); 000829 #endif 000830 assert( p->eVdbeState==VDBE_READY_STATE ); 000831 goto restart_step; 000832 } 000833 } 000834 000835 #ifdef SQLITE_DEBUG 000836 p->rcApp = SQLITE_OK; 000837 #endif 000838 #ifndef SQLITE_OMIT_EXPLAIN 000839 if( p->explain ){ 000840 rc = sqlite3VdbeList(p); 000841 }else 000842 #endif /* SQLITE_OMIT_EXPLAIN */ 000843 { 000844 db->nVdbeExec++; 000845 rc = sqlite3VdbeExec(p); 000846 db->nVdbeExec--; 000847 } 000848 000849 if( rc==SQLITE_ROW ){ 000850 assert( p->rc==SQLITE_OK ); 000851 assert( db->mallocFailed==0 ); 000852 db->errCode = SQLITE_ROW; 000853 return SQLITE_ROW; 000854 }else{ 000855 #ifndef SQLITE_OMIT_TRACE 000856 /* If the statement completed successfully, invoke the profile callback */ 000857 checkProfileCallback(db, p); 000858 #endif 000859 p->pResultRow = 0; 000860 if( rc==SQLITE_DONE && db->autoCommit ){ 000861 assert( p->rc==SQLITE_OK ); 000862 p->rc = doWalCallbacks(db); 000863 if( p->rc!=SQLITE_OK ){ 000864 rc = SQLITE_ERROR; 000865 } 000866 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 000867 /* If this statement was prepared using saved SQL and an 000868 ** error has occurred, then return the error code in p->rc to the 000869 ** caller. Set the error code in the database handle to the same value. 000870 */ 000871 rc = sqlite3VdbeTransferError(p); 000872 } 000873 } 000874 000875 db->errCode = rc; 000876 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 000877 p->rc = SQLITE_NOMEM_BKPT; 000878 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 000879 } 000880 end_of_step: 000881 /* There are only a limited number of result codes allowed from the 000882 ** statements prepared using the legacy sqlite3_prepare() interface */ 000883 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 000884 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 000885 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 000886 ); 000887 return (rc&db->errMask); 000888 } 000889 000890 /* 000891 ** This is the top-level implementation of sqlite3_step(). Call 000892 ** sqlite3Step() to do most of the work. If a schema error occurs, 000893 ** call sqlite3Reprepare() and try again. 000894 */ 000895 int sqlite3_step(sqlite3_stmt *pStmt){ 000896 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 000897 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 000898 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 000899 sqlite3 *db; /* The database connection */ 000900 000901 if( vdbeSafetyNotNull(v) ){ 000902 return SQLITE_MISUSE_BKPT; 000903 } 000904 db = v->db; 000905 sqlite3_mutex_enter(db->mutex); 000906 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 000907 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 000908 int savedPc = v->pc; 000909 rc = sqlite3Reprepare(v); 000910 if( rc!=SQLITE_OK ){ 000911 /* This case occurs after failing to recompile an sql statement. 000912 ** The error message from the SQL compiler has already been loaded 000913 ** into the database handle. This block copies the error message 000914 ** from the database handle into the statement and sets the statement 000915 ** program counter to 0 to ensure that when the statement is 000916 ** finalized or reset the parser error message is available via 000917 ** sqlite3_errmsg() and sqlite3_errcode(). 000918 */ 000919 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 000920 sqlite3DbFree(db, v->zErrMsg); 000921 if( !db->mallocFailed ){ 000922 v->zErrMsg = sqlite3DbStrDup(db, zErr); 000923 v->rc = rc = sqlite3ApiExit(db, rc); 000924 } else { 000925 v->zErrMsg = 0; 000926 v->rc = rc = SQLITE_NOMEM_BKPT; 000927 } 000928 break; 000929 } 000930 sqlite3_reset(pStmt); 000931 if( savedPc>=0 ){ 000932 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and 000933 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has 000934 ** already been done once on a prior invocation that failed due to 000935 ** SQLITE_SCHEMA. tag-20220401a */ 000936 v->minWriteFileFormat = 254; 000937 } 000938 assert( v->expired==0 ); 000939 } 000940 sqlite3_mutex_leave(db->mutex); 000941 return rc; 000942 } 000943 000944 000945 /* 000946 ** Extract the user data from a sqlite3_context structure and return a 000947 ** pointer to it. 000948 */ 000949 void *sqlite3_user_data(sqlite3_context *p){ 000950 #ifdef SQLITE_ENABLE_API_ARMOR 000951 if( p==0 ) return 0; 000952 #endif 000953 assert( p && p->pFunc ); 000954 return p->pFunc->pUserData; 000955 } 000956 000957 /* 000958 ** Extract the user data from a sqlite3_context structure and return a 000959 ** pointer to it. 000960 ** 000961 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 000962 ** returns a copy of the pointer to the database connection (the 1st 000963 ** parameter) of the sqlite3_create_function() and 000964 ** sqlite3_create_function16() routines that originally registered the 000965 ** application defined function. 000966 */ 000967 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 000968 #ifdef SQLITE_ENABLE_API_ARMOR 000969 if( p==0 ) return 0; 000970 #else 000971 assert( p && p->pOut ); 000972 #endif 000973 return p->pOut->db; 000974 } 000975 000976 /* 000977 ** If this routine is invoked from within an xColumn method of a virtual 000978 ** table, then it returns true if and only if the the call is during an 000979 ** UPDATE operation and the value of the column will not be modified 000980 ** by the UPDATE. 000981 ** 000982 ** If this routine is called from any context other than within the 000983 ** xColumn method of a virtual table, then the return value is meaningless 000984 ** and arbitrary. 000985 ** 000986 ** Virtual table implements might use this routine to optimize their 000987 ** performance by substituting a NULL result, or some other light-weight 000988 ** value, as a signal to the xUpdate routine that the column is unchanged. 000989 */ 000990 int sqlite3_vtab_nochange(sqlite3_context *p){ 000991 #ifdef SQLITE_ENABLE_API_ARMOR 000992 if( p==0 ) return 0; 000993 #else 000994 assert( p ); 000995 #endif 000996 return sqlite3_value_nochange(p->pOut); 000997 } 000998 000999 /* 001000 ** The destructor function for a ValueList object. This needs to be 001001 ** a separate function, unknowable to the application, to ensure that 001002 ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not 001003 ** preceded by activation of IN processing via sqlite3_vtab_int() do not 001004 ** try to access a fake ValueList object inserted by a hostile extension. 001005 */ 001006 void sqlite3VdbeValueListFree(void *pToDelete){ 001007 sqlite3_free(pToDelete); 001008 } 001009 001010 /* 001011 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 001012 ** sqlite3_vtab_in_next() (if bNext!=0). 001013 */ 001014 static int valueFromValueList( 001015 sqlite3_value *pVal, /* Pointer to the ValueList object */ 001016 sqlite3_value **ppOut, /* Store the next value from the list here */ 001017 int bNext /* 1 for _next(). 0 for _first() */ 001018 ){ 001019 int rc; 001020 ValueList *pRhs; 001021 001022 *ppOut = 0; 001023 if( pVal==0 ) return SQLITE_MISUSE_BKPT; 001024 if( (pVal->flags & MEM_Dyn)==0 || pVal->xDel!=sqlite3VdbeValueListFree ){ 001025 return SQLITE_ERROR; 001026 }else{ 001027 assert( (pVal->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 001028 (MEM_Null|MEM_Term|MEM_Subtype) ); 001029 assert( pVal->eSubtype=='p' ); 001030 assert( pVal->u.zPType!=0 && strcmp(pVal->u.zPType,"ValueList")==0 ); 001031 pRhs = (ValueList*)pVal->z; 001032 } 001033 if( bNext ){ 001034 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 001035 }else{ 001036 int dummy = 0; 001037 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 001038 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 001039 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 001040 } 001041 if( rc==SQLITE_OK ){ 001042 u32 sz; /* Size of current row in bytes */ 001043 Mem sMem; /* Raw content of current row */ 001044 memset(&sMem, 0, sizeof(sMem)); 001045 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 001046 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 001047 if( rc==SQLITE_OK ){ 001048 u8 *zBuf = (u8*)sMem.z; 001049 u32 iSerial; 001050 sqlite3_value *pOut = pRhs->pOut; 001051 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 001052 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 001053 pOut->enc = ENC(pOut->db); 001054 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 001055 rc = SQLITE_NOMEM; 001056 }else{ 001057 *ppOut = pOut; 001058 } 001059 } 001060 sqlite3VdbeMemRelease(&sMem); 001061 } 001062 return rc; 001063 } 001064 001065 /* 001066 ** Set the iterator value pVal to point to the first value in the set. 001067 ** Set (*ppOut) to point to this value before returning. 001068 */ 001069 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 001070 return valueFromValueList(pVal, ppOut, 0); 001071 } 001072 001073 /* 001074 ** Set the iterator value pVal to point to the next value in the set. 001075 ** Set (*ppOut) to point to this value before returning. 001076 */ 001077 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 001078 return valueFromValueList(pVal, ppOut, 1); 001079 } 001080 001081 /* 001082 ** Return the current time for a statement. If the current time 001083 ** is requested more than once within the same run of a single prepared 001084 ** statement, the exact same time is returned for each invocation regardless 001085 ** of the amount of time that elapses between invocations. In other words, 001086 ** the time returned is always the time of the first call. 001087 */ 001088 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 001089 int rc; 001090 #ifndef SQLITE_ENABLE_STAT4 001091 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 001092 assert( p->pVdbe!=0 ); 001093 #else 001094 sqlite3_int64 iTime = 0; 001095 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 001096 #endif 001097 if( *piTime==0 ){ 001098 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 001099 if( rc ) *piTime = 0; 001100 } 001101 return *piTime; 001102 } 001103 001104 /* 001105 ** Create a new aggregate context for p and return a pointer to 001106 ** its pMem->z element. 001107 */ 001108 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 001109 Mem *pMem = p->pMem; 001110 assert( (pMem->flags & MEM_Agg)==0 ); 001111 if( nByte<=0 ){ 001112 sqlite3VdbeMemSetNull(pMem); 001113 pMem->z = 0; 001114 }else{ 001115 sqlite3VdbeMemClearAndResize(pMem, nByte); 001116 pMem->flags = MEM_Agg; 001117 pMem->u.pDef = p->pFunc; 001118 if( pMem->z ){ 001119 memset(pMem->z, 0, nByte); 001120 } 001121 } 001122 return (void*)pMem->z; 001123 } 001124 001125 /* 001126 ** Allocate or return the aggregate context for a user function. A new 001127 ** context is allocated on the first call. Subsequent calls return the 001128 ** same context that was returned on prior calls. 001129 */ 001130 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 001131 assert( p && p->pFunc && p->pFunc->xFinalize ); 001132 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 001133 testcase( nByte<0 ); 001134 if( (p->pMem->flags & MEM_Agg)==0 ){ 001135 return createAggContext(p, nByte); 001136 }else{ 001137 return (void*)p->pMem->z; 001138 } 001139 } 001140 001141 /* 001142 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 001143 ** the user-function defined by pCtx. 001144 ** 001145 ** The left-most argument is 0. 001146 ** 001147 ** Undocumented behavior: If iArg is negative then access a cache of 001148 ** auxiliary data pointers that is available to all functions within a 001149 ** single prepared statement. The iArg values must match. 001150 */ 001151 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 001152 AuxData *pAuxData; 001153 001154 #ifdef SQLITE_ENABLE_API_ARMOR 001155 if( pCtx==0 ) return 0; 001156 #endif 001157 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 001158 #if SQLITE_ENABLE_STAT4 001159 if( pCtx->pVdbe==0 ) return 0; 001160 #else 001161 assert( pCtx->pVdbe!=0 ); 001162 #endif 001163 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 001164 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 001165 return pAuxData->pAux; 001166 } 001167 } 001168 return 0; 001169 } 001170 001171 /* 001172 ** Set the auxiliary data pointer and delete function, for the iArg'th 001173 ** argument to the user-function defined by pCtx. Any previous value is 001174 ** deleted by calling the delete function specified when it was set. 001175 ** 001176 ** The left-most argument is 0. 001177 ** 001178 ** Undocumented behavior: If iArg is negative then make the data available 001179 ** to all functions within the current prepared statement using iArg as an 001180 ** access code. 001181 */ 001182 void sqlite3_set_auxdata( 001183 sqlite3_context *pCtx, 001184 int iArg, 001185 void *pAux, 001186 void (*xDelete)(void*) 001187 ){ 001188 AuxData *pAuxData; 001189 Vdbe *pVdbe; 001190 001191 #ifdef SQLITE_ENABLE_API_ARMOR 001192 if( pCtx==0 ) return; 001193 #endif 001194 pVdbe= pCtx->pVdbe; 001195 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 001196 #ifdef SQLITE_ENABLE_STAT4 001197 if( pVdbe==0 ) goto failed; 001198 #else 001199 assert( pVdbe!=0 ); 001200 #endif 001201 001202 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 001203 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 001204 break; 001205 } 001206 } 001207 if( pAuxData==0 ){ 001208 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 001209 if( !pAuxData ) goto failed; 001210 pAuxData->iAuxOp = pCtx->iOp; 001211 pAuxData->iAuxArg = iArg; 001212 pAuxData->pNextAux = pVdbe->pAuxData; 001213 pVdbe->pAuxData = pAuxData; 001214 if( pCtx->isError==0 ) pCtx->isError = -1; 001215 }else if( pAuxData->xDeleteAux ){ 001216 pAuxData->xDeleteAux(pAuxData->pAux); 001217 } 001218 001219 pAuxData->pAux = pAux; 001220 pAuxData->xDeleteAux = xDelete; 001221 return; 001222 001223 failed: 001224 if( xDelete ){ 001225 xDelete(pAux); 001226 } 001227 } 001228 001229 #ifndef SQLITE_OMIT_DEPRECATED 001230 /* 001231 ** Return the number of times the Step function of an aggregate has been 001232 ** called. 001233 ** 001234 ** This function is deprecated. Do not use it for new code. It is 001235 ** provide only to avoid breaking legacy code. New aggregate function 001236 ** implementations should keep their own counts within their aggregate 001237 ** context. 001238 */ 001239 int sqlite3_aggregate_count(sqlite3_context *p){ 001240 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 001241 return p->pMem->n; 001242 } 001243 #endif 001244 001245 /* 001246 ** Return the number of columns in the result set for the statement pStmt. 001247 */ 001248 int sqlite3_column_count(sqlite3_stmt *pStmt){ 001249 Vdbe *pVm = (Vdbe *)pStmt; 001250 if( pVm==0 ) return 0; 001251 return pVm->nResColumn; 001252 } 001253 001254 /* 001255 ** Return the number of values available from the current row of the 001256 ** currently executing statement pStmt. 001257 */ 001258 int sqlite3_data_count(sqlite3_stmt *pStmt){ 001259 Vdbe *pVm = (Vdbe *)pStmt; 001260 if( pVm==0 || pVm->pResultRow==0 ) return 0; 001261 return pVm->nResColumn; 001262 } 001263 001264 /* 001265 ** Return a pointer to static memory containing an SQL NULL value. 001266 */ 001267 static const Mem *columnNullValue(void){ 001268 /* Even though the Mem structure contains an element 001269 ** of type i64, on certain architectures (x86) with certain compiler 001270 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 001271 ** instead of an 8-byte one. This all works fine, except that when 001272 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 001273 ** that a Mem structure is located on an 8-byte boundary. To prevent 001274 ** these assert()s from failing, when building with SQLITE_DEBUG defined 001275 ** using gcc, we force nullMem to be 8-byte aligned using the magical 001276 ** __attribute__((aligned(8))) macro. */ 001277 static const Mem nullMem 001278 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 001279 __attribute__((aligned(8))) 001280 #endif 001281 = { 001282 /* .u = */ {0}, 001283 /* .z = */ (char*)0, 001284 /* .n = */ (int)0, 001285 /* .flags = */ (u16)MEM_Null, 001286 /* .enc = */ (u8)0, 001287 /* .eSubtype = */ (u8)0, 001288 /* .db = */ (sqlite3*)0, 001289 /* .szMalloc = */ (int)0, 001290 /* .uTemp = */ (u32)0, 001291 /* .zMalloc = */ (char*)0, 001292 /* .xDel = */ (void(*)(void*))0, 001293 #ifdef SQLITE_DEBUG 001294 /* .pScopyFrom = */ (Mem*)0, 001295 /* .mScopyFlags= */ 0, 001296 /* .bScopy = */ 0, 001297 #endif 001298 }; 001299 return &nullMem; 001300 } 001301 001302 /* 001303 ** Check to see if column iCol of the given statement is valid. If 001304 ** it is, return a pointer to the Mem for the value of that column. 001305 ** If iCol is not valid, return a pointer to a Mem which has a value 001306 ** of NULL. 001307 */ 001308 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 001309 Vdbe *pVm; 001310 Mem *pOut; 001311 001312 pVm = (Vdbe *)pStmt; 001313 if( pVm==0 ) return (Mem*)columnNullValue(); 001314 assert( pVm->db ); 001315 sqlite3_mutex_enter(pVm->db->mutex); 001316 if( pVm->pResultRow!=0 && i<pVm->nResColumn && i>=0 ){ 001317 pOut = &pVm->pResultRow[i]; 001318 }else{ 001319 sqlite3Error(pVm->db, SQLITE_RANGE); 001320 pOut = (Mem*)columnNullValue(); 001321 } 001322 return pOut; 001323 } 001324 001325 /* 001326 ** This function is called after invoking an sqlite3_value_XXX function on a 001327 ** column value (i.e. a value returned by evaluating an SQL expression in the 001328 ** select list of a SELECT statement) that may cause a malloc() failure. If 001329 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 001330 ** code of statement pStmt set to SQLITE_NOMEM. 001331 ** 001332 ** Specifically, this is called from within: 001333 ** 001334 ** sqlite3_column_int() 001335 ** sqlite3_column_int64() 001336 ** sqlite3_column_text() 001337 ** sqlite3_column_text16() 001338 ** sqlite3_column_double() 001339 ** sqlite3_column_bytes() 001340 ** sqlite3_column_bytes16() 001341 ** sqlite3_column_blob() 001342 */ 001343 static void columnMallocFailure(sqlite3_stmt *pStmt) 001344 { 001345 /* If malloc() failed during an encoding conversion within an 001346 ** sqlite3_column_XXX API, then set the return code of the statement to 001347 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 001348 ** and _finalize() will return NOMEM. 001349 */ 001350 Vdbe *p = (Vdbe *)pStmt; 001351 if( p ){ 001352 assert( p->db!=0 ); 001353 assert( sqlite3_mutex_held(p->db->mutex) ); 001354 p->rc = sqlite3ApiExit(p->db, p->rc); 001355 sqlite3_mutex_leave(p->db->mutex); 001356 } 001357 } 001358 001359 /**************************** sqlite3_column_ ******************************* 001360 ** The following routines are used to access elements of the current row 001361 ** in the result set. 001362 */ 001363 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 001364 const void *val; 001365 val = sqlite3_value_blob( columnMem(pStmt,i) ); 001366 /* Even though there is no encoding conversion, value_blob() might 001367 ** need to call malloc() to expand the result of a zeroblob() 001368 ** expression. 001369 */ 001370 columnMallocFailure(pStmt); 001371 return val; 001372 } 001373 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 001374 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 001375 columnMallocFailure(pStmt); 001376 return val; 001377 } 001378 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 001379 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 001380 columnMallocFailure(pStmt); 001381 return val; 001382 } 001383 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 001384 double val = sqlite3_value_double( columnMem(pStmt,i) ); 001385 columnMallocFailure(pStmt); 001386 return val; 001387 } 001388 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 001389 int val = sqlite3_value_int( columnMem(pStmt,i) ); 001390 columnMallocFailure(pStmt); 001391 return val; 001392 } 001393 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 001394 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 001395 columnMallocFailure(pStmt); 001396 return val; 001397 } 001398 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 001399 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 001400 columnMallocFailure(pStmt); 001401 return val; 001402 } 001403 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 001404 Mem *pOut = columnMem(pStmt, i); 001405 if( pOut->flags&MEM_Static ){ 001406 pOut->flags &= ~MEM_Static; 001407 pOut->flags |= MEM_Ephem; 001408 } 001409 columnMallocFailure(pStmt); 001410 return (sqlite3_value *)pOut; 001411 } 001412 #ifndef SQLITE_OMIT_UTF16 001413 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 001414 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 001415 columnMallocFailure(pStmt); 001416 return val; 001417 } 001418 #endif /* SQLITE_OMIT_UTF16 */ 001419 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 001420 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 001421 columnMallocFailure(pStmt); 001422 return iType; 001423 } 001424 001425 /* 001426 ** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN. 001427 */ 001428 static const char * const azExplainColNames8[] = { 001429 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */ 001430 "id", "parent", "notused", "detail" /* EQP */ 001431 }; 001432 static const u16 azExplainColNames16data[] = { 001433 /* 0 */ 'a', 'd', 'd', 'r', 0, 001434 /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0, 001435 /* 12 */ 'p', '1', 0, 001436 /* 15 */ 'p', '2', 0, 001437 /* 18 */ 'p', '3', 0, 001438 /* 21 */ 'p', '4', 0, 001439 /* 24 */ 'p', '5', 0, 001440 /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0, 001441 /* 35 */ 'i', 'd', 0, 001442 /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0, 001443 /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0, 001444 /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0 001445 }; 001446 static const u8 iExplainColNames16[] = { 001447 0, 5, 12, 15, 18, 21, 24, 27, 001448 35, 38, 45, 53 001449 }; 001450 001451 /* 001452 ** Convert the N-th element of pStmt->pColName[] into a string using 001453 ** xFunc() then return that string. If N is out of range, return 0. 001454 ** 001455 ** There are up to 5 names for each column. useType determines which 001456 ** name is returned. Here are the names: 001457 ** 001458 ** 0 The column name as it should be displayed for output 001459 ** 1 The datatype name for the column 001460 ** 2 The name of the database that the column derives from 001461 ** 3 The name of the table that the column derives from 001462 ** 4 The name of the table column that the result column derives from 001463 ** 001464 ** If the result is not a simple column reference (if it is an expression 001465 ** or a constant) then useTypes 2, 3, and 4 return NULL. 001466 */ 001467 static const void *columnName( 001468 sqlite3_stmt *pStmt, /* The statement */ 001469 int N, /* Which column to get the name for */ 001470 int useUtf16, /* True to return the name as UTF16 */ 001471 int useType /* What type of name */ 001472 ){ 001473 const void *ret; 001474 Vdbe *p; 001475 int n; 001476 sqlite3 *db; 001477 #ifdef SQLITE_ENABLE_API_ARMOR 001478 if( pStmt==0 ){ 001479 (void)SQLITE_MISUSE_BKPT; 001480 return 0; 001481 } 001482 #endif 001483 if( N<0 ) return 0; 001484 ret = 0; 001485 p = (Vdbe *)pStmt; 001486 db = p->db; 001487 assert( db!=0 ); 001488 sqlite3_mutex_enter(db->mutex); 001489 001490 if( p->explain ){ 001491 if( useType>0 ) goto columnName_end; 001492 n = p->explain==1 ? 8 : 4; 001493 if( N>=n ) goto columnName_end; 001494 if( useUtf16 ){ 001495 int i = iExplainColNames16[N + 8*p->explain - 8]; 001496 ret = (void*)&azExplainColNames16data[i]; 001497 }else{ 001498 ret = (void*)azExplainColNames8[N + 8*p->explain - 8]; 001499 } 001500 goto columnName_end; 001501 } 001502 n = p->nResColumn; 001503 if( N<n ){ 001504 u8 prior_mallocFailed = db->mallocFailed; 001505 N += useType*n; 001506 #ifndef SQLITE_OMIT_UTF16 001507 if( useUtf16 ){ 001508 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 001509 }else 001510 #endif 001511 { 001512 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 001513 } 001514 /* A malloc may have failed inside of the _text() call. If this 001515 ** is the case, clear the mallocFailed flag and return NULL. 001516 */ 001517 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 001518 if( db->mallocFailed > prior_mallocFailed ){ 001519 sqlite3OomClear(db); 001520 ret = 0; 001521 } 001522 } 001523 columnName_end: 001524 sqlite3_mutex_leave(db->mutex); 001525 return ret; 001526 } 001527 001528 /* 001529 ** Return the name of the Nth column of the result set returned by SQL 001530 ** statement pStmt. 001531 */ 001532 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 001533 return columnName(pStmt, N, 0, COLNAME_NAME); 001534 } 001535 #ifndef SQLITE_OMIT_UTF16 001536 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 001537 return columnName(pStmt, N, 1, COLNAME_NAME); 001538 } 001539 #endif 001540 001541 /* 001542 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 001543 ** not define OMIT_DECLTYPE. 001544 */ 001545 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 001546 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 001547 and SQLITE_ENABLE_COLUMN_METADATA" 001548 #endif 001549 001550 #ifndef SQLITE_OMIT_DECLTYPE 001551 /* 001552 ** Return the column declaration type (if applicable) of the 'i'th column 001553 ** of the result set of SQL statement pStmt. 001554 */ 001555 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 001556 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 001557 } 001558 #ifndef SQLITE_OMIT_UTF16 001559 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 001560 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 001561 } 001562 #endif /* SQLITE_OMIT_UTF16 */ 001563 #endif /* SQLITE_OMIT_DECLTYPE */ 001564 001565 #ifdef SQLITE_ENABLE_COLUMN_METADATA 001566 /* 001567 ** Return the name of the database from which a result column derives. 001568 ** NULL is returned if the result column is an expression or constant or 001569 ** anything else which is not an unambiguous reference to a database column. 001570 */ 001571 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 001572 return columnName(pStmt, N, 0, COLNAME_DATABASE); 001573 } 001574 #ifndef SQLITE_OMIT_UTF16 001575 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 001576 return columnName(pStmt, N, 1, COLNAME_DATABASE); 001577 } 001578 #endif /* SQLITE_OMIT_UTF16 */ 001579 001580 /* 001581 ** Return the name of the table from which a result column derives. 001582 ** NULL is returned if the result column is an expression or constant or 001583 ** anything else which is not an unambiguous reference to a database column. 001584 */ 001585 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 001586 return columnName(pStmt, N, 0, COLNAME_TABLE); 001587 } 001588 #ifndef SQLITE_OMIT_UTF16 001589 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 001590 return columnName(pStmt, N, 1, COLNAME_TABLE); 001591 } 001592 #endif /* SQLITE_OMIT_UTF16 */ 001593 001594 /* 001595 ** Return the name of the table column from which a result column derives. 001596 ** NULL is returned if the result column is an expression or constant or 001597 ** anything else which is not an unambiguous reference to a database column. 001598 */ 001599 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 001600 return columnName(pStmt, N, 0, COLNAME_COLUMN); 001601 } 001602 #ifndef SQLITE_OMIT_UTF16 001603 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 001604 return columnName(pStmt, N, 1, COLNAME_COLUMN); 001605 } 001606 #endif /* SQLITE_OMIT_UTF16 */ 001607 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 001608 001609 001610 /******************************* sqlite3_bind_ *************************** 001611 ** 001612 ** Routines used to attach values to wildcards in a compiled SQL statement. 001613 */ 001614 /* 001615 ** Unbind the value bound to variable i in virtual machine p. This is the 001616 ** the same as binding a NULL value to the column. If the "i" parameter is 001617 ** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK. 001618 ** 001619 ** A successful evaluation of this routine acquires the mutex on p. 001620 ** the mutex is released if any kind of error occurs. 001621 ** 001622 ** The error code stored in database p->db is overwritten with the return 001623 ** value in any case. 001624 ** 001625 ** (tag-20240917-01) If vdbeUnbind(p,(u32)(i-1)) returns SQLITE_OK, 001626 ** that means all of the the following will be true: 001627 ** 001628 ** p!=0 001629 ** p->pVar!=0 001630 ** i>0 001631 ** i<=p->nVar 001632 ** 001633 ** An assert() is normally added after vdbeUnbind() to help static analyzers 001634 ** realize this. 001635 */ 001636 static int vdbeUnbind(Vdbe *p, unsigned int i){ 001637 Mem *pVar; 001638 if( vdbeSafetyNotNull(p) ){ 001639 return SQLITE_MISUSE_BKPT; 001640 } 001641 sqlite3_mutex_enter(p->db->mutex); 001642 if( p->eVdbeState!=VDBE_READY_STATE ){ 001643 sqlite3Error(p->db, SQLITE_MISUSE_BKPT); 001644 sqlite3_mutex_leave(p->db->mutex); 001645 sqlite3_log(SQLITE_MISUSE, 001646 "bind on a busy prepared statement: [%s]", p->zSql); 001647 return SQLITE_MISUSE_BKPT; 001648 } 001649 if( i>=(unsigned int)p->nVar ){ 001650 sqlite3Error(p->db, SQLITE_RANGE); 001651 sqlite3_mutex_leave(p->db->mutex); 001652 return SQLITE_RANGE; 001653 } 001654 pVar = &p->aVar[i]; 001655 sqlite3VdbeMemRelease(pVar); 001656 pVar->flags = MEM_Null; 001657 p->db->errCode = SQLITE_OK; 001658 001659 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 001660 ** binding a new value to this variable invalidates the current query plan. 001661 ** 001662 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 001663 ** parameter in the WHERE clause might influence the choice of query plan 001664 ** for a statement, then the statement will be automatically recompiled, 001665 ** as if there had been a schema change, on the first sqlite3_step() call 001666 ** following any change to the bindings of that parameter. 001667 */ 001668 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 001669 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 001670 p->expired = 1; 001671 } 001672 return SQLITE_OK; 001673 } 001674 001675 /* 001676 ** Bind a text or BLOB value. 001677 */ 001678 static int bindText( 001679 sqlite3_stmt *pStmt, /* The statement to bind against */ 001680 int i, /* Index of the parameter to bind */ 001681 const void *zData, /* Pointer to the data to be bound */ 001682 i64 nData, /* Number of bytes of data to be bound */ 001683 void (*xDel)(void*), /* Destructor for the data */ 001684 u8 encoding /* Encoding for the data */ 001685 ){ 001686 Vdbe *p = (Vdbe *)pStmt; 001687 Mem *pVar; 001688 int rc; 001689 001690 rc = vdbeUnbind(p, (u32)(i-1)); 001691 if( rc==SQLITE_OK ){ 001692 assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */ 001693 if( zData!=0 ){ 001694 pVar = &p->aVar[i-1]; 001695 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 001696 if( rc==SQLITE_OK && encoding!=0 ){ 001697 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 001698 } 001699 if( rc ){ 001700 sqlite3Error(p->db, rc); 001701 rc = sqlite3ApiExit(p->db, rc); 001702 } 001703 } 001704 sqlite3_mutex_leave(p->db->mutex); 001705 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 001706 xDel((void*)zData); 001707 } 001708 return rc; 001709 } 001710 001711 001712 /* 001713 ** Bind a blob value to an SQL statement variable. 001714 */ 001715 int sqlite3_bind_blob( 001716 sqlite3_stmt *pStmt, 001717 int i, 001718 const void *zData, 001719 int nData, 001720 void (*xDel)(void*) 001721 ){ 001722 #ifdef SQLITE_ENABLE_API_ARMOR 001723 if( nData<0 ) return SQLITE_MISUSE_BKPT; 001724 #endif 001725 return bindText(pStmt, i, zData, nData, xDel, 0); 001726 } 001727 int sqlite3_bind_blob64( 001728 sqlite3_stmt *pStmt, 001729 int i, 001730 const void *zData, 001731 sqlite3_uint64 nData, 001732 void (*xDel)(void*) 001733 ){ 001734 assert( xDel!=SQLITE_DYNAMIC ); 001735 return bindText(pStmt, i, zData, nData, xDel, 0); 001736 } 001737 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 001738 int rc; 001739 Vdbe *p = (Vdbe *)pStmt; 001740 rc = vdbeUnbind(p, (u32)(i-1)); 001741 if( rc==SQLITE_OK ){ 001742 assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */ 001743 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 001744 sqlite3_mutex_leave(p->db->mutex); 001745 } 001746 return rc; 001747 } 001748 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 001749 return sqlite3_bind_int64(p, i, (i64)iValue); 001750 } 001751 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 001752 int rc; 001753 Vdbe *p = (Vdbe *)pStmt; 001754 rc = vdbeUnbind(p, (u32)(i-1)); 001755 if( rc==SQLITE_OK ){ 001756 assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */ 001757 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 001758 sqlite3_mutex_leave(p->db->mutex); 001759 } 001760 return rc; 001761 } 001762 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 001763 int rc; 001764 Vdbe *p = (Vdbe*)pStmt; 001765 rc = vdbeUnbind(p, (u32)(i-1)); 001766 if( rc==SQLITE_OK ){ 001767 assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */ 001768 sqlite3_mutex_leave(p->db->mutex); 001769 } 001770 return rc; 001771 } 001772 int sqlite3_bind_pointer( 001773 sqlite3_stmt *pStmt, 001774 int i, 001775 void *pPtr, 001776 const char *zPTtype, 001777 void (*xDestructor)(void*) 001778 ){ 001779 int rc; 001780 Vdbe *p = (Vdbe*)pStmt; 001781 rc = vdbeUnbind(p, (u32)(i-1)); 001782 if( rc==SQLITE_OK ){ 001783 assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */ 001784 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 001785 sqlite3_mutex_leave(p->db->mutex); 001786 }else if( xDestructor ){ 001787 xDestructor(pPtr); 001788 } 001789 return rc; 001790 } 001791 int sqlite3_bind_text( 001792 sqlite3_stmt *pStmt, 001793 int i, 001794 const char *zData, 001795 int nData, 001796 void (*xDel)(void*) 001797 ){ 001798 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 001799 } 001800 int sqlite3_bind_text64( 001801 sqlite3_stmt *pStmt, 001802 int i, 001803 const char *zData, 001804 sqlite3_uint64 nData, 001805 void (*xDel)(void*), 001806 unsigned char enc 001807 ){ 001808 assert( xDel!=SQLITE_DYNAMIC ); 001809 if( enc!=SQLITE_UTF8 ){ 001810 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 001811 nData &= ~(u16)1; 001812 } 001813 return bindText(pStmt, i, zData, nData, xDel, enc); 001814 } 001815 #ifndef SQLITE_OMIT_UTF16 001816 int sqlite3_bind_text16( 001817 sqlite3_stmt *pStmt, 001818 int i, 001819 const void *zData, 001820 int n, 001821 void (*xDel)(void*) 001822 ){ 001823 return bindText(pStmt, i, zData, n & ~(u64)1, xDel, SQLITE_UTF16NATIVE); 001824 } 001825 #endif /* SQLITE_OMIT_UTF16 */ 001826 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 001827 int rc; 001828 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 001829 case SQLITE_INTEGER: { 001830 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 001831 break; 001832 } 001833 case SQLITE_FLOAT: { 001834 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 001835 rc = sqlite3_bind_double(pStmt, i, 001836 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 001837 ); 001838 break; 001839 } 001840 case SQLITE_BLOB: { 001841 if( pValue->flags & MEM_Zero ){ 001842 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 001843 }else{ 001844 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 001845 } 001846 break; 001847 } 001848 case SQLITE_TEXT: { 001849 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 001850 pValue->enc); 001851 break; 001852 } 001853 default: { 001854 rc = sqlite3_bind_null(pStmt, i); 001855 break; 001856 } 001857 } 001858 return rc; 001859 } 001860 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 001861 int rc; 001862 Vdbe *p = (Vdbe *)pStmt; 001863 rc = vdbeUnbind(p, (u32)(i-1)); 001864 if( rc==SQLITE_OK ){ 001865 assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */ 001866 #ifndef SQLITE_OMIT_INCRBLOB 001867 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 001868 #else 001869 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 001870 #endif 001871 sqlite3_mutex_leave(p->db->mutex); 001872 } 001873 return rc; 001874 } 001875 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 001876 int rc; 001877 Vdbe *p = (Vdbe *)pStmt; 001878 #ifdef SQLITE_ENABLE_API_ARMOR 001879 if( p==0 ) return SQLITE_MISUSE_BKPT; 001880 #endif 001881 sqlite3_mutex_enter(p->db->mutex); 001882 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001883 rc = SQLITE_TOOBIG; 001884 }else{ 001885 assert( (n & 0x7FFFFFFF)==n ); 001886 rc = sqlite3_bind_zeroblob(pStmt, i, n); 001887 } 001888 rc = sqlite3ApiExit(p->db, rc); 001889 sqlite3_mutex_leave(p->db->mutex); 001890 return rc; 001891 } 001892 001893 /* 001894 ** Return the number of wildcards that can be potentially bound to. 001895 ** This routine is added to support DBD::SQLite. 001896 */ 001897 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 001898 Vdbe *p = (Vdbe*)pStmt; 001899 return p ? p->nVar : 0; 001900 } 001901 001902 /* 001903 ** Return the name of a wildcard parameter. Return NULL if the index 001904 ** is out of range or if the wildcard is unnamed. 001905 ** 001906 ** The result is always UTF-8. 001907 */ 001908 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 001909 Vdbe *p = (Vdbe*)pStmt; 001910 if( p==0 ) return 0; 001911 return sqlite3VListNumToName(p->pVList, i); 001912 } 001913 001914 /* 001915 ** Given a wildcard parameter name, return the index of the variable 001916 ** with that name. If there is no variable with the given name, 001917 ** return 0. 001918 */ 001919 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 001920 if( p==0 || zName==0 ) return 0; 001921 return sqlite3VListNameToNum(p->pVList, zName, nName); 001922 } 001923 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 001924 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 001925 } 001926 001927 /* 001928 ** Transfer all bindings from the first statement over to the second. 001929 */ 001930 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 001931 Vdbe *pFrom = (Vdbe*)pFromStmt; 001932 Vdbe *pTo = (Vdbe*)pToStmt; 001933 int i; 001934 assert( pTo->db==pFrom->db ); 001935 assert( pTo->nVar==pFrom->nVar ); 001936 sqlite3_mutex_enter(pTo->db->mutex); 001937 for(i=0; i<pFrom->nVar; i++){ 001938 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 001939 } 001940 sqlite3_mutex_leave(pTo->db->mutex); 001941 return SQLITE_OK; 001942 } 001943 001944 #ifndef SQLITE_OMIT_DEPRECATED 001945 /* 001946 ** Deprecated external interface. Internal/core SQLite code 001947 ** should call sqlite3TransferBindings. 001948 ** 001949 ** It is misuse to call this routine with statements from different 001950 ** database connections. But as this is a deprecated interface, we 001951 ** will not bother to check for that condition. 001952 ** 001953 ** If the two statements contain a different number of bindings, then 001954 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 001955 ** SQLITE_OK is returned. 001956 */ 001957 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 001958 Vdbe *pFrom = (Vdbe*)pFromStmt; 001959 Vdbe *pTo = (Vdbe*)pToStmt; 001960 if( pFrom->nVar!=pTo->nVar ){ 001961 return SQLITE_ERROR; 001962 } 001963 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 001964 if( pTo->expmask ){ 001965 pTo->expired = 1; 001966 } 001967 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 001968 if( pFrom->expmask ){ 001969 pFrom->expired = 1; 001970 } 001971 return sqlite3TransferBindings(pFromStmt, pToStmt); 001972 } 001973 #endif 001974 001975 /* 001976 ** Return the sqlite3* database handle to which the prepared statement given 001977 ** in the argument belongs. This is the same database handle that was 001978 ** the first argument to the sqlite3_prepare() that was used to create 001979 ** the statement in the first place. 001980 */ 001981 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 001982 return pStmt ? ((Vdbe*)pStmt)->db : 0; 001983 } 001984 001985 /* 001986 ** Return true if the prepared statement is guaranteed to not modify the 001987 ** database. 001988 */ 001989 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 001990 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 001991 } 001992 001993 /* 001994 ** Return 1 if the statement is an EXPLAIN and return 2 if the 001995 ** statement is an EXPLAIN QUERY PLAN 001996 */ 001997 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 001998 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 001999 } 002000 002001 /* 002002 ** Set the explain mode for a statement. 002003 */ 002004 int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){ 002005 Vdbe *v = (Vdbe*)pStmt; 002006 int rc; 002007 #ifdef SQLITE_ENABLE_API_ARMOR 002008 if( pStmt==0 ) return SQLITE_MISUSE_BKPT; 002009 #endif 002010 sqlite3_mutex_enter(v->db->mutex); 002011 if( ((int)v->explain)==eMode ){ 002012 rc = SQLITE_OK; 002013 }else if( eMode<0 || eMode>2 ){ 002014 rc = SQLITE_ERROR; 002015 }else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 002016 rc = SQLITE_ERROR; 002017 }else if( v->eVdbeState!=VDBE_READY_STATE ){ 002018 rc = SQLITE_BUSY; 002019 }else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){ 002020 /* No reprepare necessary */ 002021 v->explain = eMode; 002022 rc = SQLITE_OK; 002023 }else{ 002024 v->explain = eMode; 002025 rc = sqlite3Reprepare(v); 002026 v->haveEqpOps = eMode==2; 002027 } 002028 if( v->explain ){ 002029 v->nResColumn = 12 - 4*v->explain; 002030 }else{ 002031 v->nResColumn = v->nResAlloc; 002032 } 002033 sqlite3_mutex_leave(v->db->mutex); 002034 return rc; 002035 } 002036 002037 /* 002038 ** Return true if the prepared statement is in need of being reset. 002039 */ 002040 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 002041 Vdbe *v = (Vdbe*)pStmt; 002042 return v!=0 && v->eVdbeState==VDBE_RUN_STATE; 002043 } 002044 002045 /* 002046 ** Return a pointer to the next prepared statement after pStmt associated 002047 ** with database connection pDb. If pStmt is NULL, return the first 002048 ** prepared statement for the database connection. Return NULL if there 002049 ** are no more. 002050 */ 002051 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 002052 sqlite3_stmt *pNext; 002053 #ifdef SQLITE_ENABLE_API_ARMOR 002054 if( !sqlite3SafetyCheckOk(pDb) ){ 002055 (void)SQLITE_MISUSE_BKPT; 002056 return 0; 002057 } 002058 #endif 002059 sqlite3_mutex_enter(pDb->mutex); 002060 if( pStmt==0 ){ 002061 pNext = (sqlite3_stmt*)pDb->pVdbe; 002062 }else{ 002063 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext; 002064 } 002065 sqlite3_mutex_leave(pDb->mutex); 002066 return pNext; 002067 } 002068 002069 /* 002070 ** Return the value of a status counter for a prepared statement 002071 */ 002072 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 002073 Vdbe *pVdbe = (Vdbe*)pStmt; 002074 u32 v; 002075 #ifdef SQLITE_ENABLE_API_ARMOR 002076 if( !pStmt 002077 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 002078 ){ 002079 (void)SQLITE_MISUSE_BKPT; 002080 return 0; 002081 } 002082 #endif 002083 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 002084 sqlite3 *db = pVdbe->db; 002085 sqlite3_mutex_enter(db->mutex); 002086 v = 0; 002087 db->pnBytesFreed = (int*)&v; 002088 assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); 002089 db->lookaside.pEnd = db->lookaside.pStart; 002090 sqlite3VdbeDelete(pVdbe); 002091 db->pnBytesFreed = 0; 002092 db->lookaside.pEnd = db->lookaside.pTrueEnd; 002093 sqlite3_mutex_leave(db->mutex); 002094 }else{ 002095 v = pVdbe->aCounter[op]; 002096 if( resetFlag ) pVdbe->aCounter[op] = 0; 002097 } 002098 return (int)v; 002099 } 002100 002101 /* 002102 ** Return the SQL associated with a prepared statement 002103 */ 002104 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 002105 Vdbe *p = (Vdbe *)pStmt; 002106 return p ? p->zSql : 0; 002107 } 002108 002109 /* 002110 ** Return the SQL associated with a prepared statement with 002111 ** bound parameters expanded. Space to hold the returned string is 002112 ** obtained from sqlite3_malloc(). The caller is responsible for 002113 ** freeing the returned string by passing it to sqlite3_free(). 002114 ** 002115 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 002116 ** expanded bound parameters. 002117 */ 002118 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 002119 #ifdef SQLITE_OMIT_TRACE 002120 return 0; 002121 #else 002122 char *z = 0; 002123 const char *zSql = sqlite3_sql(pStmt); 002124 if( zSql ){ 002125 Vdbe *p = (Vdbe *)pStmt; 002126 sqlite3_mutex_enter(p->db->mutex); 002127 z = sqlite3VdbeExpandSql(p, zSql); 002128 sqlite3_mutex_leave(p->db->mutex); 002129 } 002130 return z; 002131 #endif 002132 } 002133 002134 #ifdef SQLITE_ENABLE_NORMALIZE 002135 /* 002136 ** Return the normalized SQL associated with a prepared statement. 002137 */ 002138 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 002139 Vdbe *p = (Vdbe *)pStmt; 002140 if( p==0 ) return 0; 002141 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 002142 sqlite3_mutex_enter(p->db->mutex); 002143 p->zNormSql = sqlite3Normalize(p, p->zSql); 002144 sqlite3_mutex_leave(p->db->mutex); 002145 } 002146 return p->zNormSql; 002147 } 002148 #endif /* SQLITE_ENABLE_NORMALIZE */ 002149 002150 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002151 /* 002152 ** Allocate and populate an UnpackedRecord structure based on the serialized 002153 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 002154 ** if successful, or a NULL pointer if an OOM error is encountered. 002155 */ 002156 static UnpackedRecord *vdbeUnpackRecord( 002157 KeyInfo *pKeyInfo, 002158 int nKey, 002159 const void *pKey 002160 ){ 002161 UnpackedRecord *pRet; /* Return value */ 002162 002163 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 002164 if( pRet ){ 002165 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 002166 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 002167 } 002168 return pRet; 002169 } 002170 002171 /* 002172 ** This function is called from within a pre-update callback to retrieve 002173 ** a field of the row currently being updated or deleted. 002174 */ 002175 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 002176 PreUpdate *p; 002177 Mem *pMem; 002178 int rc = SQLITE_OK; 002179 int iStore = 0; 002180 002181 #ifdef SQLITE_ENABLE_API_ARMOR 002182 if( db==0 || ppValue==0 ){ 002183 return SQLITE_MISUSE_BKPT; 002184 } 002185 #endif 002186 p = db->pPreUpdate; 002187 /* Test that this call is being made from within an SQLITE_DELETE or 002188 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 002189 if( !p || p->op==SQLITE_INSERT ){ 002190 rc = SQLITE_MISUSE_BKPT; 002191 goto preupdate_old_out; 002192 } 002193 if( p->pPk ){ 002194 iStore = sqlite3TableColumnToIndex(p->pPk, iIdx); 002195 }else{ 002196 iStore = sqlite3TableColumnToStorage(p->pTab, iIdx); 002197 } 002198 if( iStore>=p->pCsr->nField || iStore<0 ){ 002199 rc = SQLITE_RANGE; 002200 goto preupdate_old_out; 002201 } 002202 002203 if( iIdx==p->pTab->iPKey ){ 002204 *ppValue = pMem = &p->oldipk; 002205 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 002206 }else{ 002207 002208 /* If the old.* record has not yet been loaded into memory, do so now. */ 002209 if( p->pUnpacked==0 ){ 002210 u32 nRec; 002211 u8 *aRec; 002212 002213 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 002214 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 002215 aRec = sqlite3DbMallocRaw(db, nRec); 002216 if( !aRec ) goto preupdate_old_out; 002217 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 002218 if( rc==SQLITE_OK ){ 002219 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 002220 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 002221 } 002222 if( rc!=SQLITE_OK ){ 002223 sqlite3DbFree(db, aRec); 002224 goto preupdate_old_out; 002225 } 002226 p->aRecord = aRec; 002227 } 002228 002229 pMem = *ppValue = &p->pUnpacked->aMem[iStore]; 002230 if( iStore>=p->pUnpacked->nField ){ 002231 /* This occurs when the table has been extended using ALTER TABLE 002232 ** ADD COLUMN. The value to return is the default value of the column. */ 002233 Column *pCol = &p->pTab->aCol[iIdx]; 002234 if( pCol->iDflt>0 ){ 002235 if( p->apDflt==0 ){ 002236 int nByte = sizeof(sqlite3_value*)*p->pTab->nCol; 002237 p->apDflt = (sqlite3_value**)sqlite3DbMallocZero(db, nByte); 002238 if( p->apDflt==0 ) goto preupdate_old_out; 002239 } 002240 if( p->apDflt[iIdx]==0 ){ 002241 sqlite3_value *pVal = 0; 002242 Expr *pDflt; 002243 assert( p->pTab!=0 && IsOrdinaryTable(p->pTab) ); 002244 pDflt = p->pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; 002245 rc = sqlite3ValueFromExpr(db, pDflt, ENC(db), pCol->affinity, &pVal); 002246 if( rc==SQLITE_OK && pVal==0 ){ 002247 rc = SQLITE_CORRUPT_BKPT; 002248 } 002249 p->apDflt[iIdx] = pVal; 002250 } 002251 *ppValue = p->apDflt[iIdx]; 002252 }else{ 002253 *ppValue = (sqlite3_value *)columnNullValue(); 002254 } 002255 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 002256 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 002257 testcase( pMem->flags & MEM_Int ); 002258 testcase( pMem->flags & MEM_IntReal ); 002259 sqlite3VdbeMemRealify(pMem); 002260 } 002261 } 002262 } 002263 002264 preupdate_old_out: 002265 sqlite3Error(db, rc); 002266 return sqlite3ApiExit(db, rc); 002267 } 002268 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002269 002270 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002271 /* 002272 ** This function is called from within a pre-update callback to retrieve 002273 ** the number of columns in the row being updated, deleted or inserted. 002274 */ 002275 int sqlite3_preupdate_count(sqlite3 *db){ 002276 PreUpdate *p; 002277 #ifdef SQLITE_ENABLE_API_ARMOR 002278 p = db!=0 ? db->pPreUpdate : 0; 002279 #else 002280 p = db->pPreUpdate; 002281 #endif 002282 return (p ? p->keyinfo.nKeyField : 0); 002283 } 002284 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002285 002286 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002287 /* 002288 ** This function is designed to be called from within a pre-update callback 002289 ** only. It returns zero if the change that caused the callback was made 002290 ** immediately by a user SQL statement. Or, if the change was made by a 002291 ** trigger program, it returns the number of trigger programs currently 002292 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 002293 ** top-level trigger etc.). 002294 ** 002295 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 002296 ** or SET DEFAULT action is considered a trigger. 002297 */ 002298 int sqlite3_preupdate_depth(sqlite3 *db){ 002299 PreUpdate *p; 002300 #ifdef SQLITE_ENABLE_API_ARMOR 002301 p = db!=0 ? db->pPreUpdate : 0; 002302 #else 002303 p = db->pPreUpdate; 002304 #endif 002305 return (p ? p->v->nFrame : 0); 002306 } 002307 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002308 002309 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002310 /* 002311 ** This function is designed to be called from within a pre-update callback 002312 ** only. 002313 */ 002314 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 002315 PreUpdate *p; 002316 #ifdef SQLITE_ENABLE_API_ARMOR 002317 p = db!=0 ? db->pPreUpdate : 0; 002318 #else 002319 p = db->pPreUpdate; 002320 #endif 002321 return (p ? p->iBlobWrite : -1); 002322 } 002323 #endif 002324 002325 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002326 /* 002327 ** This function is called from within a pre-update callback to retrieve 002328 ** a field of the row currently being updated or inserted. 002329 */ 002330 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 002331 PreUpdate *p; 002332 int rc = SQLITE_OK; 002333 Mem *pMem; 002334 int iStore = 0; 002335 002336 #ifdef SQLITE_ENABLE_API_ARMOR 002337 if( db==0 || ppValue==0 ){ 002338 return SQLITE_MISUSE_BKPT; 002339 } 002340 #endif 002341 p = db->pPreUpdate; 002342 if( !p || p->op==SQLITE_DELETE ){ 002343 rc = SQLITE_MISUSE_BKPT; 002344 goto preupdate_new_out; 002345 } 002346 if( p->pPk && p->op!=SQLITE_UPDATE ){ 002347 iStore = sqlite3TableColumnToIndex(p->pPk, iIdx); 002348 }else{ 002349 iStore = sqlite3TableColumnToStorage(p->pTab, iIdx); 002350 } 002351 002352 if( iStore>=p->pCsr->nField || iStore<0 ){ 002353 rc = SQLITE_RANGE; 002354 goto preupdate_new_out; 002355 } 002356 002357 if( p->op==SQLITE_INSERT ){ 002358 /* For an INSERT, memory cell p->iNewReg contains the serialized record 002359 ** that is being inserted. Deserialize it. */ 002360 UnpackedRecord *pUnpack = p->pNewUnpacked; 002361 if( !pUnpack ){ 002362 Mem *pData = &p->v->aMem[p->iNewReg]; 002363 rc = ExpandBlob(pData); 002364 if( rc!=SQLITE_OK ) goto preupdate_new_out; 002365 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 002366 if( !pUnpack ){ 002367 rc = SQLITE_NOMEM; 002368 goto preupdate_new_out; 002369 } 002370 p->pNewUnpacked = pUnpack; 002371 } 002372 pMem = &pUnpack->aMem[iStore]; 002373 if( iIdx==p->pTab->iPKey ){ 002374 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 002375 }else if( iStore>=pUnpack->nField ){ 002376 pMem = (sqlite3_value *)columnNullValue(); 002377 } 002378 }else{ 002379 /* For an UPDATE, memory cell (p->iNewReg+1+iStore) contains the required 002380 ** value. Make a copy of the cell contents and return a pointer to it. 002381 ** It is not safe to return a pointer to the memory cell itself as the 002382 ** caller may modify the value text encoding. 002383 */ 002384 assert( p->op==SQLITE_UPDATE ); 002385 if( !p->aNew ){ 002386 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 002387 if( !p->aNew ){ 002388 rc = SQLITE_NOMEM; 002389 goto preupdate_new_out; 002390 } 002391 } 002392 assert( iStore>=0 && iStore<p->pCsr->nField ); 002393 pMem = &p->aNew[iStore]; 002394 if( pMem->flags==0 ){ 002395 if( iIdx==p->pTab->iPKey ){ 002396 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 002397 }else{ 002398 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iStore]); 002399 if( rc!=SQLITE_OK ) goto preupdate_new_out; 002400 } 002401 } 002402 } 002403 *ppValue = pMem; 002404 002405 preupdate_new_out: 002406 sqlite3Error(db, rc); 002407 return sqlite3ApiExit(db, rc); 002408 } 002409 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002410 002411 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 002412 /* 002413 ** Return status data for a single loop within query pStmt. 002414 */ 002415 int sqlite3_stmt_scanstatus_v2( 002416 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 002417 int iScan, /* Index of loop to report on */ 002418 int iScanStatusOp, /* Which metric to return */ 002419 int flags, 002420 void *pOut /* OUT: Write the answer here */ 002421 ){ 002422 Vdbe *p = (Vdbe*)pStmt; 002423 VdbeOp *aOp; 002424 int nOp; 002425 ScanStatus *pScan = 0; 002426 int idx; 002427 002428 #ifdef SQLITE_ENABLE_API_ARMOR 002429 if( p==0 || pOut==0 002430 || iScanStatusOp<SQLITE_SCANSTAT_NLOOP 002431 || iScanStatusOp>SQLITE_SCANSTAT_NCYCLE ){ 002432 return 1; 002433 } 002434 #endif 002435 aOp = p->aOp; 002436 nOp = p->nOp; 002437 if( p->pFrame ){ 002438 VdbeFrame *pFrame; 002439 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 002440 aOp = pFrame->aOp; 002441 nOp = pFrame->nOp; 002442 } 002443 002444 if( iScan<0 ){ 002445 int ii; 002446 if( iScanStatusOp==SQLITE_SCANSTAT_NCYCLE ){ 002447 i64 res = 0; 002448 for(ii=0; ii<nOp; ii++){ 002449 res += aOp[ii].nCycle; 002450 } 002451 *(i64*)pOut = res; 002452 return 0; 002453 } 002454 return 1; 002455 } 002456 if( flags & SQLITE_SCANSTAT_COMPLEX ){ 002457 idx = iScan; 002458 }else{ 002459 /* If the COMPLEX flag is clear, then this function must ignore any 002460 ** ScanStatus structures with ScanStatus.addrLoop set to 0. */ 002461 for(idx=0; idx<p->nScan; idx++){ 002462 pScan = &p->aScan[idx]; 002463 if( pScan->zName ){ 002464 iScan--; 002465 if( iScan<0 ) break; 002466 } 002467 } 002468 } 002469 if( idx>=p->nScan ) return 1; 002470 assert( pScan==0 || pScan==&p->aScan[idx] ); 002471 pScan = &p->aScan[idx]; 002472 002473 switch( iScanStatusOp ){ 002474 case SQLITE_SCANSTAT_NLOOP: { 002475 if( pScan->addrLoop>0 ){ 002476 *(sqlite3_int64*)pOut = aOp[pScan->addrLoop].nExec; 002477 }else{ 002478 *(sqlite3_int64*)pOut = -1; 002479 } 002480 break; 002481 } 002482 case SQLITE_SCANSTAT_NVISIT: { 002483 if( pScan->addrVisit>0 ){ 002484 *(sqlite3_int64*)pOut = aOp[pScan->addrVisit].nExec; 002485 }else{ 002486 *(sqlite3_int64*)pOut = -1; 002487 } 002488 break; 002489 } 002490 case SQLITE_SCANSTAT_EST: { 002491 double r = 1.0; 002492 LogEst x = pScan->nEst; 002493 while( x<100 ){ 002494 x += 10; 002495 r *= 0.5; 002496 } 002497 *(double*)pOut = r*sqlite3LogEstToInt(x); 002498 break; 002499 } 002500 case SQLITE_SCANSTAT_NAME: { 002501 *(const char**)pOut = pScan->zName; 002502 break; 002503 } 002504 case SQLITE_SCANSTAT_EXPLAIN: { 002505 if( pScan->addrExplain ){ 002506 *(const char**)pOut = aOp[ pScan->addrExplain ].p4.z; 002507 }else{ 002508 *(const char**)pOut = 0; 002509 } 002510 break; 002511 } 002512 case SQLITE_SCANSTAT_SELECTID: { 002513 if( pScan->addrExplain ){ 002514 *(int*)pOut = aOp[ pScan->addrExplain ].p1; 002515 }else{ 002516 *(int*)pOut = -1; 002517 } 002518 break; 002519 } 002520 case SQLITE_SCANSTAT_PARENTID: { 002521 if( pScan->addrExplain ){ 002522 *(int*)pOut = aOp[ pScan->addrExplain ].p2; 002523 }else{ 002524 *(int*)pOut = -1; 002525 } 002526 break; 002527 } 002528 case SQLITE_SCANSTAT_NCYCLE: { 002529 i64 res = 0; 002530 if( pScan->aAddrRange[0]==0 ){ 002531 res = -1; 002532 }else{ 002533 int ii; 002534 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){ 002535 int iIns = pScan->aAddrRange[ii]; 002536 int iEnd = pScan->aAddrRange[ii+1]; 002537 if( iIns==0 ) break; 002538 if( iIns>0 ){ 002539 while( iIns<=iEnd ){ 002540 res += aOp[iIns].nCycle; 002541 iIns++; 002542 } 002543 }else{ 002544 int iOp; 002545 for(iOp=0; iOp<nOp; iOp++){ 002546 Op *pOp = &aOp[iOp]; 002547 if( pOp->p1!=iEnd ) continue; 002548 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_NCYCLE)==0 ){ 002549 continue; 002550 } 002551 res += aOp[iOp].nCycle; 002552 } 002553 } 002554 } 002555 } 002556 *(i64*)pOut = res; 002557 break; 002558 } 002559 default: { 002560 return 1; 002561 } 002562 } 002563 return 0; 002564 } 002565 002566 /* 002567 ** Return status data for a single loop within query pStmt. 002568 */ 002569 int sqlite3_stmt_scanstatus( 002570 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 002571 int iScan, /* Index of loop to report on */ 002572 int iScanStatusOp, /* Which metric to return */ 002573 void *pOut /* OUT: Write the answer here */ 002574 ){ 002575 return sqlite3_stmt_scanstatus_v2(pStmt, iScan, iScanStatusOp, 0, pOut); 002576 } 002577 002578 /* 002579 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 002580 */ 002581 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 002582 Vdbe *p = (Vdbe*)pStmt; 002583 int ii; 002584 for(ii=0; p!=0 && ii<p->nOp; ii++){ 002585 Op *pOp = &p->aOp[ii]; 002586 pOp->nExec = 0; 002587 pOp->nCycle = 0; 002588 } 002589 } 002590 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */