000001 /* 000002 ** 2003 September 6 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains code used for creating, destroying, and populating 000013 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 000014 */ 000015 #include "sqliteInt.h" 000016 #include "vdbeInt.h" 000017 000018 /* Forward references */ 000019 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 000020 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 000021 000022 /* 000023 ** Create a new virtual database engine. 000024 */ 000025 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 000026 sqlite3 *db = pParse->db; 000027 Vdbe *p; 000028 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 000029 if( p==0 ) return 0; 000030 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 000031 p->db = db; 000032 if( db->pVdbe ){ 000033 db->pVdbe->ppVPrev = &p->pVNext; 000034 } 000035 p->pVNext = db->pVdbe; 000036 p->ppVPrev = &db->pVdbe; 000037 db->pVdbe = p; 000038 assert( p->eVdbeState==VDBE_INIT_STATE ); 000039 p->pParse = pParse; 000040 pParse->pVdbe = p; 000041 assert( pParse->aLabel==0 ); 000042 assert( pParse->nLabel==0 ); 000043 assert( p->nOpAlloc==0 ); 000044 assert( pParse->szOpAlloc==0 ); 000045 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 000046 return p; 000047 } 000048 000049 /* 000050 ** Return the Parse object that owns a Vdbe object. 000051 */ 000052 Parse *sqlite3VdbeParser(Vdbe *p){ 000053 return p->pParse; 000054 } 000055 000056 /* 000057 ** Change the error string stored in Vdbe.zErrMsg 000058 */ 000059 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 000060 va_list ap; 000061 sqlite3DbFree(p->db, p->zErrMsg); 000062 va_start(ap, zFormat); 000063 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 000064 va_end(ap); 000065 } 000066 000067 /* 000068 ** Remember the SQL string for a prepared statement. 000069 */ 000070 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 000071 if( p==0 ) return; 000072 p->prepFlags = prepFlags; 000073 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 000074 p->expmask = 0; 000075 } 000076 assert( p->zSql==0 ); 000077 p->zSql = sqlite3DbStrNDup(p->db, z, n); 000078 } 000079 000080 #ifdef SQLITE_ENABLE_NORMALIZE 000081 /* 000082 ** Add a new element to the Vdbe->pDblStr list. 000083 */ 000084 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 000085 if( p ){ 000086 int n = sqlite3Strlen30(z); 000087 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 000088 sizeof(*pStr)+n+1-sizeof(pStr->z)); 000089 if( pStr ){ 000090 pStr->pNextStr = p->pDblStr; 000091 p->pDblStr = pStr; 000092 memcpy(pStr->z, z, n+1); 000093 } 000094 } 000095 } 000096 #endif 000097 000098 #ifdef SQLITE_ENABLE_NORMALIZE 000099 /* 000100 ** zId of length nId is a double-quoted identifier. Check to see if 000101 ** that identifier is really used as a string literal. 000102 */ 000103 int sqlite3VdbeUsesDoubleQuotedString( 000104 Vdbe *pVdbe, /* The prepared statement */ 000105 const char *zId /* The double-quoted identifier, already dequoted */ 000106 ){ 000107 DblquoteStr *pStr; 000108 assert( zId!=0 ); 000109 if( pVdbe->pDblStr==0 ) return 0; 000110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 000111 if( strcmp(zId, pStr->z)==0 ) return 1; 000112 } 000113 return 0; 000114 } 000115 #endif 000116 000117 /* 000118 ** Swap byte-code between two VDBE structures. 000119 ** 000120 ** This happens after pB was previously run and returned 000121 ** SQLITE_SCHEMA. The statement was then reprepared in pA. 000122 ** This routine transfers the new bytecode in pA over to pB 000123 ** so that pB can be run again. The old pB byte code is 000124 ** moved back to pA so that it will be cleaned up when pA is 000125 ** finalized. 000126 */ 000127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 000128 Vdbe tmp, *pTmp, **ppTmp; 000129 char *zTmp; 000130 assert( pA->db==pB->db ); 000131 tmp = *pA; 000132 *pA = *pB; 000133 *pB = tmp; 000134 pTmp = pA->pVNext; 000135 pA->pVNext = pB->pVNext; 000136 pB->pVNext = pTmp; 000137 ppTmp = pA->ppVPrev; 000138 pA->ppVPrev = pB->ppVPrev; 000139 pB->ppVPrev = ppTmp; 000140 zTmp = pA->zSql; 000141 pA->zSql = pB->zSql; 000142 pB->zSql = zTmp; 000143 #ifdef SQLITE_ENABLE_NORMALIZE 000144 zTmp = pA->zNormSql; 000145 pA->zNormSql = pB->zNormSql; 000146 pB->zNormSql = zTmp; 000147 #endif 000148 pB->expmask = pA->expmask; 000149 pB->prepFlags = pA->prepFlags; 000150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 000151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 000152 } 000153 000154 /* 000155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 000156 ** than its current size. nOp is guaranteed to be less than or equal 000157 ** to 1024/sizeof(Op). 000158 ** 000159 ** If an out-of-memory error occurs while resizing the array, return 000160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 000161 ** unchanged (this is so that any opcodes already allocated can be 000162 ** correctly deallocated along with the rest of the Vdbe). 000163 */ 000164 static int growOpArray(Vdbe *v, int nOp){ 000165 VdbeOp *pNew; 000166 Parse *p = v->pParse; 000167 000168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 000169 ** more frequent reallocs and hence provide more opportunities for 000170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 000171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 000172 ** by the minimum* amount required until the size reaches 512. Normal 000173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 000174 ** size of the op array or add 1KB of space, whichever is smaller. */ 000175 #ifdef SQLITE_TEST_REALLOC_STRESS 000176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 000177 : (sqlite3_int64)v->nOpAlloc+nOp); 000178 #else 000179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 000180 : (sqlite3_int64)(1024/sizeof(Op))); 000181 UNUSED_PARAMETER(nOp); 000182 #endif 000183 000184 /* Ensure that the size of a VDBE does not grow too large */ 000185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 000186 sqlite3OomFault(p->db); 000187 return SQLITE_NOMEM; 000188 } 000189 000190 assert( nOp<=(int)(1024/sizeof(Op)) ); 000191 assert( nNew>=(v->nOpAlloc+nOp) ); 000192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 000193 if( pNew ){ 000194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 000195 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 000196 v->aOp = pNew; 000197 } 000198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 000199 } 000200 000201 #ifdef SQLITE_DEBUG 000202 /* This routine is just a convenient place to set a breakpoint that will 000203 ** fire after each opcode is inserted and displayed using 000204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 000205 ** pOp are available to make the breakpoint conditional. 000206 ** 000207 ** Other useful labels for breakpoints include: 000208 ** test_trace_breakpoint(pc,pOp) 000209 ** sqlite3CorruptError(lineno) 000210 ** sqlite3MisuseError(lineno) 000211 ** sqlite3CantopenError(lineno) 000212 */ 000213 static void test_addop_breakpoint(int pc, Op *pOp){ 000214 static u64 n = 0; 000215 (void)pc; 000216 (void)pOp; 000217 n++; 000218 if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */ 000219 } 000220 #endif 000221 000222 /* 000223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the 000224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array 000225 ** before adding the new opcode. 000226 */ 000227 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 000228 assert( p->nOpAlloc<=p->nOp ); 000229 if( growOpArray(p, 1) ) return 1; 000230 assert( p->nOpAlloc>p->nOp ); 000231 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000232 } 000233 static SQLITE_NOINLINE int addOp4IntSlow( 000234 Vdbe *p, /* Add the opcode to this VM */ 000235 int op, /* The new opcode */ 000236 int p1, /* The P1 operand */ 000237 int p2, /* The P2 operand */ 000238 int p3, /* The P3 operand */ 000239 int p4 /* The P4 operand as an integer */ 000240 ){ 000241 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000242 if( p->db->mallocFailed==0 ){ 000243 VdbeOp *pOp = &p->aOp[addr]; 000244 pOp->p4type = P4_INT32; 000245 pOp->p4.i = p4; 000246 } 000247 return addr; 000248 } 000249 000250 000251 /* 000252 ** Add a new instruction to the list of instructions current in the 000253 ** VDBE. Return the address of the new instruction. 000254 ** 000255 ** Parameters: 000256 ** 000257 ** p Pointer to the VDBE 000258 ** 000259 ** op The opcode for this instruction 000260 ** 000261 ** p1, p2, p3, p4 Operands 000262 */ 000263 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 000264 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 000265 } 000266 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 000267 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 000268 } 000269 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 000270 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 000271 } 000272 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 000273 int i; 000274 VdbeOp *pOp; 000275 000276 i = p->nOp; 000277 assert( p->eVdbeState==VDBE_INIT_STATE ); 000278 assert( op>=0 && op<0xff ); 000279 if( p->nOpAlloc<=i ){ 000280 return growOp3(p, op, p1, p2, p3); 000281 } 000282 assert( p->aOp!=0 ); 000283 p->nOp++; 000284 pOp = &p->aOp[i]; 000285 assert( pOp!=0 ); 000286 pOp->opcode = (u8)op; 000287 pOp->p5 = 0; 000288 pOp->p1 = p1; 000289 pOp->p2 = p2; 000290 pOp->p3 = p3; 000291 pOp->p4.p = 0; 000292 pOp->p4type = P4_NOTUSED; 000293 000294 /* Replicate this logic in sqlite3VdbeAddOp4Int() 000295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ 000296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000297 pOp->zComment = 0; 000298 #endif 000299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000300 pOp->nExec = 0; 000301 pOp->nCycle = 0; 000302 #endif 000303 #ifdef SQLITE_DEBUG 000304 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000305 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 000306 test_addop_breakpoint(i, &p->aOp[i]); 000307 } 000308 #endif 000309 #ifdef SQLITE_VDBE_COVERAGE 000310 pOp->iSrcLine = 0; 000311 #endif 000312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 000313 ** Replicate in sqlite3VdbeAddOp4Int() */ 000314 000315 return i; 000316 } 000317 int sqlite3VdbeAddOp4Int( 000318 Vdbe *p, /* Add the opcode to this VM */ 000319 int op, /* The new opcode */ 000320 int p1, /* The P1 operand */ 000321 int p2, /* The P2 operand */ 000322 int p3, /* The P3 operand */ 000323 int p4 /* The P4 operand as an integer */ 000324 ){ 000325 int i; 000326 VdbeOp *pOp; 000327 000328 i = p->nOp; 000329 if( p->nOpAlloc<=i ){ 000330 return addOp4IntSlow(p, op, p1, p2, p3, p4); 000331 } 000332 p->nOp++; 000333 pOp = &p->aOp[i]; 000334 assert( pOp!=0 ); 000335 pOp->opcode = (u8)op; 000336 pOp->p5 = 0; 000337 pOp->p1 = p1; 000338 pOp->p2 = p2; 000339 pOp->p3 = p3; 000340 pOp->p4.i = p4; 000341 pOp->p4type = P4_INT32; 000342 000343 /* Replicate this logic in sqlite3VdbeAddOp3() 000344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ 000345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000346 pOp->zComment = 0; 000347 #endif 000348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000349 pOp->nExec = 0; 000350 pOp->nCycle = 0; 000351 #endif 000352 #ifdef SQLITE_DEBUG 000353 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000354 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 000355 test_addop_breakpoint(i, &p->aOp[i]); 000356 } 000357 #endif 000358 #ifdef SQLITE_VDBE_COVERAGE 000359 pOp->iSrcLine = 0; 000360 #endif 000361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 000362 ** Replicate in sqlite3VdbeAddOp3() */ 000363 000364 return i; 000365 } 000366 000367 /* Generate code for an unconditional jump to instruction iDest 000368 */ 000369 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 000370 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 000371 } 000372 000373 /* Generate code to cause the string zStr to be loaded into 000374 ** register iDest 000375 */ 000376 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 000377 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 000378 } 000379 000380 /* 000381 ** Generate code that initializes multiple registers to string or integer 000382 ** constants. The registers begin with iDest and increase consecutively. 000383 ** One register is initialized for each characgter in zTypes[]. For each 000384 ** "s" character in zTypes[], the register is a string if the argument is 000385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 000386 ** in zTypes[], the register is initialized to an integer. 000387 ** 000388 ** If the input string does not end with "X" then an OP_ResultRow instruction 000389 ** is generated for the values inserted. 000390 */ 000391 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 000392 va_list ap; 000393 int i; 000394 char c; 000395 va_start(ap, zTypes); 000396 for(i=0; (c = zTypes[i])!=0; i++){ 000397 if( c=='s' ){ 000398 const char *z = va_arg(ap, const char*); 000399 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 000400 }else if( c=='i' ){ 000401 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 000402 }else{ 000403 goto skip_op_resultrow; 000404 } 000405 } 000406 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 000407 skip_op_resultrow: 000408 va_end(ap); 000409 } 000410 000411 /* 000412 ** Add an opcode that includes the p4 value as a pointer. 000413 */ 000414 int sqlite3VdbeAddOp4( 000415 Vdbe *p, /* Add the opcode to this VM */ 000416 int op, /* The new opcode */ 000417 int p1, /* The P1 operand */ 000418 int p2, /* The P2 operand */ 000419 int p3, /* The P3 operand */ 000420 const char *zP4, /* The P4 operand */ 000421 int p4type /* P4 operand type */ 000422 ){ 000423 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000424 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 000425 return addr; 000426 } 000427 000428 /* 000429 ** Add an OP_Function or OP_PureFunc opcode. 000430 ** 000431 ** The eCallCtx argument is information (typically taken from Expr.op2) 000432 ** that describes the calling context of the function. 0 means a general 000433 ** function call. NC_IsCheck means called by a check constraint, 000434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 000435 ** means in the WHERE clause of a partial index. NC_GenCol means called 000436 ** while computing a generated column value. 0 is the usual case. 000437 */ 000438 int sqlite3VdbeAddFunctionCall( 000439 Parse *pParse, /* Parsing context */ 000440 int p1, /* Constant argument mask */ 000441 int p2, /* First argument register */ 000442 int p3, /* Register into which results are written */ 000443 int nArg, /* Number of argument */ 000444 const FuncDef *pFunc, /* The function to be invoked */ 000445 int eCallCtx /* Calling context */ 000446 ){ 000447 Vdbe *v = pParse->pVdbe; 000448 int nByte; 000449 int addr; 000450 sqlite3_context *pCtx; 000451 assert( v ); 000452 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 000453 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 000454 if( pCtx==0 ){ 000455 assert( pParse->db->mallocFailed ); 000456 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 000457 return 0; 000458 } 000459 pCtx->pOut = 0; 000460 pCtx->pFunc = (FuncDef*)pFunc; 000461 pCtx->pVdbe = 0; 000462 pCtx->isError = 0; 000463 pCtx->argc = nArg; 000464 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 000465 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 000466 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 000467 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 000468 sqlite3MayAbort(pParse); 000469 return addr; 000470 } 000471 000472 /* 000473 ** Add an opcode that includes the p4 value with a P4_INT64 or 000474 ** P4_REAL type. 000475 */ 000476 int sqlite3VdbeAddOp4Dup8( 000477 Vdbe *p, /* Add the opcode to this VM */ 000478 int op, /* The new opcode */ 000479 int p1, /* The P1 operand */ 000480 int p2, /* The P2 operand */ 000481 int p3, /* The P3 operand */ 000482 const u8 *zP4, /* The P4 operand */ 000483 int p4type /* P4 operand type */ 000484 ){ 000485 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 000486 if( p4copy ) memcpy(p4copy, zP4, 8); 000487 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 000488 } 000489 000490 #ifndef SQLITE_OMIT_EXPLAIN 000491 /* 000492 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 000493 ** 0 means "none". 000494 */ 000495 int sqlite3VdbeExplainParent(Parse *pParse){ 000496 VdbeOp *pOp; 000497 if( pParse->addrExplain==0 ) return 0; 000498 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 000499 return pOp->p2; 000500 } 000501 000502 /* 000503 ** Set a debugger breakpoint on the following routine in order to 000504 ** monitor the EXPLAIN QUERY PLAN code generation. 000505 */ 000506 #if defined(SQLITE_DEBUG) 000507 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 000508 (void)z1; 000509 (void)z2; 000510 } 000511 #endif 000512 000513 /* 000514 ** Add a new OP_Explain opcode. 000515 ** 000516 ** If the bPush flag is true, then make this opcode the parent for 000517 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 000518 */ 000519 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 000520 int addr = 0; 000521 #if !defined(SQLITE_DEBUG) 000522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 000523 ** But omit them (for performance) during production builds */ 000524 if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) 000525 #endif 000526 { 000527 char *zMsg; 000528 Vdbe *v; 000529 va_list ap; 000530 int iThis; 000531 va_start(ap, zFmt); 000532 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 000533 va_end(ap); 000534 v = pParse->pVdbe; 000535 iThis = v->nOp; 000536 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 000537 zMsg, P4_DYNAMIC); 000538 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); 000539 if( bPush){ 000540 pParse->addrExplain = iThis; 000541 } 000542 sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0); 000543 } 000544 return addr; 000545 } 000546 000547 /* 000548 ** Pop the EXPLAIN QUERY PLAN stack one level. 000549 */ 000550 void sqlite3VdbeExplainPop(Parse *pParse){ 000551 sqlite3ExplainBreakpoint("POP", 0); 000552 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 000553 } 000554 #endif /* SQLITE_OMIT_EXPLAIN */ 000555 000556 /* 000557 ** Add an OP_ParseSchema opcode. This routine is broken out from 000558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 000559 ** as having been used. 000560 ** 000561 ** The zWhere string must have been obtained from sqlite3_malloc(). 000562 ** This routine will take ownership of the allocated memory. 000563 */ 000564 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 000565 int j; 000566 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 000567 sqlite3VdbeChangeP5(p, p5); 000568 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 000569 sqlite3MayAbort(p->pParse); 000570 } 000571 000572 /* Insert the end of a co-routine 000573 */ 000574 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 000575 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 000576 000577 /* Clear the temporary register cache, thereby ensuring that each 000578 ** co-routine has its own independent set of registers, because co-routines 000579 ** might expect their registers to be preserved across an OP_Yield, and 000580 ** that could cause problems if two or more co-routines are using the same 000581 ** temporary register. 000582 */ 000583 v->pParse->nTempReg = 0; 000584 v->pParse->nRangeReg = 0; 000585 } 000586 000587 /* 000588 ** Create a new symbolic label for an instruction that has yet to be 000589 ** coded. The symbolic label is really just a negative number. The 000590 ** label can be used as the P2 value of an operation. Later, when 000591 ** the label is resolved to a specific address, the VDBE will scan 000592 ** through its operation list and change all values of P2 which match 000593 ** the label into the resolved address. 000594 ** 000595 ** The VDBE knows that a P2 value is a label because labels are 000596 ** always negative and P2 values are suppose to be non-negative. 000597 ** Hence, a negative P2 value is a label that has yet to be resolved. 000598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 000599 ** property. 000600 ** 000601 ** Variable usage notes: 000602 ** 000603 ** Parse.aLabel[x] Stores the address that the x-th label resolves 000604 ** into. For testing (SQLITE_DEBUG), unresolved 000605 ** labels stores -1, but that is not required. 000606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 000607 ** Parse.nLabel The *negative* of the number of labels that have 000608 ** been issued. The negative is stored because 000609 ** that gives a performance improvement over storing 000610 ** the equivalent positive value. 000611 */ 000612 int sqlite3VdbeMakeLabel(Parse *pParse){ 000613 return --pParse->nLabel; 000614 } 000615 000616 /* 000617 ** Resolve label "x" to be the address of the next instruction to 000618 ** be inserted. The parameter "x" must have been obtained from 000619 ** a prior call to sqlite3VdbeMakeLabel(). 000620 */ 000621 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 000622 int nNewSize = 10 - p->nLabel; 000623 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 000624 nNewSize*sizeof(p->aLabel[0])); 000625 if( p->aLabel==0 ){ 000626 p->nLabelAlloc = 0; 000627 }else{ 000628 #ifdef SQLITE_DEBUG 000629 int i; 000630 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 000631 #endif 000632 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){ 000633 sqlite3ProgressCheck(p); 000634 } 000635 p->nLabelAlloc = nNewSize; 000636 p->aLabel[j] = v->nOp; 000637 } 000638 } 000639 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 000640 Parse *p = v->pParse; 000641 int j = ADDR(x); 000642 assert( v->eVdbeState==VDBE_INIT_STATE ); 000643 assert( j<-p->nLabel ); 000644 assert( j>=0 ); 000645 #ifdef SQLITE_DEBUG 000646 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000647 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 000648 } 000649 #endif 000650 if( p->nLabelAlloc + p->nLabel < 0 ){ 000651 resizeResolveLabel(p,v,j); 000652 }else{ 000653 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 000654 p->aLabel[j] = v->nOp; 000655 } 000656 } 000657 000658 /* 000659 ** Mark the VDBE as one that can only be run one time. 000660 */ 000661 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 000662 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 000663 } 000664 000665 /* 000666 ** Mark the VDBE as one that can be run multiple times. 000667 */ 000668 void sqlite3VdbeReusable(Vdbe *p){ 000669 int i; 000670 for(i=1; ALWAYS(i<p->nOp); i++){ 000671 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 000672 p->aOp[1].opcode = OP_Noop; 000673 break; 000674 } 000675 } 000676 } 000677 000678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 000679 000680 /* 000681 ** The following type and function are used to iterate through all opcodes 000682 ** in a Vdbe main program and each of the sub-programs (triggers) it may 000683 ** invoke directly or indirectly. It should be used as follows: 000684 ** 000685 ** Op *pOp; 000686 ** VdbeOpIter sIter; 000687 ** 000688 ** memset(&sIter, 0, sizeof(sIter)); 000689 ** sIter.v = v; // v is of type Vdbe* 000690 ** while( (pOp = opIterNext(&sIter)) ){ 000691 ** // Do something with pOp 000692 ** } 000693 ** sqlite3DbFree(v->db, sIter.apSub); 000694 ** 000695 */ 000696 typedef struct VdbeOpIter VdbeOpIter; 000697 struct VdbeOpIter { 000698 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 000699 SubProgram **apSub; /* Array of subprograms */ 000700 int nSub; /* Number of entries in apSub */ 000701 int iAddr; /* Address of next instruction to return */ 000702 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 000703 }; 000704 static Op *opIterNext(VdbeOpIter *p){ 000705 Vdbe *v = p->v; 000706 Op *pRet = 0; 000707 Op *aOp; 000708 int nOp; 000709 000710 if( p->iSub<=p->nSub ){ 000711 000712 if( p->iSub==0 ){ 000713 aOp = v->aOp; 000714 nOp = v->nOp; 000715 }else{ 000716 aOp = p->apSub[p->iSub-1]->aOp; 000717 nOp = p->apSub[p->iSub-1]->nOp; 000718 } 000719 assert( p->iAddr<nOp ); 000720 000721 pRet = &aOp[p->iAddr]; 000722 p->iAddr++; 000723 if( p->iAddr==nOp ){ 000724 p->iSub++; 000725 p->iAddr = 0; 000726 } 000727 000728 if( pRet->p4type==P4_SUBPROGRAM ){ 000729 int nByte = (p->nSub+1)*sizeof(SubProgram*); 000730 int j; 000731 for(j=0; j<p->nSub; j++){ 000732 if( p->apSub[j]==pRet->p4.pProgram ) break; 000733 } 000734 if( j==p->nSub ){ 000735 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 000736 if( !p->apSub ){ 000737 pRet = 0; 000738 }else{ 000739 p->apSub[p->nSub++] = pRet->p4.pProgram; 000740 } 000741 } 000742 } 000743 } 000744 000745 return pRet; 000746 } 000747 000748 /* 000749 ** Check if the program stored in the VM associated with pParse may 000750 ** throw an ABORT exception (causing the statement, but not entire transaction 000751 ** to be rolled back). This condition is true if the main program or any 000752 ** sub-programs contains any of the following: 000753 ** 000754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 000755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 000756 ** * OP_Destroy 000757 ** * OP_VUpdate 000758 ** * OP_VCreate 000759 ** * OP_VRename 000760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 000761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 000762 ** (for CREATE TABLE AS SELECT ...) 000763 ** 000764 ** Then check that the value of Parse.mayAbort is true if an 000765 ** ABORT may be thrown, or false otherwise. Return true if it does 000766 ** match, or false otherwise. This function is intended to be used as 000767 ** part of an assert statement in the compiler. Similar to: 000768 ** 000769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 000770 */ 000771 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 000772 int hasAbort = 0; 000773 int hasFkCounter = 0; 000774 int hasCreateTable = 0; 000775 int hasCreateIndex = 0; 000776 int hasInitCoroutine = 0; 000777 Op *pOp; 000778 VdbeOpIter sIter; 000779 000780 if( v==0 ) return 0; 000781 memset(&sIter, 0, sizeof(sIter)); 000782 sIter.v = v; 000783 000784 while( (pOp = opIterNext(&sIter))!=0 ){ 000785 int opcode = pOp->opcode; 000786 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 000787 || opcode==OP_VDestroy 000788 || opcode==OP_VCreate 000789 || opcode==OP_ParseSchema 000790 || opcode==OP_Function || opcode==OP_PureFunc 000791 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 000792 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 000793 ){ 000794 hasAbort = 1; 000795 break; 000796 } 000797 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 000798 if( mayAbort ){ 000799 /* hasCreateIndex may also be set for some DELETE statements that use 000800 ** OP_Clear. So this routine may end up returning true in the case 000801 ** where a "DELETE FROM tbl" has a statement-journal but does not 000802 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 000803 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 000804 if( opcode==OP_Clear ) hasCreateIndex = 1; 000805 } 000806 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 000807 #ifndef SQLITE_OMIT_FOREIGN_KEY 000808 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 000809 hasFkCounter = 1; 000810 } 000811 #endif 000812 } 000813 sqlite3DbFree(v->db, sIter.apSub); 000814 000815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 000816 ** If malloc failed, then the while() loop above may not have iterated 000817 ** through all opcodes and hasAbort may be set incorrectly. Return 000818 ** true for this case to prevent the assert() in the callers frame 000819 ** from failing. */ 000820 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 000821 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 000822 ); 000823 } 000824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 000825 000826 #ifdef SQLITE_DEBUG 000827 /* 000828 ** Increment the nWrite counter in the VDBE if the cursor is not an 000829 ** ephemeral cursor, or if the cursor argument is NULL. 000830 */ 000831 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 000832 if( pC==0 000833 || (pC->eCurType!=CURTYPE_SORTER 000834 && pC->eCurType!=CURTYPE_PSEUDO 000835 && !pC->isEphemeral) 000836 ){ 000837 p->nWrite++; 000838 } 000839 } 000840 #endif 000841 000842 #ifdef SQLITE_DEBUG 000843 /* 000844 ** Assert if an Abort at this point in time might result in a corrupt 000845 ** database. 000846 */ 000847 void sqlite3VdbeAssertAbortable(Vdbe *p){ 000848 assert( p->nWrite==0 || p->usesStmtJournal ); 000849 } 000850 #endif 000851 000852 /* 000853 ** This routine is called after all opcodes have been inserted. It loops 000854 ** through all the opcodes and fixes up some details. 000855 ** 000856 ** (1) For each jump instruction with a negative P2 value (a label) 000857 ** resolve the P2 value to an actual address. 000858 ** 000859 ** (2) Compute the maximum number of arguments used by any SQL function 000860 ** and store that value in *pMaxFuncArgs. 000861 ** 000862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 000863 ** indicate what the prepared statement actually does. 000864 ** 000865 ** (4) (discontinued) 000866 ** 000867 ** (5) Reclaim the memory allocated for storing labels. 000868 ** 000869 ** This routine will only function correctly if the mkopcodeh.tcl generator 000870 ** script numbers the opcodes correctly. Changes to this routine must be 000871 ** coordinated with changes to mkopcodeh.tcl. 000872 */ 000873 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 000874 int nMaxArgs = *pMaxFuncArgs; 000875 Op *pOp; 000876 Parse *pParse = p->pParse; 000877 int *aLabel = pParse->aLabel; 000878 000879 assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ 000880 p->readOnly = 1; 000881 p->bIsReader = 0; 000882 pOp = &p->aOp[p->nOp-1]; 000883 assert( p->aOp[0].opcode==OP_Init ); 000884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){ 000885 /* Only JUMP opcodes and the short list of special opcodes in the switch 000886 ** below need to be considered. The mkopcodeh.tcl generator script groups 000887 ** all these opcodes together near the front of the opcode list. Skip 000888 ** any opcode that does not need processing by virtual of the fact that 000889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 000890 */ 000891 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 000892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 000893 ** cases from this switch! */ 000894 switch( pOp->opcode ){ 000895 case OP_Transaction: { 000896 if( pOp->p2!=0 ) p->readOnly = 0; 000897 /* no break */ deliberate_fall_through 000898 } 000899 case OP_AutoCommit: 000900 case OP_Savepoint: { 000901 p->bIsReader = 1; 000902 break; 000903 } 000904 #ifndef SQLITE_OMIT_WAL 000905 case OP_Checkpoint: 000906 #endif 000907 case OP_Vacuum: 000908 case OP_JournalMode: { 000909 p->readOnly = 0; 000910 p->bIsReader = 1; 000911 break; 000912 } 000913 case OP_Init: { 000914 assert( pOp->p2>=0 ); 000915 goto resolve_p2_values_loop_exit; 000916 } 000917 #ifndef SQLITE_OMIT_VIRTUALTABLE 000918 case OP_VUpdate: { 000919 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 000920 break; 000921 } 000922 case OP_VFilter: { 000923 int n; 000924 assert( (pOp - p->aOp) >= 3 ); 000925 assert( pOp[-1].opcode==OP_Integer ); 000926 n = pOp[-1].p1; 000927 if( n>nMaxArgs ) nMaxArgs = n; 000928 /* Fall through into the default case */ 000929 /* no break */ deliberate_fall_through 000930 } 000931 #endif 000932 default: { 000933 if( pOp->p2<0 ){ 000934 /* The mkopcodeh.tcl script has so arranged things that the only 000935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 000936 ** have non-negative values for P2. */ 000937 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 000938 assert( ADDR(pOp->p2)<-pParse->nLabel ); 000939 assert( aLabel!=0 ); /* True because of tag-20230419-1 */ 000940 pOp->p2 = aLabel[ADDR(pOp->p2)]; 000941 } 000942 000943 /* OPFLG_JUMP opcodes never have P2==0, though OPFLG_JUMP0 opcodes 000944 ** might */ 000945 assert( pOp->p2>0 000946 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP0)!=0 ); 000947 000948 /* Jumps never go off the end of the bytecode array */ 000949 assert( pOp->p2<p->nOp 000950 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)==0 ); 000951 break; 000952 } 000953 } 000954 /* The mkopcodeh.tcl script has so arranged things that the only 000955 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 000956 ** have non-negative values for P2. */ 000957 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 000958 } 000959 assert( pOp>p->aOp ); 000960 pOp--; 000961 } 000962 resolve_p2_values_loop_exit: 000963 if( aLabel ){ 000964 sqlite3DbNNFreeNN(p->db, pParse->aLabel); 000965 pParse->aLabel = 0; 000966 } 000967 pParse->nLabel = 0; 000968 *pMaxFuncArgs = nMaxArgs; 000969 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 000970 } 000971 000972 #ifdef SQLITE_DEBUG 000973 /* 000974 ** Check to see if a subroutine contains a jump to a location outside of 000975 ** the subroutine. If a jump outside the subroutine is detected, add code 000976 ** that will cause the program to halt with an error message. 000977 ** 000978 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 000979 ** locations within the subroutine are acceptable. iRetReg is a register 000980 ** that contains the return address. Jumps to outside the range of iFirst 000981 ** through iLast are also acceptable as long as the jump destination is 000982 ** an OP_Return to iReturnAddr. 000983 ** 000984 ** A jump to an unresolved label means that the jump destination will be 000985 ** beyond the current address. That is normally a jump to an early 000986 ** termination and is consider acceptable. 000987 ** 000988 ** This routine only runs during debug builds. The purpose is (of course) 000989 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 000990 ** is generated rather than an assert() or other error, so that ".eqp full" 000991 ** will still work to show the original bytecode, to aid in debugging. 000992 */ 000993 void sqlite3VdbeNoJumpsOutsideSubrtn( 000994 Vdbe *v, /* The byte-code program under construction */ 000995 int iFirst, /* First opcode of the subroutine */ 000996 int iLast, /* Last opcode of the subroutine */ 000997 int iRetReg /* Subroutine return address register */ 000998 ){ 000999 VdbeOp *pOp; 001000 Parse *pParse; 001001 int i; 001002 sqlite3_str *pErr = 0; 001003 assert( v!=0 ); 001004 pParse = v->pParse; 001005 assert( pParse!=0 ); 001006 if( pParse->nErr ) return; 001007 assert( iLast>=iFirst ); 001008 assert( iLast<v->nOp ); 001009 pOp = &v->aOp[iFirst]; 001010 for(i=iFirst; i<=iLast; i++, pOp++){ 001011 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 001012 int iDest = pOp->p2; /* Jump destination */ 001013 if( iDest==0 ) continue; 001014 if( pOp->opcode==OP_Gosub ) continue; 001015 if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){ 001016 /* This is a deliberately taken illegal branch. tag-20230325-2 */ 001017 continue; 001018 } 001019 if( iDest<0 ){ 001020 int j = ADDR(iDest); 001021 assert( j>=0 ); 001022 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 001023 continue; 001024 } 001025 iDest = pParse->aLabel[j]; 001026 } 001027 if( iDest<iFirst || iDest>iLast ){ 001028 int j = iDest; 001029 for(; j<v->nOp; j++){ 001030 VdbeOp *pX = &v->aOp[j]; 001031 if( pX->opcode==OP_Return ){ 001032 if( pX->p1==iRetReg ) break; 001033 continue; 001034 } 001035 if( pX->opcode==OP_Noop ) continue; 001036 if( pX->opcode==OP_Explain ) continue; 001037 if( pErr==0 ){ 001038 pErr = sqlite3_str_new(0); 001039 }else{ 001040 sqlite3_str_appendchar(pErr, 1, '\n'); 001041 } 001042 sqlite3_str_appendf(pErr, 001043 "Opcode at %d jumps to %d which is outside the " 001044 "subroutine at %d..%d", 001045 i, iDest, iFirst, iLast); 001046 break; 001047 } 001048 } 001049 } 001050 } 001051 if( pErr ){ 001052 char *zErr = sqlite3_str_finish(pErr); 001053 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 001054 sqlite3_free(zErr); 001055 sqlite3MayAbort(pParse); 001056 } 001057 } 001058 #endif /* SQLITE_DEBUG */ 001059 001060 /* 001061 ** Return the address of the next instruction to be inserted. 001062 */ 001063 int sqlite3VdbeCurrentAddr(Vdbe *p){ 001064 assert( p->eVdbeState==VDBE_INIT_STATE ); 001065 return p->nOp; 001066 } 001067 001068 /* 001069 ** Verify that at least N opcode slots are available in p without 001070 ** having to malloc for more space (except when compiled using 001071 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 001072 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 001073 ** fail due to a OOM fault and hence that the return value from 001074 ** sqlite3VdbeAddOpList() will always be non-NULL. 001075 */ 001076 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 001077 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 001078 assert( p->nOp + N <= p->nOpAlloc ); 001079 } 001080 #endif 001081 001082 /* 001083 ** Verify that the VM passed as the only argument does not contain 001084 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 001085 ** by code in pragma.c to ensure that the implementation of certain 001086 ** pragmas comports with the flags specified in the mkpragmatab.tcl 001087 ** script. 001088 */ 001089 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 001090 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 001091 int i; 001092 for(i=0; i<p->nOp; i++){ 001093 assert( p->aOp[i].opcode!=OP_ResultRow ); 001094 } 001095 } 001096 #endif 001097 001098 /* 001099 ** Generate code (a single OP_Abortable opcode) that will 001100 ** verify that the VDBE program can safely call Abort in the current 001101 ** context. 001102 */ 001103 #if defined(SQLITE_DEBUG) 001104 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 001105 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 001106 } 001107 #endif 001108 001109 /* 001110 ** This function returns a pointer to the array of opcodes associated with 001111 ** the Vdbe passed as the first argument. It is the callers responsibility 001112 ** to arrange for the returned array to be eventually freed using the 001113 ** vdbeFreeOpArray() function. 001114 ** 001115 ** Before returning, *pnOp is set to the number of entries in the returned 001116 ** array. Also, *pnMaxArg is set to the larger of its current value and 001117 ** the number of entries in the Vdbe.apArg[] array required to execute the 001118 ** returned program. 001119 */ 001120 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 001121 VdbeOp *aOp = p->aOp; 001122 assert( aOp && !p->db->mallocFailed ); 001123 001124 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 001125 assert( DbMaskAllZero(p->btreeMask) ); 001126 001127 resolveP2Values(p, pnMaxArg); 001128 *pnOp = p->nOp; 001129 p->aOp = 0; 001130 return aOp; 001131 } 001132 001133 /* 001134 ** Add a whole list of operations to the operation stack. Return a 001135 ** pointer to the first operation inserted. 001136 ** 001137 ** Non-zero P2 arguments to jump instructions are automatically adjusted 001138 ** so that the jump target is relative to the first operation inserted. 001139 */ 001140 VdbeOp *sqlite3VdbeAddOpList( 001141 Vdbe *p, /* Add opcodes to the prepared statement */ 001142 int nOp, /* Number of opcodes to add */ 001143 VdbeOpList const *aOp, /* The opcodes to be added */ 001144 int iLineno /* Source-file line number of first opcode */ 001145 ){ 001146 int i; 001147 VdbeOp *pOut, *pFirst; 001148 assert( nOp>0 ); 001149 assert( p->eVdbeState==VDBE_INIT_STATE ); 001150 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 001151 return 0; 001152 } 001153 pFirst = pOut = &p->aOp[p->nOp]; 001154 for(i=0; i<nOp; i++, aOp++, pOut++){ 001155 pOut->opcode = aOp->opcode; 001156 pOut->p1 = aOp->p1; 001157 pOut->p2 = aOp->p2; 001158 assert( aOp->p2>=0 ); 001159 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 001160 pOut->p2 += p->nOp; 001161 } 001162 pOut->p3 = aOp->p3; 001163 pOut->p4type = P4_NOTUSED; 001164 pOut->p4.p = 0; 001165 pOut->p5 = 0; 001166 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001167 pOut->zComment = 0; 001168 #endif 001169 #ifdef SQLITE_VDBE_COVERAGE 001170 pOut->iSrcLine = iLineno+i; 001171 #else 001172 (void)iLineno; 001173 #endif 001174 #ifdef SQLITE_DEBUG 001175 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 001176 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 001177 } 001178 #endif 001179 } 001180 p->nOp += nOp; 001181 return pFirst; 001182 } 001183 001184 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 001185 /* 001186 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 001187 */ 001188 void sqlite3VdbeScanStatus( 001189 Vdbe *p, /* VM to add scanstatus() to */ 001190 int addrExplain, /* Address of OP_Explain (or 0) */ 001191 int addrLoop, /* Address of loop counter */ 001192 int addrVisit, /* Address of rows visited counter */ 001193 LogEst nEst, /* Estimated number of output rows */ 001194 const char *zName /* Name of table or index being scanned */ 001195 ){ 001196 if( IS_STMT_SCANSTATUS(p->db) ){ 001197 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 001198 ScanStatus *aNew; 001199 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 001200 if( aNew ){ 001201 ScanStatus *pNew = &aNew[p->nScan++]; 001202 memset(pNew, 0, sizeof(ScanStatus)); 001203 pNew->addrExplain = addrExplain; 001204 pNew->addrLoop = addrLoop; 001205 pNew->addrVisit = addrVisit; 001206 pNew->nEst = nEst; 001207 pNew->zName = sqlite3DbStrDup(p->db, zName); 001208 p->aScan = aNew; 001209 } 001210 } 001211 } 001212 001213 /* 001214 ** Add the range of instructions from addrStart to addrEnd (inclusive) to 001215 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters 001216 ** associated with the OP_Explain instruction at addrExplain. The 001217 ** sum of the sqlite3Hwtime() values for each of these instructions 001218 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests. 001219 */ 001220 void sqlite3VdbeScanStatusRange( 001221 Vdbe *p, 001222 int addrExplain, 001223 int addrStart, 001224 int addrEnd 001225 ){ 001226 if( IS_STMT_SCANSTATUS(p->db) ){ 001227 ScanStatus *pScan = 0; 001228 int ii; 001229 for(ii=p->nScan-1; ii>=0; ii--){ 001230 pScan = &p->aScan[ii]; 001231 if( pScan->addrExplain==addrExplain ) break; 001232 pScan = 0; 001233 } 001234 if( pScan ){ 001235 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1; 001236 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){ 001237 if( pScan->aAddrRange[ii]==0 ){ 001238 pScan->aAddrRange[ii] = addrStart; 001239 pScan->aAddrRange[ii+1] = addrEnd; 001240 break; 001241 } 001242 } 001243 } 001244 } 001245 } 001246 001247 /* 001248 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW 001249 ** counters for the query element associated with the OP_Explain at 001250 ** addrExplain. 001251 */ 001252 void sqlite3VdbeScanStatusCounters( 001253 Vdbe *p, 001254 int addrExplain, 001255 int addrLoop, 001256 int addrVisit 001257 ){ 001258 if( IS_STMT_SCANSTATUS(p->db) ){ 001259 ScanStatus *pScan = 0; 001260 int ii; 001261 for(ii=p->nScan-1; ii>=0; ii--){ 001262 pScan = &p->aScan[ii]; 001263 if( pScan->addrExplain==addrExplain ) break; 001264 pScan = 0; 001265 } 001266 if( pScan ){ 001267 if( addrLoop>0 ) pScan->addrLoop = addrLoop; 001268 if( addrVisit>0 ) pScan->addrVisit = addrVisit; 001269 } 001270 } 001271 } 001272 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */ 001273 001274 001275 /* 001276 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 001277 ** for a specific instruction. 001278 */ 001279 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 001280 assert( addr>=0 ); 001281 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 001282 } 001283 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 001284 assert( addr>=0 ); 001285 sqlite3VdbeGetOp(p,addr)->p1 = val; 001286 } 001287 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 001288 assert( addr>=0 || p->db->mallocFailed ); 001289 sqlite3VdbeGetOp(p,addr)->p2 = val; 001290 } 001291 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 001292 assert( addr>=0 ); 001293 sqlite3VdbeGetOp(p,addr)->p3 = val; 001294 } 001295 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 001296 assert( p->nOp>0 || p->db->mallocFailed ); 001297 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 001298 } 001299 001300 /* 001301 ** If the previous opcode is an OP_Column that delivers results 001302 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that 001303 ** opcode. 001304 */ 001305 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ 001306 VdbeOp *pOp = sqlite3VdbeGetLastOp(p); 001307 if( pOp->p3==iDest && pOp->opcode==OP_Column ){ 001308 pOp->p5 |= OPFLAG_TYPEOFARG; 001309 } 001310 } 001311 001312 /* 001313 ** Change the P2 operand of instruction addr so that it points to 001314 ** the address of the next instruction to be coded. 001315 */ 001316 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 001317 sqlite3VdbeChangeP2(p, addr, p->nOp); 001318 } 001319 001320 /* 001321 ** Change the P2 operand of the jump instruction at addr so that 001322 ** the jump lands on the next opcode. Or if the jump instruction was 001323 ** the previous opcode (and is thus a no-op) then simply back up 001324 ** the next instruction counter by one slot so that the jump is 001325 ** overwritten by the next inserted opcode. 001326 ** 001327 ** This routine is an optimization of sqlite3VdbeJumpHere() that 001328 ** strives to omit useless byte-code like this: 001329 ** 001330 ** 7 Once 0 8 0 001331 ** 8 ... 001332 */ 001333 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 001334 if( addr==p->nOp-1 ){ 001335 assert( p->aOp[addr].opcode==OP_Once 001336 || p->aOp[addr].opcode==OP_If 001337 || p->aOp[addr].opcode==OP_FkIfZero ); 001338 assert( p->aOp[addr].p4type==0 ); 001339 #ifdef SQLITE_VDBE_COVERAGE 001340 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 001341 #endif 001342 p->nOp--; 001343 }else{ 001344 sqlite3VdbeChangeP2(p, addr, p->nOp); 001345 } 001346 } 001347 001348 001349 /* 001350 ** If the input FuncDef structure is ephemeral, then free it. If 001351 ** the FuncDef is not ephemeral, then do nothing. 001352 */ 001353 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 001354 assert( db!=0 ); 001355 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 001356 sqlite3DbNNFreeNN(db, pDef); 001357 } 001358 } 001359 001360 /* 001361 ** Delete a P4 value if necessary. 001362 */ 001363 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 001364 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 001365 sqlite3DbNNFreeNN(db, p); 001366 } 001367 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 001368 assert( db!=0 ); 001369 freeEphemeralFunction(db, p->pFunc); 001370 sqlite3DbNNFreeNN(db, p); 001371 } 001372 static void freeP4(sqlite3 *db, int p4type, void *p4){ 001373 assert( db ); 001374 switch( p4type ){ 001375 case P4_FUNCCTX: { 001376 freeP4FuncCtx(db, (sqlite3_context*)p4); 001377 break; 001378 } 001379 case P4_REAL: 001380 case P4_INT64: 001381 case P4_DYNAMIC: 001382 case P4_INTARRAY: { 001383 if( p4 ) sqlite3DbNNFreeNN(db, p4); 001384 break; 001385 } 001386 case P4_KEYINFO: { 001387 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 001388 break; 001389 } 001390 #ifdef SQLITE_ENABLE_CURSOR_HINTS 001391 case P4_EXPR: { 001392 sqlite3ExprDelete(db, (Expr*)p4); 001393 break; 001394 } 001395 #endif 001396 case P4_FUNCDEF: { 001397 freeEphemeralFunction(db, (FuncDef*)p4); 001398 break; 001399 } 001400 case P4_MEM: { 001401 if( db->pnBytesFreed==0 ){ 001402 sqlite3ValueFree((sqlite3_value*)p4); 001403 }else{ 001404 freeP4Mem(db, (Mem*)p4); 001405 } 001406 break; 001407 } 001408 case P4_VTAB : { 001409 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 001410 break; 001411 } 001412 case P4_TABLEREF: { 001413 if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4); 001414 break; 001415 } 001416 case P4_SUBRTNSIG: { 001417 SubrtnSig *pSig = (SubrtnSig*)p4; 001418 sqlite3DbFree(db, pSig->zAff); 001419 sqlite3DbFree(db, pSig); 001420 break; 001421 } 001422 } 001423 } 001424 001425 /* 001426 ** Free the space allocated for aOp and any p4 values allocated for the 001427 ** opcodes contained within. If aOp is not NULL it is assumed to contain 001428 ** nOp entries. 001429 */ 001430 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 001431 assert( nOp>=0 ); 001432 assert( db!=0 ); 001433 if( aOp ){ 001434 Op *pOp = &aOp[nOp-1]; 001435 while(1){ /* Exit via break */ 001436 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 001437 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001438 sqlite3DbFree(db, pOp->zComment); 001439 #endif 001440 if( pOp==aOp ) break; 001441 pOp--; 001442 } 001443 sqlite3DbNNFreeNN(db, aOp); 001444 } 001445 } 001446 001447 /* 001448 ** Link the SubProgram object passed as the second argument into the linked 001449 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 001450 ** objects when the VM is no longer required. 001451 */ 001452 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 001453 p->pNext = pVdbe->pProgram; 001454 pVdbe->pProgram = p; 001455 } 001456 001457 /* 001458 ** Return true if the given Vdbe has any SubPrograms. 001459 */ 001460 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 001461 return pVdbe->pProgram!=0; 001462 } 001463 001464 /* 001465 ** Change the opcode at addr into OP_Noop 001466 */ 001467 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 001468 VdbeOp *pOp; 001469 if( p->db->mallocFailed ) return 0; 001470 assert( addr>=0 && addr<p->nOp ); 001471 pOp = &p->aOp[addr]; 001472 freeP4(p->db, pOp->p4type, pOp->p4.p); 001473 pOp->p4type = P4_NOTUSED; 001474 pOp->p4.z = 0; 001475 pOp->opcode = OP_Noop; 001476 return 1; 001477 } 001478 001479 /* 001480 ** If the last opcode is "op" and it is not a jump destination, 001481 ** then remove it. Return true if and only if an opcode was removed. 001482 */ 001483 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 001484 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 001485 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 001486 }else{ 001487 return 0; 001488 } 001489 } 001490 001491 #ifdef SQLITE_DEBUG 001492 /* 001493 ** Generate an OP_ReleaseReg opcode to indicate that a range of 001494 ** registers, except any identified by mask, are no longer in use. 001495 */ 001496 void sqlite3VdbeReleaseRegisters( 001497 Parse *pParse, /* Parsing context */ 001498 int iFirst, /* Index of first register to be released */ 001499 int N, /* Number of registers to release */ 001500 u32 mask, /* Mask of registers to NOT release */ 001501 int bUndefine /* If true, mark registers as undefined */ 001502 ){ 001503 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 001504 assert( pParse->pVdbe ); 001505 assert( iFirst>=1 ); 001506 assert( iFirst+N-1<=pParse->nMem ); 001507 if( N<=31 && mask!=0 ){ 001508 while( N>0 && (mask&1)!=0 ){ 001509 mask >>= 1; 001510 iFirst++; 001511 N--; 001512 } 001513 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 001514 mask &= ~MASKBIT32(N-1); 001515 N--; 001516 } 001517 } 001518 if( N>0 ){ 001519 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 001520 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 001521 } 001522 } 001523 #endif /* SQLITE_DEBUG */ 001524 001525 /* 001526 ** Change the value of the P4 operand for a specific instruction. 001527 ** This routine is useful when a large program is loaded from a 001528 ** static array using sqlite3VdbeAddOpList but we want to make a 001529 ** few minor changes to the program. 001530 ** 001531 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 001532 ** the string is made into memory obtained from sqlite3_malloc(). 001533 ** A value of n==0 means copy bytes of zP4 up to and including the 001534 ** first null byte. If n>0 then copy n+1 bytes of zP4. 001535 ** 001536 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 001537 ** to a string or structure that is guaranteed to exist for the lifetime of 001538 ** the Vdbe. In these cases we can just copy the pointer. 001539 ** 001540 ** If addr<0 then change P4 on the most recently inserted instruction. 001541 */ 001542 static void SQLITE_NOINLINE vdbeChangeP4Full( 001543 Vdbe *p, 001544 Op *pOp, 001545 const char *zP4, 001546 int n 001547 ){ 001548 if( pOp->p4type ){ 001549 assert( pOp->p4type > P4_FREE_IF_LE ); 001550 pOp->p4type = 0; 001551 pOp->p4.p = 0; 001552 } 001553 if( n<0 ){ 001554 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 001555 }else{ 001556 if( n==0 ) n = sqlite3Strlen30(zP4); 001557 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 001558 pOp->p4type = P4_DYNAMIC; 001559 } 001560 } 001561 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 001562 Op *pOp; 001563 sqlite3 *db; 001564 assert( p!=0 ); 001565 db = p->db; 001566 assert( p->eVdbeState==VDBE_INIT_STATE ); 001567 assert( p->aOp!=0 || db->mallocFailed ); 001568 if( db->mallocFailed ){ 001569 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 001570 return; 001571 } 001572 assert( p->nOp>0 ); 001573 assert( addr<p->nOp ); 001574 if( addr<0 ){ 001575 addr = p->nOp - 1; 001576 } 001577 pOp = &p->aOp[addr]; 001578 if( n>=0 || pOp->p4type ){ 001579 vdbeChangeP4Full(p, pOp, zP4, n); 001580 return; 001581 } 001582 if( n==P4_INT32 ){ 001583 /* Note: this cast is safe, because the origin data point was an int 001584 ** that was cast to a (const char *). */ 001585 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 001586 pOp->p4type = P4_INT32; 001587 }else if( zP4!=0 ){ 001588 assert( n<0 ); 001589 pOp->p4.p = (void*)zP4; 001590 pOp->p4type = (signed char)n; 001591 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 001592 } 001593 } 001594 001595 /* 001596 ** Change the P4 operand of the most recently coded instruction 001597 ** to the value defined by the arguments. This is a high-speed 001598 ** version of sqlite3VdbeChangeP4(). 001599 ** 001600 ** The P4 operand must not have been previously defined. And the new 001601 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 001602 ** those cases. 001603 */ 001604 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 001605 VdbeOp *pOp; 001606 assert( n!=P4_INT32 && n!=P4_VTAB ); 001607 assert( n<=0 ); 001608 if( p->db->mallocFailed ){ 001609 freeP4(p->db, n, pP4); 001610 }else{ 001611 assert( pP4!=0 || n==P4_DYNAMIC ); 001612 assert( p->nOp>0 ); 001613 pOp = &p->aOp[p->nOp-1]; 001614 assert( pOp->p4type==P4_NOTUSED ); 001615 pOp->p4type = n; 001616 pOp->p4.p = pP4; 001617 } 001618 } 001619 001620 /* 001621 ** Set the P4 on the most recently added opcode to the KeyInfo for the 001622 ** index given. 001623 */ 001624 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 001625 Vdbe *v = pParse->pVdbe; 001626 KeyInfo *pKeyInfo; 001627 assert( v!=0 ); 001628 assert( pIdx!=0 ); 001629 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 001630 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 001631 } 001632 001633 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001634 /* 001635 ** Change the comment on the most recently coded instruction. Or 001636 ** insert a No-op and add the comment to that new instruction. This 001637 ** makes the code easier to read during debugging. None of this happens 001638 ** in a production build. 001639 */ 001640 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 001641 assert( p->nOp>0 || p->aOp==0 ); 001642 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 001643 if( p->nOp ){ 001644 assert( p->aOp ); 001645 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 001646 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 001647 } 001648 } 001649 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 001650 va_list ap; 001651 if( p ){ 001652 va_start(ap, zFormat); 001653 vdbeVComment(p, zFormat, ap); 001654 va_end(ap); 001655 } 001656 } 001657 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 001658 va_list ap; 001659 if( p ){ 001660 sqlite3VdbeAddOp0(p, OP_Noop); 001661 va_start(ap, zFormat); 001662 vdbeVComment(p, zFormat, ap); 001663 va_end(ap); 001664 } 001665 } 001666 #endif /* NDEBUG */ 001667 001668 #ifdef SQLITE_VDBE_COVERAGE 001669 /* 001670 ** Set the value if the iSrcLine field for the previously coded instruction. 001671 */ 001672 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 001673 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; 001674 } 001675 #endif /* SQLITE_VDBE_COVERAGE */ 001676 001677 /* 001678 ** Return the opcode for a given address. The address must be non-negative. 001679 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. 001680 ** 001681 ** If a memory allocation error has occurred prior to the calling of this 001682 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 001683 ** is readable but not writable, though it is cast to a writable value. 001684 ** The return of a dummy opcode allows the call to continue functioning 001685 ** after an OOM fault without having to check to see if the return from 001686 ** this routine is a valid pointer. But because the dummy.opcode is 0, 001687 ** dummy will never be written to. This is verified by code inspection and 001688 ** by running with Valgrind. 001689 */ 001690 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 001691 /* C89 specifies that the constant "dummy" will be initialized to all 001692 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 001693 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 001694 assert( p->eVdbeState==VDBE_INIT_STATE ); 001695 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 001696 if( p->db->mallocFailed ){ 001697 return (VdbeOp*)&dummy; 001698 }else{ 001699 return &p->aOp[addr]; 001700 } 001701 } 001702 001703 /* Return the most recently added opcode 001704 */ 001705 VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){ 001706 return sqlite3VdbeGetOp(p, p->nOp - 1); 001707 } 001708 001709 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 001710 /* 001711 ** Return an integer value for one of the parameters to the opcode pOp 001712 ** determined by character c. 001713 */ 001714 static int translateP(char c, const Op *pOp){ 001715 if( c=='1' ) return pOp->p1; 001716 if( c=='2' ) return pOp->p2; 001717 if( c=='3' ) return pOp->p3; 001718 if( c=='4' ) return pOp->p4.i; 001719 return pOp->p5; 001720 } 001721 001722 /* 001723 ** Compute a string for the "comment" field of a VDBE opcode listing. 001724 ** 001725 ** The Synopsis: field in comments in the vdbe.c source file gets converted 001726 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 001727 ** absence of other comments, this synopsis becomes the comment on the opcode. 001728 ** Some translation occurs: 001729 ** 001730 ** "PX" -> "r[X]" 001731 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 001732 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 001733 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 001734 */ 001735 char *sqlite3VdbeDisplayComment( 001736 sqlite3 *db, /* Optional - Oom error reporting only */ 001737 const Op *pOp, /* The opcode to be commented */ 001738 const char *zP4 /* Previously obtained value for P4 */ 001739 ){ 001740 const char *zOpName; 001741 const char *zSynopsis; 001742 int nOpName; 001743 int ii; 001744 char zAlt[50]; 001745 StrAccum x; 001746 001747 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 001748 zOpName = sqlite3OpcodeName(pOp->opcode); 001749 nOpName = sqlite3Strlen30(zOpName); 001750 if( zOpName[nOpName+1] ){ 001751 int seenCom = 0; 001752 char c; 001753 zSynopsis = zOpName + nOpName + 1; 001754 if( strncmp(zSynopsis,"IF ",3)==0 ){ 001755 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 001756 zSynopsis = zAlt; 001757 } 001758 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 001759 if( c=='P' ){ 001760 c = zSynopsis[++ii]; 001761 if( c=='4' ){ 001762 sqlite3_str_appendall(&x, zP4); 001763 }else if( c=='X' ){ 001764 if( pOp->zComment && pOp->zComment[0] ){ 001765 sqlite3_str_appendall(&x, pOp->zComment); 001766 seenCom = 1; 001767 break; 001768 } 001769 }else{ 001770 int v1 = translateP(c, pOp); 001771 int v2; 001772 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 001773 ii += 3; 001774 v2 = translateP(zSynopsis[ii], pOp); 001775 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 001776 ii += 2; 001777 v2++; 001778 } 001779 if( v2<2 ){ 001780 sqlite3_str_appendf(&x, "%d", v1); 001781 }else{ 001782 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 001783 } 001784 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 001785 sqlite3_context *pCtx = pOp->p4.pCtx; 001786 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 001787 sqlite3_str_appendf(&x, "%d", v1); 001788 }else if( pCtx->argc>1 ){ 001789 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 001790 }else if( x.accError==0 ){ 001791 assert( x.nChar>2 ); 001792 x.nChar -= 2; 001793 ii++; 001794 } 001795 ii += 3; 001796 }else{ 001797 sqlite3_str_appendf(&x, "%d", v1); 001798 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 001799 ii += 4; 001800 } 001801 } 001802 } 001803 }else{ 001804 sqlite3_str_appendchar(&x, 1, c); 001805 } 001806 } 001807 if( !seenCom && pOp->zComment ){ 001808 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 001809 } 001810 }else if( pOp->zComment ){ 001811 sqlite3_str_appendall(&x, pOp->zComment); 001812 } 001813 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 001814 sqlite3OomFault(db); 001815 } 001816 return sqlite3StrAccumFinish(&x); 001817 } 001818 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 001819 001820 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 001821 /* 001822 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 001823 ** that can be displayed in the P4 column of EXPLAIN output. 001824 */ 001825 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 001826 const char *zOp = 0; 001827 switch( pExpr->op ){ 001828 case TK_STRING: 001829 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 001830 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 001831 break; 001832 case TK_INTEGER: 001833 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 001834 break; 001835 case TK_NULL: 001836 sqlite3_str_appendf(p, "NULL"); 001837 break; 001838 case TK_REGISTER: { 001839 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 001840 break; 001841 } 001842 case TK_COLUMN: { 001843 if( pExpr->iColumn<0 ){ 001844 sqlite3_str_appendf(p, "rowid"); 001845 }else{ 001846 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 001847 } 001848 break; 001849 } 001850 case TK_LT: zOp = "LT"; break; 001851 case TK_LE: zOp = "LE"; break; 001852 case TK_GT: zOp = "GT"; break; 001853 case TK_GE: zOp = "GE"; break; 001854 case TK_NE: zOp = "NE"; break; 001855 case TK_EQ: zOp = "EQ"; break; 001856 case TK_IS: zOp = "IS"; break; 001857 case TK_ISNOT: zOp = "ISNOT"; break; 001858 case TK_AND: zOp = "AND"; break; 001859 case TK_OR: zOp = "OR"; break; 001860 case TK_PLUS: zOp = "ADD"; break; 001861 case TK_STAR: zOp = "MUL"; break; 001862 case TK_MINUS: zOp = "SUB"; break; 001863 case TK_REM: zOp = "REM"; break; 001864 case TK_BITAND: zOp = "BITAND"; break; 001865 case TK_BITOR: zOp = "BITOR"; break; 001866 case TK_SLASH: zOp = "DIV"; break; 001867 case TK_LSHIFT: zOp = "LSHIFT"; break; 001868 case TK_RSHIFT: zOp = "RSHIFT"; break; 001869 case TK_CONCAT: zOp = "CONCAT"; break; 001870 case TK_UMINUS: zOp = "MINUS"; break; 001871 case TK_UPLUS: zOp = "PLUS"; break; 001872 case TK_BITNOT: zOp = "BITNOT"; break; 001873 case TK_NOT: zOp = "NOT"; break; 001874 case TK_ISNULL: zOp = "ISNULL"; break; 001875 case TK_NOTNULL: zOp = "NOTNULL"; break; 001876 001877 default: 001878 sqlite3_str_appendf(p, "%s", "expr"); 001879 break; 001880 } 001881 001882 if( zOp ){ 001883 sqlite3_str_appendf(p, "%s(", zOp); 001884 displayP4Expr(p, pExpr->pLeft); 001885 if( pExpr->pRight ){ 001886 sqlite3_str_append(p, ",", 1); 001887 displayP4Expr(p, pExpr->pRight); 001888 } 001889 sqlite3_str_append(p, ")", 1); 001890 } 001891 } 001892 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 001893 001894 001895 #if VDBE_DISPLAY_P4 001896 /* 001897 ** Compute a string that describes the P4 parameter for an opcode. 001898 ** Use zTemp for any required temporary buffer space. 001899 */ 001900 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 001901 char *zP4 = 0; 001902 StrAccum x; 001903 001904 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 001905 switch( pOp->p4type ){ 001906 case P4_KEYINFO: { 001907 int j; 001908 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 001909 assert( pKeyInfo->aSortFlags!=0 ); 001910 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 001911 for(j=0; j<pKeyInfo->nKeyField; j++){ 001912 CollSeq *pColl = pKeyInfo->aColl[j]; 001913 const char *zColl = pColl ? pColl->zName : ""; 001914 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 001915 sqlite3_str_appendf(&x, ",%s%s%s", 001916 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 001917 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 001918 zColl); 001919 } 001920 sqlite3_str_append(&x, ")", 1); 001921 break; 001922 } 001923 #ifdef SQLITE_ENABLE_CURSOR_HINTS 001924 case P4_EXPR: { 001925 displayP4Expr(&x, pOp->p4.pExpr); 001926 break; 001927 } 001928 #endif 001929 case P4_COLLSEQ: { 001930 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 001931 CollSeq *pColl = pOp->p4.pColl; 001932 assert( pColl->enc<4 ); 001933 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 001934 encnames[pColl->enc]); 001935 break; 001936 } 001937 case P4_FUNCDEF: { 001938 FuncDef *pDef = pOp->p4.pFunc; 001939 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 001940 break; 001941 } 001942 case P4_FUNCCTX: { 001943 FuncDef *pDef = pOp->p4.pCtx->pFunc; 001944 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 001945 break; 001946 } 001947 case P4_INT64: { 001948 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 001949 break; 001950 } 001951 case P4_INT32: { 001952 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 001953 break; 001954 } 001955 case P4_REAL: { 001956 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 001957 break; 001958 } 001959 case P4_MEM: { 001960 Mem *pMem = pOp->p4.pMem; 001961 if( pMem->flags & MEM_Str ){ 001962 zP4 = pMem->z; 001963 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 001964 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 001965 }else if( pMem->flags & MEM_Real ){ 001966 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 001967 }else if( pMem->flags & MEM_Null ){ 001968 zP4 = "NULL"; 001969 }else{ 001970 assert( pMem->flags & MEM_Blob ); 001971 zP4 = "(blob)"; 001972 } 001973 break; 001974 } 001975 #ifndef SQLITE_OMIT_VIRTUALTABLE 001976 case P4_VTAB: { 001977 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 001978 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 001979 break; 001980 } 001981 #endif 001982 case P4_INTARRAY: { 001983 u32 i; 001984 u32 *ai = pOp->p4.ai; 001985 u32 n = ai[0]; /* The first element of an INTARRAY is always the 001986 ** count of the number of elements to follow */ 001987 for(i=1; i<=n; i++){ 001988 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 001989 } 001990 sqlite3_str_append(&x, "]", 1); 001991 break; 001992 } 001993 case P4_SUBPROGRAM: { 001994 zP4 = "program"; 001995 break; 001996 } 001997 case P4_TABLE: { 001998 zP4 = pOp->p4.pTab->zName; 001999 break; 002000 } 002001 case P4_SUBRTNSIG: { 002002 SubrtnSig *pSig = pOp->p4.pSubrtnSig; 002003 sqlite3_str_appendf(&x, "subrtnsig:%d,%s", pSig->selId, pSig->zAff); 002004 break; 002005 } 002006 default: { 002007 zP4 = pOp->p4.z; 002008 } 002009 } 002010 if( zP4 ) sqlite3_str_appendall(&x, zP4); 002011 if( (x.accError & SQLITE_NOMEM)!=0 ){ 002012 sqlite3OomFault(db); 002013 } 002014 return sqlite3StrAccumFinish(&x); 002015 } 002016 #endif /* VDBE_DISPLAY_P4 */ 002017 002018 /* 002019 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 002020 ** 002021 ** The prepared statements need to know in advance the complete set of 002022 ** attached databases that will be use. A mask of these databases 002023 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 002024 ** p->btreeMask of databases that will require a lock. 002025 */ 002026 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 002027 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 002028 assert( i<(int)sizeof(p->btreeMask)*8 ); 002029 DbMaskSet(p->btreeMask, i); 002030 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 002031 DbMaskSet(p->lockMask, i); 002032 } 002033 } 002034 002035 #if !defined(SQLITE_OMIT_SHARED_CACHE) 002036 /* 002037 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 002038 ** this routine obtains the mutex associated with each BtShared structure 002039 ** that may be accessed by the VM passed as an argument. In doing so it also 002040 ** sets the BtShared.db member of each of the BtShared structures, ensuring 002041 ** that the correct busy-handler callback is invoked if required. 002042 ** 002043 ** If SQLite is not threadsafe but does support shared-cache mode, then 002044 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 002045 ** of all of BtShared structures accessible via the database handle 002046 ** associated with the VM. 002047 ** 002048 ** If SQLite is not threadsafe and does not support shared-cache mode, this 002049 ** function is a no-op. 002050 ** 002051 ** The p->btreeMask field is a bitmask of all btrees that the prepared 002052 ** statement p will ever use. Let N be the number of bits in p->btreeMask 002053 ** corresponding to btrees that use shared cache. Then the runtime of 002054 ** this routine is N*N. But as N is rarely more than 1, this should not 002055 ** be a problem. 002056 */ 002057 void sqlite3VdbeEnter(Vdbe *p){ 002058 int i; 002059 sqlite3 *db; 002060 Db *aDb; 002061 int nDb; 002062 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 002063 db = p->db; 002064 aDb = db->aDb; 002065 nDb = db->nDb; 002066 for(i=0; i<nDb; i++){ 002067 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 002068 sqlite3BtreeEnter(aDb[i].pBt); 002069 } 002070 } 002071 } 002072 #endif 002073 002074 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 002075 /* 002076 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 002077 */ 002078 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 002079 int i; 002080 sqlite3 *db; 002081 Db *aDb; 002082 int nDb; 002083 db = p->db; 002084 aDb = db->aDb; 002085 nDb = db->nDb; 002086 for(i=0; i<nDb; i++){ 002087 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 002088 sqlite3BtreeLeave(aDb[i].pBt); 002089 } 002090 } 002091 } 002092 void sqlite3VdbeLeave(Vdbe *p){ 002093 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 002094 vdbeLeave(p); 002095 } 002096 #endif 002097 002098 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 002099 /* 002100 ** Print a single opcode. This routine is used for debugging only. 002101 */ 002102 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 002103 char *zP4; 002104 char *zCom; 002105 sqlite3 dummyDb; 002106 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 002107 if( pOut==0 ) pOut = stdout; 002108 sqlite3BeginBenignMalloc(); 002109 dummyDb.mallocFailed = 1; 002110 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 002111 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 002112 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 002113 #else 002114 zCom = 0; 002115 #endif 002116 /* NB: The sqlite3OpcodeName() function is implemented by code created 002117 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 002118 ** information from the vdbe.c source text */ 002119 fprintf(pOut, zFormat1, pc, 002120 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 002121 zP4 ? zP4 : "", pOp->p5, 002122 zCom ? zCom : "" 002123 ); 002124 fflush(pOut); 002125 sqlite3_free(zP4); 002126 sqlite3_free(zCom); 002127 sqlite3EndBenignMalloc(); 002128 } 002129 #endif 002130 002131 /* 002132 ** Initialize an array of N Mem element. 002133 ** 002134 ** This is a high-runner, so only those fields that really do need to 002135 ** be initialized are set. The Mem structure is organized so that 002136 ** the fields that get initialized are nearby and hopefully on the same 002137 ** cache line. 002138 ** 002139 ** Mem.flags = flags 002140 ** Mem.db = db 002141 ** Mem.szMalloc = 0 002142 ** 002143 ** All other fields of Mem can safely remain uninitialized for now. They 002144 ** will be initialized before use. 002145 */ 002146 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 002147 assert( db!=0 ); 002148 if( N>0 ){ 002149 do{ 002150 p->flags = flags; 002151 p->db = db; 002152 p->szMalloc = 0; 002153 #ifdef SQLITE_DEBUG 002154 p->pScopyFrom = 0; 002155 p->bScopy = 0; 002156 #endif 002157 p++; 002158 }while( (--N)>0 ); 002159 } 002160 } 002161 002162 /* 002163 ** Release auxiliary memory held in an array of N Mem elements. 002164 ** 002165 ** After this routine returns, all Mem elements in the array will still 002166 ** be valid. Those Mem elements that were not holding auxiliary resources 002167 ** will be unchanged. Mem elements which had something freed will be 002168 ** set to MEM_Undefined. 002169 */ 002170 static void releaseMemArray(Mem *p, int N){ 002171 if( p && N ){ 002172 Mem *pEnd = &p[N]; 002173 sqlite3 *db = p->db; 002174 assert( db!=0 ); 002175 if( db->pnBytesFreed ){ 002176 do{ 002177 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 002178 }while( (++p)<pEnd ); 002179 return; 002180 } 002181 do{ 002182 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 002183 assert( sqlite3VdbeCheckMemInvariants(p) ); 002184 002185 /* This block is really an inlined version of sqlite3VdbeMemRelease() 002186 ** that takes advantage of the fact that the memory cell value is 002187 ** being set to NULL after releasing any dynamic resources. 002188 ** 002189 ** The justification for duplicating code is that according to 002190 ** callgrind, this causes a certain test case to hit the CPU 4.7 002191 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 002192 ** sqlite3MemRelease() were called from here. With -O2, this jumps 002193 ** to 6.6 percent. The test case is inserting 1000 rows into a table 002194 ** with no indexes using a single prepared INSERT statement, bind() 002195 ** and reset(). Inserts are grouped into a transaction. 002196 */ 002197 testcase( p->flags & MEM_Agg ); 002198 testcase( p->flags & MEM_Dyn ); 002199 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 002200 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 002201 sqlite3VdbeMemRelease(p); 002202 p->flags = MEM_Undefined; 002203 }else if( p->szMalloc ){ 002204 sqlite3DbNNFreeNN(db, p->zMalloc); 002205 p->szMalloc = 0; 002206 p->flags = MEM_Undefined; 002207 } 002208 #ifdef SQLITE_DEBUG 002209 else{ 002210 p->flags = MEM_Undefined; 002211 } 002212 #endif 002213 }while( (++p)<pEnd ); 002214 } 002215 } 002216 002217 #ifdef SQLITE_DEBUG 002218 /* 002219 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 002220 ** and false if something is wrong. 002221 ** 002222 ** This routine is intended for use inside of assert() statements only. 002223 */ 002224 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 002225 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 002226 return 1; 002227 } 002228 #endif 002229 002230 002231 /* 002232 ** This is a destructor on a Mem object (which is really an sqlite3_value) 002233 ** that deletes the Frame object that is attached to it as a blob. 002234 ** 002235 ** This routine does not delete the Frame right away. It merely adds the 002236 ** frame to a list of frames to be deleted when the Vdbe halts. 002237 */ 002238 void sqlite3VdbeFrameMemDel(void *pArg){ 002239 VdbeFrame *pFrame = (VdbeFrame*)pArg; 002240 assert( sqlite3VdbeFrameIsValid(pFrame) ); 002241 pFrame->pParent = pFrame->v->pDelFrame; 002242 pFrame->v->pDelFrame = pFrame; 002243 } 002244 002245 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 002246 /* 002247 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 002248 ** QUERY PLAN output. 002249 ** 002250 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 002251 ** more opcodes to be displayed. 002252 */ 002253 int sqlite3VdbeNextOpcode( 002254 Vdbe *p, /* The statement being explained */ 002255 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 002256 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 002257 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 002258 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 002259 Op **paOp /* OUT: Write the opcode array here */ 002260 ){ 002261 int nRow; /* Stop when row count reaches this */ 002262 int nSub = 0; /* Number of sub-vdbes seen so far */ 002263 SubProgram **apSub = 0; /* Array of sub-vdbes */ 002264 int i; /* Next instruction address */ 002265 int rc = SQLITE_OK; /* Result code */ 002266 Op *aOp = 0; /* Opcode array */ 002267 int iPc; /* Rowid. Copy of value in *piPc */ 002268 002269 /* When the number of output rows reaches nRow, that means the 002270 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 002271 ** nRow is the sum of the number of rows in the main program, plus 002272 ** the sum of the number of rows in all trigger subprograms encountered 002273 ** so far. The nRow value will increase as new trigger subprograms are 002274 ** encountered, but p->pc will eventually catch up to nRow. 002275 */ 002276 nRow = p->nOp; 002277 if( pSub!=0 ){ 002278 if( pSub->flags&MEM_Blob ){ 002279 /* pSub is initiallly NULL. It is initialized to a BLOB by 002280 ** the P4_SUBPROGRAM processing logic below */ 002281 nSub = pSub->n/sizeof(Vdbe*); 002282 apSub = (SubProgram **)pSub->z; 002283 } 002284 for(i=0; i<nSub; i++){ 002285 nRow += apSub[i]->nOp; 002286 } 002287 } 002288 iPc = *piPc; 002289 while(1){ /* Loop exits via break */ 002290 i = iPc++; 002291 if( i>=nRow ){ 002292 p->rc = SQLITE_OK; 002293 rc = SQLITE_DONE; 002294 break; 002295 } 002296 if( i<p->nOp ){ 002297 /* The rowid is small enough that we are still in the 002298 ** main program. */ 002299 aOp = p->aOp; 002300 }else{ 002301 /* We are currently listing subprograms. Figure out which one and 002302 ** pick up the appropriate opcode. */ 002303 int j; 002304 i -= p->nOp; 002305 assert( apSub!=0 ); 002306 assert( nSub>0 ); 002307 for(j=0; i>=apSub[j]->nOp; j++){ 002308 i -= apSub[j]->nOp; 002309 assert( i<apSub[j]->nOp || j+1<nSub ); 002310 } 002311 aOp = apSub[j]->aOp; 002312 } 002313 002314 /* When an OP_Program opcode is encounter (the only opcode that has 002315 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 002316 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 002317 ** has not already been seen. 002318 */ 002319 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 002320 int nByte = (nSub+1)*sizeof(SubProgram*); 002321 int j; 002322 for(j=0; j<nSub; j++){ 002323 if( apSub[j]==aOp[i].p4.pProgram ) break; 002324 } 002325 if( j==nSub ){ 002326 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 002327 if( p->rc!=SQLITE_OK ){ 002328 rc = SQLITE_ERROR; 002329 break; 002330 } 002331 apSub = (SubProgram **)pSub->z; 002332 apSub[nSub++] = aOp[i].p4.pProgram; 002333 MemSetTypeFlag(pSub, MEM_Blob); 002334 pSub->n = nSub*sizeof(SubProgram*); 002335 nRow += aOp[i].p4.pProgram->nOp; 002336 } 002337 } 002338 if( eMode==0 ) break; 002339 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 002340 if( eMode==2 ){ 002341 Op *pOp = aOp + i; 002342 if( pOp->opcode==OP_OpenRead ) break; 002343 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 002344 if( pOp->opcode==OP_ReopenIdx ) break; 002345 }else 002346 #endif 002347 { 002348 assert( eMode==1 ); 002349 if( aOp[i].opcode==OP_Explain ) break; 002350 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 002351 } 002352 } 002353 *piPc = iPc; 002354 *piAddr = i; 002355 *paOp = aOp; 002356 return rc; 002357 } 002358 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 002359 002360 002361 /* 002362 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 002363 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 002364 */ 002365 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 002366 int i; 002367 Mem *aMem = VdbeFrameMem(p); 002368 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 002369 assert( sqlite3VdbeFrameIsValid(p) ); 002370 for(i=0; i<p->nChildCsr; i++){ 002371 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 002372 } 002373 releaseMemArray(aMem, p->nChildMem); 002374 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 002375 sqlite3DbFree(p->v->db, p); 002376 } 002377 002378 #ifndef SQLITE_OMIT_EXPLAIN 002379 /* 002380 ** Give a listing of the program in the virtual machine. 002381 ** 002382 ** The interface is the same as sqlite3VdbeExec(). But instead of 002383 ** running the code, it invokes the callback once for each instruction. 002384 ** This feature is used to implement "EXPLAIN". 002385 ** 002386 ** When p->explain==1, each instruction is listed. When 002387 ** p->explain==2, only OP_Explain instructions are listed and these 002388 ** are shown in a different format. p->explain==2 is used to implement 002389 ** EXPLAIN QUERY PLAN. 002390 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 002391 ** are also shown, so that the boundaries between the main program and 002392 ** each trigger are clear. 002393 ** 002394 ** When p->explain==1, first the main program is listed, then each of 002395 ** the trigger subprograms are listed one by one. 002396 */ 002397 int sqlite3VdbeList( 002398 Vdbe *p /* The VDBE */ 002399 ){ 002400 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 002401 sqlite3 *db = p->db; /* The database connection */ 002402 int i; /* Loop counter */ 002403 int rc = SQLITE_OK; /* Return code */ 002404 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 002405 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 002406 Op *aOp; /* Array of opcodes */ 002407 Op *pOp; /* Current opcode */ 002408 002409 assert( p->explain ); 002410 assert( p->eVdbeState==VDBE_RUN_STATE ); 002411 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 002412 002413 /* Even though this opcode does not use dynamic strings for 002414 ** the result, result columns may become dynamic if the user calls 002415 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 002416 */ 002417 releaseMemArray(pMem, 8); 002418 002419 if( p->rc==SQLITE_NOMEM ){ 002420 /* This happens if a malloc() inside a call to sqlite3_column_text() or 002421 ** sqlite3_column_text16() failed. */ 002422 sqlite3OomFault(db); 002423 return SQLITE_ERROR; 002424 } 002425 002426 if( bListSubprogs ){ 002427 /* The first 8 memory cells are used for the result set. So we will 002428 ** commandeer the 9th cell to use as storage for an array of pointers 002429 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 002430 ** cells. */ 002431 assert( p->nMem>9 ); 002432 pSub = &p->aMem[9]; 002433 }else{ 002434 pSub = 0; 002435 } 002436 002437 /* Figure out which opcode is next to display */ 002438 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 002439 002440 if( rc==SQLITE_OK ){ 002441 pOp = aOp + i; 002442 if( AtomicLoad(&db->u1.isInterrupted) ){ 002443 p->rc = SQLITE_INTERRUPT; 002444 rc = SQLITE_ERROR; 002445 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 002446 }else{ 002447 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 002448 if( p->explain==2 ){ 002449 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 002450 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 002451 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 002452 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 002453 assert( p->nResColumn==4 ); 002454 }else{ 002455 sqlite3VdbeMemSetInt64(pMem+0, i); 002456 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 002457 -1, SQLITE_UTF8, SQLITE_STATIC); 002458 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 002459 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 002460 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 002461 /* pMem+5 for p4 is done last */ 002462 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 002463 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 002464 { 002465 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 002466 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 002467 } 002468 #else 002469 sqlite3VdbeMemSetNull(pMem+7); 002470 #endif 002471 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 002472 assert( p->nResColumn==8 ); 002473 } 002474 p->pResultRow = pMem; 002475 if( db->mallocFailed ){ 002476 p->rc = SQLITE_NOMEM; 002477 rc = SQLITE_ERROR; 002478 }else{ 002479 p->rc = SQLITE_OK; 002480 rc = SQLITE_ROW; 002481 } 002482 } 002483 } 002484 return rc; 002485 } 002486 #endif /* SQLITE_OMIT_EXPLAIN */ 002487 002488 #ifdef SQLITE_DEBUG 002489 /* 002490 ** Print the SQL that was used to generate a VDBE program. 002491 */ 002492 void sqlite3VdbePrintSql(Vdbe *p){ 002493 const char *z = 0; 002494 if( p->zSql ){ 002495 z = p->zSql; 002496 }else if( p->nOp>=1 ){ 002497 const VdbeOp *pOp = &p->aOp[0]; 002498 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 002499 z = pOp->p4.z; 002500 while( sqlite3Isspace(*z) ) z++; 002501 } 002502 } 002503 if( z ) printf("SQL: [%s]\n", z); 002504 } 002505 #endif 002506 002507 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 002508 /* 002509 ** Print an IOTRACE message showing SQL content. 002510 */ 002511 void sqlite3VdbeIOTraceSql(Vdbe *p){ 002512 int nOp = p->nOp; 002513 VdbeOp *pOp; 002514 if( sqlite3IoTrace==0 ) return; 002515 if( nOp<1 ) return; 002516 pOp = &p->aOp[0]; 002517 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 002518 int i, j; 002519 char z[1000]; 002520 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 002521 for(i=0; sqlite3Isspace(z[i]); i++){} 002522 for(j=0; z[i]; i++){ 002523 if( sqlite3Isspace(z[i]) ){ 002524 if( z[i-1]!=' ' ){ 002525 z[j++] = ' '; 002526 } 002527 }else{ 002528 z[j++] = z[i]; 002529 } 002530 } 002531 z[j] = 0; 002532 sqlite3IoTrace("SQL %s\n", z); 002533 } 002534 } 002535 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 002536 002537 /* An instance of this object describes bulk memory available for use 002538 ** by subcomponents of a prepared statement. Space is allocated out 002539 ** of a ReusableSpace object by the allocSpace() routine below. 002540 */ 002541 struct ReusableSpace { 002542 u8 *pSpace; /* Available memory */ 002543 sqlite3_int64 nFree; /* Bytes of available memory */ 002544 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 002545 }; 002546 002547 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 002548 ** from the ReusableSpace object. Return a pointer to the allocated 002549 ** memory on success. If insufficient memory is available in the 002550 ** ReusableSpace object, increase the ReusableSpace.nNeeded 002551 ** value by the amount needed and return NULL. 002552 ** 002553 ** If pBuf is not initially NULL, that means that the memory has already 002554 ** been allocated by a prior call to this routine, so just return a copy 002555 ** of pBuf and leave ReusableSpace unchanged. 002556 ** 002557 ** This allocator is employed to repurpose unused slots at the end of the 002558 ** opcode array of prepared state for other memory needs of the prepared 002559 ** statement. 002560 */ 002561 static void *allocSpace( 002562 struct ReusableSpace *p, /* Bulk memory available for allocation */ 002563 void *pBuf, /* Pointer to a prior allocation */ 002564 sqlite3_int64 nByte /* Bytes of memory needed. */ 002565 ){ 002566 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 002567 if( pBuf==0 ){ 002568 nByte = ROUND8P(nByte); 002569 if( nByte <= p->nFree ){ 002570 p->nFree -= nByte; 002571 pBuf = &p->pSpace[p->nFree]; 002572 }else{ 002573 p->nNeeded += nByte; 002574 } 002575 } 002576 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 002577 return pBuf; 002578 } 002579 002580 /* 002581 ** Rewind the VDBE back to the beginning in preparation for 002582 ** running it. 002583 */ 002584 void sqlite3VdbeRewind(Vdbe *p){ 002585 #if defined(SQLITE_DEBUG) 002586 int i; 002587 #endif 002588 assert( p!=0 ); 002589 assert( p->eVdbeState==VDBE_INIT_STATE 002590 || p->eVdbeState==VDBE_READY_STATE 002591 || p->eVdbeState==VDBE_HALT_STATE ); 002592 002593 /* There should be at least one opcode. 002594 */ 002595 assert( p->nOp>0 ); 002596 002597 p->eVdbeState = VDBE_READY_STATE; 002598 002599 #ifdef SQLITE_DEBUG 002600 for(i=0; i<p->nMem; i++){ 002601 assert( p->aMem[i].db==p->db ); 002602 } 002603 #endif 002604 p->pc = -1; 002605 p->rc = SQLITE_OK; 002606 p->errorAction = OE_Abort; 002607 p->nChange = 0; 002608 p->cacheCtr = 1; 002609 p->minWriteFileFormat = 255; 002610 p->iStatement = 0; 002611 p->nFkConstraint = 0; 002612 #ifdef VDBE_PROFILE 002613 for(i=0; i<p->nOp; i++){ 002614 p->aOp[i].nExec = 0; 002615 p->aOp[i].nCycle = 0; 002616 } 002617 #endif 002618 } 002619 002620 /* 002621 ** Prepare a virtual machine for execution for the first time after 002622 ** creating the virtual machine. This involves things such 002623 ** as allocating registers and initializing the program counter. 002624 ** After the VDBE has be prepped, it can be executed by one or more 002625 ** calls to sqlite3VdbeExec(). 002626 ** 002627 ** This function may be called exactly once on each virtual machine. 002628 ** After this routine is called the VM has been "packaged" and is ready 002629 ** to run. After this routine is called, further calls to 002630 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 002631 ** the Vdbe from the Parse object that helped generate it so that the 002632 ** the Vdbe becomes an independent entity and the Parse object can be 002633 ** destroyed. 002634 ** 002635 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 002636 ** to its initial state after it has been run. 002637 */ 002638 void sqlite3VdbeMakeReady( 002639 Vdbe *p, /* The VDBE */ 002640 Parse *pParse /* Parsing context */ 002641 ){ 002642 sqlite3 *db; /* The database connection */ 002643 int nVar; /* Number of parameters */ 002644 int nMem; /* Number of VM memory registers */ 002645 int nCursor; /* Number of cursors required */ 002646 int nArg; /* Number of arguments in subprograms */ 002647 int n; /* Loop counter */ 002648 struct ReusableSpace x; /* Reusable bulk memory */ 002649 002650 assert( p!=0 ); 002651 assert( p->nOp>0 ); 002652 assert( pParse!=0 ); 002653 assert( p->eVdbeState==VDBE_INIT_STATE ); 002654 assert( pParse==p->pParse ); 002655 assert( pParse->db==p->db ); 002656 p->pVList = pParse->pVList; 002657 pParse->pVList = 0; 002658 db = p->db; 002659 assert( db->mallocFailed==0 ); 002660 nVar = pParse->nVar; 002661 nMem = pParse->nMem; 002662 nCursor = pParse->nTab; 002663 nArg = pParse->nMaxArg; 002664 002665 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 002666 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 002667 ** space at the end of aMem[] for cursors 1 and greater. 002668 ** See also: allocateCursor(). 002669 */ 002670 nMem += nCursor; 002671 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 002672 002673 /* Figure out how much reusable memory is available at the end of the 002674 ** opcode array. This extra memory will be reallocated for other elements 002675 ** of the prepared statement. 002676 */ 002677 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 002678 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 002679 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 002680 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 002681 assert( x.nFree>=0 ); 002682 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 002683 002684 resolveP2Values(p, &nArg); 002685 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 002686 if( pParse->explain ){ 002687 if( nMem<10 ) nMem = 10; 002688 p->explain = pParse->explain; 002689 p->nResColumn = 12 - 4*p->explain; 002690 } 002691 p->expired = 0; 002692 002693 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 002694 ** passes. On the first pass, we try to reuse unused memory at the 002695 ** end of the opcode array. If we are unable to satisfy all memory 002696 ** requirements by reusing the opcode array tail, then the second 002697 ** pass will fill in the remainder using a fresh memory allocation. 002698 ** 002699 ** This two-pass approach that reuses as much memory as possible from 002700 ** the leftover memory at the end of the opcode array. This can significantly 002701 ** reduce the amount of memory held by a prepared statement. 002702 */ 002703 x.nNeeded = 0; 002704 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 002705 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 002706 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 002707 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 002708 if( x.nNeeded ){ 002709 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 002710 x.nFree = x.nNeeded; 002711 if( !db->mallocFailed ){ 002712 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 002713 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 002714 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 002715 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 002716 } 002717 } 002718 002719 if( db->mallocFailed ){ 002720 p->nVar = 0; 002721 p->nCursor = 0; 002722 p->nMem = 0; 002723 }else{ 002724 p->nCursor = nCursor; 002725 p->nVar = (ynVar)nVar; 002726 initMemArray(p->aVar, nVar, db, MEM_Null); 002727 p->nMem = nMem; 002728 initMemArray(p->aMem, nMem, db, MEM_Undefined); 002729 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 002730 } 002731 sqlite3VdbeRewind(p); 002732 } 002733 002734 /* 002735 ** Close a VDBE cursor and release all the resources that cursor 002736 ** happens to hold. 002737 */ 002738 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 002739 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 002740 } 002741 static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){ 002742 VdbeTxtBlbCache *pCache = pCx->pCache; 002743 assert( pCx->colCache ); 002744 pCx->colCache = 0; 002745 pCx->pCache = 0; 002746 if( pCache->pCValue ){ 002747 sqlite3RCStrUnref(pCache->pCValue); 002748 pCache->pCValue = 0; 002749 } 002750 sqlite3DbFree(p->db, pCache); 002751 sqlite3VdbeFreeCursorNN(p, pCx); 002752 } 002753 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 002754 if( pCx->colCache ){ 002755 freeCursorWithCache(p, pCx); 002756 return; 002757 } 002758 switch( pCx->eCurType ){ 002759 case CURTYPE_SORTER: { 002760 sqlite3VdbeSorterClose(p->db, pCx); 002761 break; 002762 } 002763 case CURTYPE_BTREE: { 002764 assert( pCx->uc.pCursor!=0 ); 002765 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 002766 break; 002767 } 002768 #ifndef SQLITE_OMIT_VIRTUALTABLE 002769 case CURTYPE_VTAB: { 002770 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 002771 const sqlite3_module *pModule = pVCur->pVtab->pModule; 002772 assert( pVCur->pVtab->nRef>0 ); 002773 pVCur->pVtab->nRef--; 002774 pModule->xClose(pVCur); 002775 break; 002776 } 002777 #endif 002778 } 002779 } 002780 002781 /* 002782 ** Close all cursors in the current frame. 002783 */ 002784 static void closeCursorsInFrame(Vdbe *p){ 002785 int i; 002786 for(i=0; i<p->nCursor; i++){ 002787 VdbeCursor *pC = p->apCsr[i]; 002788 if( pC ){ 002789 sqlite3VdbeFreeCursorNN(p, pC); 002790 p->apCsr[i] = 0; 002791 } 002792 } 002793 } 002794 002795 /* 002796 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 002797 ** is used, for example, when a trigger sub-program is halted to restore 002798 ** control to the main program. 002799 */ 002800 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 002801 Vdbe *v = pFrame->v; 002802 closeCursorsInFrame(v); 002803 v->aOp = pFrame->aOp; 002804 v->nOp = pFrame->nOp; 002805 v->aMem = pFrame->aMem; 002806 v->nMem = pFrame->nMem; 002807 v->apCsr = pFrame->apCsr; 002808 v->nCursor = pFrame->nCursor; 002809 v->db->lastRowid = pFrame->lastRowid; 002810 v->nChange = pFrame->nChange; 002811 v->db->nChange = pFrame->nDbChange; 002812 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 002813 v->pAuxData = pFrame->pAuxData; 002814 pFrame->pAuxData = 0; 002815 return pFrame->pc; 002816 } 002817 002818 /* 002819 ** Close all cursors. 002820 ** 002821 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 002822 ** cell array. This is necessary as the memory cell array may contain 002823 ** pointers to VdbeFrame objects, which may in turn contain pointers to 002824 ** open cursors. 002825 */ 002826 static void closeAllCursors(Vdbe *p){ 002827 if( p->pFrame ){ 002828 VdbeFrame *pFrame; 002829 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 002830 sqlite3VdbeFrameRestore(pFrame); 002831 p->pFrame = 0; 002832 p->nFrame = 0; 002833 } 002834 assert( p->nFrame==0 ); 002835 closeCursorsInFrame(p); 002836 releaseMemArray(p->aMem, p->nMem); 002837 while( p->pDelFrame ){ 002838 VdbeFrame *pDel = p->pDelFrame; 002839 p->pDelFrame = pDel->pParent; 002840 sqlite3VdbeFrameDelete(pDel); 002841 } 002842 002843 /* Delete any auxdata allocations made by the VM */ 002844 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 002845 assert( p->pAuxData==0 ); 002846 } 002847 002848 /* 002849 ** Set the number of result columns that will be returned by this SQL 002850 ** statement. This is now set at compile time, rather than during 002851 ** execution of the vdbe program so that sqlite3_column_count() can 002852 ** be called on an SQL statement before sqlite3_step(). 002853 */ 002854 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 002855 int n; 002856 sqlite3 *db = p->db; 002857 002858 if( p->nResAlloc ){ 002859 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); 002860 sqlite3DbFree(db, p->aColName); 002861 } 002862 n = nResColumn*COLNAME_N; 002863 p->nResColumn = p->nResAlloc = (u16)nResColumn; 002864 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 002865 if( p->aColName==0 ) return; 002866 initMemArray(p->aColName, n, db, MEM_Null); 002867 } 002868 002869 /* 002870 ** Set the name of the idx'th column to be returned by the SQL statement. 002871 ** zName must be a pointer to a nul terminated string. 002872 ** 002873 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 002874 ** 002875 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 002876 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 002877 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 002878 */ 002879 int sqlite3VdbeSetColName( 002880 Vdbe *p, /* Vdbe being configured */ 002881 int idx, /* Index of column zName applies to */ 002882 int var, /* One of the COLNAME_* constants */ 002883 const char *zName, /* Pointer to buffer containing name */ 002884 void (*xDel)(void*) /* Memory management strategy for zName */ 002885 ){ 002886 int rc; 002887 Mem *pColName; 002888 assert( idx<p->nResAlloc ); 002889 assert( var<COLNAME_N ); 002890 if( p->db->mallocFailed ){ 002891 assert( !zName || xDel!=SQLITE_DYNAMIC ); 002892 return SQLITE_NOMEM_BKPT; 002893 } 002894 assert( p->aColName!=0 ); 002895 pColName = &(p->aColName[idx+var*p->nResAlloc]); 002896 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 002897 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 002898 return rc; 002899 } 002900 002901 /* 002902 ** A read or write transaction may or may not be active on database handle 002903 ** db. If a transaction is active, commit it. If there is a 002904 ** write-transaction spanning more than one database file, this routine 002905 ** takes care of the super-journal trickery. 002906 */ 002907 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 002908 int i; 002909 int nTrans = 0; /* Number of databases with an active write-transaction 002910 ** that are candidates for a two-phase commit using a 002911 ** super-journal */ 002912 int rc = SQLITE_OK; 002913 int needXcommit = 0; 002914 002915 #ifdef SQLITE_OMIT_VIRTUALTABLE 002916 /* With this option, sqlite3VtabSync() is defined to be simply 002917 ** SQLITE_OK so p is not used. 002918 */ 002919 UNUSED_PARAMETER(p); 002920 #endif 002921 002922 /* Before doing anything else, call the xSync() callback for any 002923 ** virtual module tables written in this transaction. This has to 002924 ** be done before determining whether a super-journal file is 002925 ** required, as an xSync() callback may add an attached database 002926 ** to the transaction. 002927 */ 002928 rc = sqlite3VtabSync(db, p); 002929 002930 /* This loop determines (a) if the commit hook should be invoked and 002931 ** (b) how many database files have open write transactions, not 002932 ** including the temp database. (b) is important because if more than 002933 ** one database file has an open write transaction, a super-journal 002934 ** file is required for an atomic commit. 002935 */ 002936 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002937 Btree *pBt = db->aDb[i].pBt; 002938 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 002939 /* Whether or not a database might need a super-journal depends upon 002940 ** its journal mode (among other things). This matrix determines which 002941 ** journal modes use a super-journal and which do not */ 002942 static const u8 aMJNeeded[] = { 002943 /* DELETE */ 1, 002944 /* PERSIST */ 1, 002945 /* OFF */ 0, 002946 /* TRUNCATE */ 1, 002947 /* MEMORY */ 0, 002948 /* WAL */ 0 002949 }; 002950 Pager *pPager; /* Pager associated with pBt */ 002951 needXcommit = 1; 002952 sqlite3BtreeEnter(pBt); 002953 pPager = sqlite3BtreePager(pBt); 002954 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 002955 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 002956 && sqlite3PagerIsMemdb(pPager)==0 002957 ){ 002958 assert( i!=1 ); 002959 nTrans++; 002960 } 002961 rc = sqlite3PagerExclusiveLock(pPager); 002962 sqlite3BtreeLeave(pBt); 002963 } 002964 } 002965 if( rc!=SQLITE_OK ){ 002966 return rc; 002967 } 002968 002969 /* If there are any write-transactions at all, invoke the commit hook */ 002970 if( needXcommit && db->xCommitCallback ){ 002971 rc = db->xCommitCallback(db->pCommitArg); 002972 if( rc ){ 002973 return SQLITE_CONSTRAINT_COMMITHOOK; 002974 } 002975 } 002976 002977 /* The simple case - no more than one database file (not counting the 002978 ** TEMP database) has a transaction active. There is no need for the 002979 ** super-journal. 002980 ** 002981 ** If the return value of sqlite3BtreeGetFilename() is a zero length 002982 ** string, it means the main database is :memory: or a temp file. In 002983 ** that case we do not support atomic multi-file commits, so use the 002984 ** simple case then too. 002985 */ 002986 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 002987 || nTrans<=1 002988 ){ 002989 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002990 Btree *pBt = db->aDb[i].pBt; 002991 if( pBt ){ 002992 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 002993 } 002994 } 002995 002996 /* Do the commit only if all databases successfully complete phase 1. 002997 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 002998 ** IO error while deleting or truncating a journal file. It is unlikely, 002999 ** but could happen. In this case abandon processing and return the error. 003000 */ 003001 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 003002 Btree *pBt = db->aDb[i].pBt; 003003 if( pBt ){ 003004 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 003005 } 003006 } 003007 if( rc==SQLITE_OK ){ 003008 sqlite3VtabCommit(db); 003009 } 003010 } 003011 003012 /* The complex case - There is a multi-file write-transaction active. 003013 ** This requires a super-journal file to ensure the transaction is 003014 ** committed atomically. 003015 */ 003016 #ifndef SQLITE_OMIT_DISKIO 003017 else{ 003018 sqlite3_vfs *pVfs = db->pVfs; 003019 char *zSuper = 0; /* File-name for the super-journal */ 003020 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 003021 sqlite3_file *pSuperJrnl = 0; 003022 i64 offset = 0; 003023 int res; 003024 int retryCount = 0; 003025 int nMainFile; 003026 003027 /* Select a super-journal file name */ 003028 nMainFile = sqlite3Strlen30(zMainFile); 003029 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 003030 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 003031 zSuper += 4; 003032 do { 003033 u32 iRandom; 003034 if( retryCount ){ 003035 if( retryCount>100 ){ 003036 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 003037 sqlite3OsDelete(pVfs, zSuper, 0); 003038 break; 003039 }else if( retryCount==1 ){ 003040 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 003041 } 003042 } 003043 retryCount++; 003044 sqlite3_randomness(sizeof(iRandom), &iRandom); 003045 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 003046 (iRandom>>8)&0xffffff, iRandom&0xff); 003047 /* The antipenultimate character of the super-journal name must 003048 ** be "9" to avoid name collisions when using 8+3 filenames. */ 003049 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 003050 sqlite3FileSuffix3(zMainFile, zSuper); 003051 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 003052 }while( rc==SQLITE_OK && res ); 003053 if( rc==SQLITE_OK ){ 003054 /* Open the super-journal. */ 003055 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 003056 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 003057 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 003058 ); 003059 } 003060 if( rc!=SQLITE_OK ){ 003061 sqlite3DbFree(db, zSuper-4); 003062 return rc; 003063 } 003064 003065 /* Write the name of each database file in the transaction into the new 003066 ** super-journal file. If an error occurs at this point close 003067 ** and delete the super-journal file. All the individual journal files 003068 ** still have 'null' as the super-journal pointer, so they will roll 003069 ** back independently if a failure occurs. 003070 */ 003071 for(i=0; i<db->nDb; i++){ 003072 Btree *pBt = db->aDb[i].pBt; 003073 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 003074 char const *zFile = sqlite3BtreeGetJournalname(pBt); 003075 if( zFile==0 ){ 003076 continue; /* Ignore TEMP and :memory: databases */ 003077 } 003078 assert( zFile[0]!=0 ); 003079 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 003080 offset += sqlite3Strlen30(zFile)+1; 003081 if( rc!=SQLITE_OK ){ 003082 sqlite3OsCloseFree(pSuperJrnl); 003083 sqlite3OsDelete(pVfs, zSuper, 0); 003084 sqlite3DbFree(db, zSuper-4); 003085 return rc; 003086 } 003087 } 003088 } 003089 003090 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 003091 ** flag is set this is not required. 003092 */ 003093 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 003094 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 003095 ){ 003096 sqlite3OsCloseFree(pSuperJrnl); 003097 sqlite3OsDelete(pVfs, zSuper, 0); 003098 sqlite3DbFree(db, zSuper-4); 003099 return rc; 003100 } 003101 003102 /* Sync all the db files involved in the transaction. The same call 003103 ** sets the super-journal pointer in each individual journal. If 003104 ** an error occurs here, do not delete the super-journal file. 003105 ** 003106 ** If the error occurs during the first call to 003107 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 003108 ** super-journal file will be orphaned. But we cannot delete it, 003109 ** in case the super-journal file name was written into the journal 003110 ** file before the failure occurred. 003111 */ 003112 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 003113 Btree *pBt = db->aDb[i].pBt; 003114 if( pBt ){ 003115 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 003116 } 003117 } 003118 sqlite3OsCloseFree(pSuperJrnl); 003119 assert( rc!=SQLITE_BUSY ); 003120 if( rc!=SQLITE_OK ){ 003121 sqlite3DbFree(db, zSuper-4); 003122 return rc; 003123 } 003124 003125 /* Delete the super-journal file. This commits the transaction. After 003126 ** doing this the directory is synced again before any individual 003127 ** transaction files are deleted. 003128 */ 003129 rc = sqlite3OsDelete(pVfs, zSuper, 1); 003130 sqlite3DbFree(db, zSuper-4); 003131 zSuper = 0; 003132 if( rc ){ 003133 return rc; 003134 } 003135 003136 /* All files and directories have already been synced, so the following 003137 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 003138 ** deleting or truncating journals. If something goes wrong while 003139 ** this is happening we don't really care. The integrity of the 003140 ** transaction is already guaranteed, but some stray 'cold' journals 003141 ** may be lying around. Returning an error code won't help matters. 003142 */ 003143 disable_simulated_io_errors(); 003144 sqlite3BeginBenignMalloc(); 003145 for(i=0; i<db->nDb; i++){ 003146 Btree *pBt = db->aDb[i].pBt; 003147 if( pBt ){ 003148 sqlite3BtreeCommitPhaseTwo(pBt, 1); 003149 } 003150 } 003151 sqlite3EndBenignMalloc(); 003152 enable_simulated_io_errors(); 003153 003154 sqlite3VtabCommit(db); 003155 } 003156 #endif 003157 003158 return rc; 003159 } 003160 003161 /* 003162 ** This routine checks that the sqlite3.nVdbeActive count variable 003163 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 003164 ** currently active. An assertion fails if the two counts do not match. 003165 ** This is an internal self-check only - it is not an essential processing 003166 ** step. 003167 ** 003168 ** This is a no-op if NDEBUG is defined. 003169 */ 003170 #ifndef NDEBUG 003171 static void checkActiveVdbeCnt(sqlite3 *db){ 003172 Vdbe *p; 003173 int cnt = 0; 003174 int nWrite = 0; 003175 int nRead = 0; 003176 p = db->pVdbe; 003177 while( p ){ 003178 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 003179 cnt++; 003180 if( p->readOnly==0 ) nWrite++; 003181 if( p->bIsReader ) nRead++; 003182 } 003183 p = p->pVNext; 003184 } 003185 assert( cnt==db->nVdbeActive ); 003186 assert( nWrite==db->nVdbeWrite ); 003187 assert( nRead==db->nVdbeRead ); 003188 } 003189 #else 003190 #define checkActiveVdbeCnt(x) 003191 #endif 003192 003193 /* 003194 ** If the Vdbe passed as the first argument opened a statement-transaction, 003195 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 003196 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 003197 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 003198 ** statement transaction is committed. 003199 ** 003200 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 003201 ** Otherwise SQLITE_OK. 003202 */ 003203 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 003204 sqlite3 *const db = p->db; 003205 int rc = SQLITE_OK; 003206 int i; 003207 const int iSavepoint = p->iStatement-1; 003208 003209 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 003210 assert( db->nStatement>0 ); 003211 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 003212 003213 for(i=0; i<db->nDb; i++){ 003214 int rc2 = SQLITE_OK; 003215 Btree *pBt = db->aDb[i].pBt; 003216 if( pBt ){ 003217 if( eOp==SAVEPOINT_ROLLBACK ){ 003218 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 003219 } 003220 if( rc2==SQLITE_OK ){ 003221 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 003222 } 003223 if( rc==SQLITE_OK ){ 003224 rc = rc2; 003225 } 003226 } 003227 } 003228 db->nStatement--; 003229 p->iStatement = 0; 003230 003231 if( rc==SQLITE_OK ){ 003232 if( eOp==SAVEPOINT_ROLLBACK ){ 003233 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 003234 } 003235 if( rc==SQLITE_OK ){ 003236 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 003237 } 003238 } 003239 003240 /* If the statement transaction is being rolled back, also restore the 003241 ** database handles deferred constraint counter to the value it had when 003242 ** the statement transaction was opened. */ 003243 if( eOp==SAVEPOINT_ROLLBACK ){ 003244 db->nDeferredCons = p->nStmtDefCons; 003245 db->nDeferredImmCons = p->nStmtDefImmCons; 003246 } 003247 return rc; 003248 } 003249 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 003250 if( p->db->nStatement && p->iStatement ){ 003251 return vdbeCloseStatement(p, eOp); 003252 } 003253 return SQLITE_OK; 003254 } 003255 003256 003257 /* 003258 ** This function is called when a transaction opened by the database 003259 ** handle associated with the VM passed as an argument is about to be 003260 ** committed. If there are outstanding deferred foreign key constraint 003261 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 003262 ** 003263 ** If there are outstanding FK violations and this function returns 003264 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 003265 ** and write an error message to it. Then return SQLITE_ERROR. 003266 */ 003267 #ifndef SQLITE_OMIT_FOREIGN_KEY 003268 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 003269 sqlite3 *db = p->db; 003270 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 003271 || (!deferred && p->nFkConstraint>0) 003272 ){ 003273 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 003274 p->errorAction = OE_Abort; 003275 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 003276 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 003277 return SQLITE_CONSTRAINT_FOREIGNKEY; 003278 } 003279 return SQLITE_OK; 003280 } 003281 #endif 003282 003283 /* 003284 ** This routine is called the when a VDBE tries to halt. If the VDBE 003285 ** has made changes and is in autocommit mode, then commit those 003286 ** changes. If a rollback is needed, then do the rollback. 003287 ** 003288 ** This routine is the only way to move the sqlite3eOpenState of a VM from 003289 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 003290 ** call this on a VM that is in the SQLITE_STATE_HALT state. 003291 ** 003292 ** Return an error code. If the commit could not complete because of 003293 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 003294 ** means the close did not happen and needs to be repeated. 003295 */ 003296 int sqlite3VdbeHalt(Vdbe *p){ 003297 int rc; /* Used to store transient return codes */ 003298 sqlite3 *db = p->db; 003299 003300 /* This function contains the logic that determines if a statement or 003301 ** transaction will be committed or rolled back as a result of the 003302 ** execution of this virtual machine. 003303 ** 003304 ** If any of the following errors occur: 003305 ** 003306 ** SQLITE_NOMEM 003307 ** SQLITE_IOERR 003308 ** SQLITE_FULL 003309 ** SQLITE_INTERRUPT 003310 ** 003311 ** Then the internal cache might have been left in an inconsistent 003312 ** state. We need to rollback the statement transaction, if there is 003313 ** one, or the complete transaction if there is no statement transaction. 003314 */ 003315 003316 assert( p->eVdbeState==VDBE_RUN_STATE ); 003317 if( db->mallocFailed ){ 003318 p->rc = SQLITE_NOMEM_BKPT; 003319 } 003320 closeAllCursors(p); 003321 checkActiveVdbeCnt(db); 003322 003323 /* No commit or rollback needed if the program never started or if the 003324 ** SQL statement does not read or write a database file. */ 003325 if( p->bIsReader ){ 003326 int mrc; /* Primary error code from p->rc */ 003327 int eStatementOp = 0; 003328 int isSpecialError; /* Set to true if a 'special' error */ 003329 003330 /* Lock all btrees used by the statement */ 003331 sqlite3VdbeEnter(p); 003332 003333 /* Check for one of the special errors */ 003334 if( p->rc ){ 003335 mrc = p->rc & 0xff; 003336 isSpecialError = mrc==SQLITE_NOMEM 003337 || mrc==SQLITE_IOERR 003338 || mrc==SQLITE_INTERRUPT 003339 || mrc==SQLITE_FULL; 003340 }else{ 003341 mrc = isSpecialError = 0; 003342 } 003343 if( isSpecialError ){ 003344 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 003345 ** no rollback is necessary. Otherwise, at least a savepoint 003346 ** transaction must be rolled back to restore the database to a 003347 ** consistent state. 003348 ** 003349 ** Even if the statement is read-only, it is important to perform 003350 ** a statement or transaction rollback operation. If the error 003351 ** occurred while writing to the journal, sub-journal or database 003352 ** file as part of an effort to free up cache space (see function 003353 ** pagerStress() in pager.c), the rollback is required to restore 003354 ** the pager to a consistent state. 003355 */ 003356 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 003357 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 003358 eStatementOp = SAVEPOINT_ROLLBACK; 003359 }else{ 003360 /* We are forced to roll back the active transaction. Before doing 003361 ** so, abort any other statements this handle currently has active. 003362 */ 003363 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003364 sqlite3CloseSavepoints(db); 003365 db->autoCommit = 1; 003366 p->nChange = 0; 003367 } 003368 } 003369 } 003370 003371 /* Check for immediate foreign key violations. */ 003372 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 003373 (void)sqlite3VdbeCheckFk(p, 0); 003374 } 003375 003376 /* If the auto-commit flag is set and this is the only active writer 003377 ** VM, then we do either a commit or rollback of the current transaction. 003378 ** 003379 ** Note: This block also runs if one of the special errors handled 003380 ** above has occurred. 003381 */ 003382 if( !sqlite3VtabInSync(db) 003383 && db->autoCommit 003384 && db->nVdbeWrite==(p->readOnly==0) 003385 ){ 003386 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 003387 rc = sqlite3VdbeCheckFk(p, 1); 003388 if( rc!=SQLITE_OK ){ 003389 if( NEVER(p->readOnly) ){ 003390 sqlite3VdbeLeave(p); 003391 return SQLITE_ERROR; 003392 } 003393 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 003394 }else if( db->flags & SQLITE_CorruptRdOnly ){ 003395 rc = SQLITE_CORRUPT; 003396 db->flags &= ~SQLITE_CorruptRdOnly; 003397 }else{ 003398 /* The auto-commit flag is true, the vdbe program was successful 003399 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 003400 ** key constraints to hold up the transaction. This means a commit 003401 ** is required. */ 003402 rc = vdbeCommit(db, p); 003403 } 003404 if( rc==SQLITE_BUSY && p->readOnly ){ 003405 sqlite3VdbeLeave(p); 003406 return SQLITE_BUSY; 003407 }else if( rc!=SQLITE_OK ){ 003408 sqlite3SystemError(db, rc); 003409 p->rc = rc; 003410 sqlite3RollbackAll(db, SQLITE_OK); 003411 p->nChange = 0; 003412 }else{ 003413 db->nDeferredCons = 0; 003414 db->nDeferredImmCons = 0; 003415 db->flags &= ~(u64)SQLITE_DeferFKs; 003416 sqlite3CommitInternalChanges(db); 003417 } 003418 }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){ 003419 p->nChange = 0; 003420 }else{ 003421 sqlite3RollbackAll(db, SQLITE_OK); 003422 p->nChange = 0; 003423 } 003424 db->nStatement = 0; 003425 }else if( eStatementOp==0 ){ 003426 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 003427 eStatementOp = SAVEPOINT_RELEASE; 003428 }else if( p->errorAction==OE_Abort ){ 003429 eStatementOp = SAVEPOINT_ROLLBACK; 003430 }else{ 003431 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003432 sqlite3CloseSavepoints(db); 003433 db->autoCommit = 1; 003434 p->nChange = 0; 003435 } 003436 } 003437 003438 /* If eStatementOp is non-zero, then a statement transaction needs to 003439 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 003440 ** do so. If this operation returns an error, and the current statement 003441 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 003442 ** current statement error code. 003443 */ 003444 if( eStatementOp ){ 003445 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 003446 if( rc ){ 003447 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 003448 p->rc = rc; 003449 sqlite3DbFree(db, p->zErrMsg); 003450 p->zErrMsg = 0; 003451 } 003452 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003453 sqlite3CloseSavepoints(db); 003454 db->autoCommit = 1; 003455 p->nChange = 0; 003456 } 003457 } 003458 003459 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 003460 ** has been rolled back, update the database connection change-counter. 003461 */ 003462 if( p->changeCntOn ){ 003463 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 003464 sqlite3VdbeSetChanges(db, p->nChange); 003465 }else{ 003466 sqlite3VdbeSetChanges(db, 0); 003467 } 003468 p->nChange = 0; 003469 } 003470 003471 /* Release the locks */ 003472 sqlite3VdbeLeave(p); 003473 } 003474 003475 /* We have successfully halted and closed the VM. Record this fact. */ 003476 db->nVdbeActive--; 003477 if( !p->readOnly ) db->nVdbeWrite--; 003478 if( p->bIsReader ) db->nVdbeRead--; 003479 assert( db->nVdbeActive>=db->nVdbeRead ); 003480 assert( db->nVdbeRead>=db->nVdbeWrite ); 003481 assert( db->nVdbeWrite>=0 ); 003482 p->eVdbeState = VDBE_HALT_STATE; 003483 checkActiveVdbeCnt(db); 003484 if( db->mallocFailed ){ 003485 p->rc = SQLITE_NOMEM_BKPT; 003486 } 003487 003488 /* If the auto-commit flag is set to true, then any locks that were held 003489 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 003490 ** to invoke any required unlock-notify callbacks. 003491 */ 003492 if( db->autoCommit ){ 003493 sqlite3ConnectionUnlocked(db); 003494 } 003495 003496 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 003497 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 003498 } 003499 003500 003501 /* 003502 ** Each VDBE holds the result of the most recent sqlite3_step() call 003503 ** in p->rc. This routine sets that result back to SQLITE_OK. 003504 */ 003505 void sqlite3VdbeResetStepResult(Vdbe *p){ 003506 p->rc = SQLITE_OK; 003507 } 003508 003509 /* 003510 ** Copy the error code and error message belonging to the VDBE passed 003511 ** as the first argument to its database handle (so that they will be 003512 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 003513 ** 003514 ** This function does not clear the VDBE error code or message, just 003515 ** copies them to the database handle. 003516 */ 003517 int sqlite3VdbeTransferError(Vdbe *p){ 003518 sqlite3 *db = p->db; 003519 int rc = p->rc; 003520 if( p->zErrMsg ){ 003521 db->bBenignMalloc++; 003522 sqlite3BeginBenignMalloc(); 003523 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 003524 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 003525 sqlite3EndBenignMalloc(); 003526 db->bBenignMalloc--; 003527 }else if( db->pErr ){ 003528 sqlite3ValueSetNull(db->pErr); 003529 } 003530 db->errCode = rc; 003531 db->errByteOffset = -1; 003532 return rc; 003533 } 003534 003535 #ifdef SQLITE_ENABLE_SQLLOG 003536 /* 003537 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 003538 ** invoke it. 003539 */ 003540 static void vdbeInvokeSqllog(Vdbe *v){ 003541 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 003542 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 003543 assert( v->db->init.busy==0 ); 003544 if( zExpanded ){ 003545 sqlite3GlobalConfig.xSqllog( 003546 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 003547 ); 003548 sqlite3DbFree(v->db, zExpanded); 003549 } 003550 } 003551 } 003552 #else 003553 # define vdbeInvokeSqllog(x) 003554 #endif 003555 003556 /* 003557 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 003558 ** Write any error messages into *pzErrMsg. Return the result code. 003559 ** 003560 ** After this routine is run, the VDBE should be ready to be executed 003561 ** again. 003562 ** 003563 ** To look at it another way, this routine resets the state of the 003564 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 003565 ** VDBE_READY_STATE. 003566 */ 003567 int sqlite3VdbeReset(Vdbe *p){ 003568 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 003569 int i; 003570 #endif 003571 003572 sqlite3 *db; 003573 db = p->db; 003574 003575 /* If the VM did not run to completion or if it encountered an 003576 ** error, then it might not have been halted properly. So halt 003577 ** it now. 003578 */ 003579 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 003580 003581 /* If the VDBE has been run even partially, then transfer the error code 003582 ** and error message from the VDBE into the main database structure. But 003583 ** if the VDBE has just been set to run but has not actually executed any 003584 ** instructions yet, leave the main database error information unchanged. 003585 */ 003586 if( p->pc>=0 ){ 003587 vdbeInvokeSqllog(p); 003588 if( db->pErr || p->zErrMsg ){ 003589 sqlite3VdbeTransferError(p); 003590 }else{ 003591 db->errCode = p->rc; 003592 } 003593 } 003594 003595 /* Reset register contents and reclaim error message memory. 003596 */ 003597 #ifdef SQLITE_DEBUG 003598 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 003599 ** Vdbe.aMem[] arrays have already been cleaned up. */ 003600 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 003601 if( p->aMem ){ 003602 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 003603 } 003604 #endif 003605 if( p->zErrMsg ){ 003606 sqlite3DbFree(db, p->zErrMsg); 003607 p->zErrMsg = 0; 003608 } 003609 p->pResultRow = 0; 003610 #ifdef SQLITE_DEBUG 003611 p->nWrite = 0; 003612 #endif 003613 003614 /* Save profiling information from this VDBE run. 003615 */ 003616 #ifdef VDBE_PROFILE 003617 { 003618 FILE *out = fopen("vdbe_profile.out", "a"); 003619 if( out ){ 003620 fprintf(out, "---- "); 003621 for(i=0; i<p->nOp; i++){ 003622 fprintf(out, "%02x", p->aOp[i].opcode); 003623 } 003624 fprintf(out, "\n"); 003625 if( p->zSql ){ 003626 char c, pc = 0; 003627 fprintf(out, "-- "); 003628 for(i=0; (c = p->zSql[i])!=0; i++){ 003629 if( pc=='\n' ) fprintf(out, "-- "); 003630 putc(c, out); 003631 pc = c; 003632 } 003633 if( pc!='\n' ) fprintf(out, "\n"); 003634 } 003635 for(i=0; i<p->nOp; i++){ 003636 char zHdr[100]; 003637 i64 cnt = p->aOp[i].nExec; 003638 i64 cycles = p->aOp[i].nCycle; 003639 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 003640 cnt, 003641 cycles, 003642 cnt>0 ? cycles/cnt : 0 003643 ); 003644 fprintf(out, "%s", zHdr); 003645 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 003646 } 003647 fclose(out); 003648 } 003649 } 003650 #endif 003651 return p->rc & db->errMask; 003652 } 003653 003654 /* 003655 ** Clean up and delete a VDBE after execution. Return an integer which is 003656 ** the result code. Write any error message text into *pzErrMsg. 003657 */ 003658 int sqlite3VdbeFinalize(Vdbe *p){ 003659 int rc = SQLITE_OK; 003660 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 003661 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 003662 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 003663 if( p->eVdbeState>=VDBE_READY_STATE ){ 003664 rc = sqlite3VdbeReset(p); 003665 assert( (rc & p->db->errMask)==rc ); 003666 } 003667 sqlite3VdbeDelete(p); 003668 return rc; 003669 } 003670 003671 /* 003672 ** If parameter iOp is less than zero, then invoke the destructor for 003673 ** all auxiliary data pointers currently cached by the VM passed as 003674 ** the first argument. 003675 ** 003676 ** Or, if iOp is greater than or equal to zero, then the destructor is 003677 ** only invoked for those auxiliary data pointers created by the user 003678 ** function invoked by the OP_Function opcode at instruction iOp of 003679 ** VM pVdbe, and only then if: 003680 ** 003681 ** * the associated function parameter is the 32nd or later (counting 003682 ** from left to right), or 003683 ** 003684 ** * the corresponding bit in argument mask is clear (where the first 003685 ** function parameter corresponds to bit 0 etc.). 003686 */ 003687 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 003688 while( *pp ){ 003689 AuxData *pAux = *pp; 003690 if( (iOp<0) 003691 || (pAux->iAuxOp==iOp 003692 && pAux->iAuxArg>=0 003693 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 003694 ){ 003695 testcase( pAux->iAuxArg==31 ); 003696 if( pAux->xDeleteAux ){ 003697 pAux->xDeleteAux(pAux->pAux); 003698 } 003699 *pp = pAux->pNextAux; 003700 sqlite3DbFree(db, pAux); 003701 }else{ 003702 pp= &pAux->pNextAux; 003703 } 003704 } 003705 } 003706 003707 /* 003708 ** Free all memory associated with the Vdbe passed as the second argument, 003709 ** except for object itself, which is preserved. 003710 ** 003711 ** The difference between this function and sqlite3VdbeDelete() is that 003712 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 003713 ** the database connection and frees the object itself. 003714 */ 003715 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 003716 SubProgram *pSub, *pNext; 003717 assert( db!=0 ); 003718 assert( p->db==0 || p->db==db ); 003719 if( p->aColName ){ 003720 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); 003721 sqlite3DbNNFreeNN(db, p->aColName); 003722 } 003723 for(pSub=p->pProgram; pSub; pSub=pNext){ 003724 pNext = pSub->pNext; 003725 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 003726 sqlite3DbFree(db, pSub); 003727 } 003728 if( p->eVdbeState!=VDBE_INIT_STATE ){ 003729 releaseMemArray(p->aVar, p->nVar); 003730 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); 003731 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); 003732 } 003733 vdbeFreeOpArray(db, p->aOp, p->nOp); 003734 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); 003735 #ifdef SQLITE_ENABLE_NORMALIZE 003736 sqlite3DbFree(db, p->zNormSql); 003737 { 003738 DblquoteStr *pThis, *pNxt; 003739 for(pThis=p->pDblStr; pThis; pThis=pNxt){ 003740 pNxt = pThis->pNextStr; 003741 sqlite3DbFree(db, pThis); 003742 } 003743 } 003744 #endif 003745 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 003746 { 003747 int i; 003748 for(i=0; i<p->nScan; i++){ 003749 sqlite3DbFree(db, p->aScan[i].zName); 003750 } 003751 sqlite3DbFree(db, p->aScan); 003752 } 003753 #endif 003754 } 003755 003756 /* 003757 ** Delete an entire VDBE. 003758 */ 003759 void sqlite3VdbeDelete(Vdbe *p){ 003760 sqlite3 *db; 003761 003762 assert( p!=0 ); 003763 db = p->db; 003764 assert( db!=0 ); 003765 assert( sqlite3_mutex_held(db->mutex) ); 003766 sqlite3VdbeClearObject(db, p); 003767 if( db->pnBytesFreed==0 ){ 003768 assert( p->ppVPrev!=0 ); 003769 *p->ppVPrev = p->pVNext; 003770 if( p->pVNext ){ 003771 p->pVNext->ppVPrev = p->ppVPrev; 003772 } 003773 } 003774 sqlite3DbNNFreeNN(db, p); 003775 } 003776 003777 /* 003778 ** The cursor "p" has a pending seek operation that has not yet been 003779 ** carried out. Seek the cursor now. If an error occurs, return 003780 ** the appropriate error code. 003781 */ 003782 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 003783 int res, rc; 003784 #ifdef SQLITE_TEST 003785 extern int sqlite3_search_count; 003786 #endif 003787 assert( p->deferredMoveto ); 003788 assert( p->isTable ); 003789 assert( p->eCurType==CURTYPE_BTREE ); 003790 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 003791 if( rc ) return rc; 003792 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 003793 #ifdef SQLITE_TEST 003794 sqlite3_search_count++; 003795 #endif 003796 p->deferredMoveto = 0; 003797 p->cacheStatus = CACHE_STALE; 003798 return SQLITE_OK; 003799 } 003800 003801 /* 003802 ** Something has moved cursor "p" out of place. Maybe the row it was 003803 ** pointed to was deleted out from under it. Or maybe the btree was 003804 ** rebalanced. Whatever the cause, try to restore "p" to the place it 003805 ** is supposed to be pointing. If the row was deleted out from under the 003806 ** cursor, set the cursor to point to a NULL row. 003807 */ 003808 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 003809 int isDifferentRow, rc; 003810 assert( p->eCurType==CURTYPE_BTREE ); 003811 assert( p->uc.pCursor!=0 ); 003812 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 003813 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 003814 p->cacheStatus = CACHE_STALE; 003815 if( isDifferentRow ) p->nullRow = 1; 003816 return rc; 003817 } 003818 003819 /* 003820 ** Check to ensure that the cursor is valid. Restore the cursor 003821 ** if need be. Return any I/O error from the restore operation. 003822 */ 003823 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 003824 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 003825 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 003826 return sqlite3VdbeHandleMovedCursor(p); 003827 } 003828 return SQLITE_OK; 003829 } 003830 003831 /* 003832 ** The following functions: 003833 ** 003834 ** sqlite3VdbeSerialType() 003835 ** sqlite3VdbeSerialTypeLen() 003836 ** sqlite3VdbeSerialLen() 003837 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 003838 ** sqlite3VdbeSerialGet() 003839 ** 003840 ** encapsulate the code that serializes values for storage in SQLite 003841 ** data and index records. Each serialized value consists of a 003842 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 003843 ** integer, stored as a varint. 003844 ** 003845 ** In an SQLite index record, the serial type is stored directly before 003846 ** the blob of data that it corresponds to. In a table record, all serial 003847 ** types are stored at the start of the record, and the blobs of data at 003848 ** the end. Hence these functions allow the caller to handle the 003849 ** serial-type and data blob separately. 003850 ** 003851 ** The following table describes the various storage classes for data: 003852 ** 003853 ** serial type bytes of data type 003854 ** -------------- --------------- --------------- 003855 ** 0 0 NULL 003856 ** 1 1 signed integer 003857 ** 2 2 signed integer 003858 ** 3 3 signed integer 003859 ** 4 4 signed integer 003860 ** 5 6 signed integer 003861 ** 6 8 signed integer 003862 ** 7 8 IEEE float 003863 ** 8 0 Integer constant 0 003864 ** 9 0 Integer constant 1 003865 ** 10,11 reserved for expansion 003866 ** N>=12 and even (N-12)/2 BLOB 003867 ** N>=13 and odd (N-13)/2 text 003868 ** 003869 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 003870 ** of SQLite will not understand those serial types. 003871 */ 003872 003873 #if 0 /* Inlined into the OP_MakeRecord opcode */ 003874 /* 003875 ** Return the serial-type for the value stored in pMem. 003876 ** 003877 ** This routine might convert a large MEM_IntReal value into MEM_Real. 003878 ** 003879 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 003880 ** opcode in the byte-code engine. But by moving this routine in-line, we 003881 ** can omit some redundant tests and make that opcode a lot faster. So 003882 ** this routine is now only used by the STAT3 logic and STAT3 support has 003883 ** ended. The code is kept here for historical reference only. 003884 */ 003885 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 003886 int flags = pMem->flags; 003887 u32 n; 003888 003889 assert( pLen!=0 ); 003890 if( flags&MEM_Null ){ 003891 *pLen = 0; 003892 return 0; 003893 } 003894 if( flags&(MEM_Int|MEM_IntReal) ){ 003895 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 003896 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 003897 i64 i = pMem->u.i; 003898 u64 u; 003899 testcase( flags & MEM_Int ); 003900 testcase( flags & MEM_IntReal ); 003901 if( i<0 ){ 003902 u = ~i; 003903 }else{ 003904 u = i; 003905 } 003906 if( u<=127 ){ 003907 if( (i&1)==i && file_format>=4 ){ 003908 *pLen = 0; 003909 return 8+(u32)u; 003910 }else{ 003911 *pLen = 1; 003912 return 1; 003913 } 003914 } 003915 if( u<=32767 ){ *pLen = 2; return 2; } 003916 if( u<=8388607 ){ *pLen = 3; return 3; } 003917 if( u<=2147483647 ){ *pLen = 4; return 4; } 003918 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 003919 *pLen = 8; 003920 if( flags&MEM_IntReal ){ 003921 /* If the value is IntReal and is going to take up 8 bytes to store 003922 ** as an integer, then we might as well make it an 8-byte floating 003923 ** point value */ 003924 pMem->u.r = (double)pMem->u.i; 003925 pMem->flags &= ~MEM_IntReal; 003926 pMem->flags |= MEM_Real; 003927 return 7; 003928 } 003929 return 6; 003930 } 003931 if( flags&MEM_Real ){ 003932 *pLen = 8; 003933 return 7; 003934 } 003935 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 003936 assert( pMem->n>=0 ); 003937 n = (u32)pMem->n; 003938 if( flags & MEM_Zero ){ 003939 n += pMem->u.nZero; 003940 } 003941 *pLen = n; 003942 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 003943 } 003944 #endif /* inlined into OP_MakeRecord */ 003945 003946 /* 003947 ** The sizes for serial types less than 128 003948 */ 003949 const u8 sqlite3SmallTypeSizes[128] = { 003950 /* 0 1 2 3 4 5 6 7 8 9 */ 003951 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 003952 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 003953 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 003954 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 003955 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 003956 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 003957 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 003958 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 003959 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 003960 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 003961 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 003962 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 003963 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 003964 }; 003965 003966 /* 003967 ** Return the length of the data corresponding to the supplied serial-type. 003968 */ 003969 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 003970 if( serial_type>=128 ){ 003971 return (serial_type-12)/2; 003972 }else{ 003973 assert( serial_type<12 003974 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 003975 return sqlite3SmallTypeSizes[serial_type]; 003976 } 003977 } 003978 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 003979 assert( serial_type<128 ); 003980 return sqlite3SmallTypeSizes[serial_type]; 003981 } 003982 003983 /* 003984 ** If we are on an architecture with mixed-endian floating 003985 ** points (ex: ARM7) then swap the lower 4 bytes with the 003986 ** upper 4 bytes. Return the result. 003987 ** 003988 ** For most architectures, this is a no-op. 003989 ** 003990 ** (later): It is reported to me that the mixed-endian problem 003991 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 003992 ** that early versions of GCC stored the two words of a 64-bit 003993 ** float in the wrong order. And that error has been propagated 003994 ** ever since. The blame is not necessarily with GCC, though. 003995 ** GCC might have just copying the problem from a prior compiler. 003996 ** I am also told that newer versions of GCC that follow a different 003997 ** ABI get the byte order right. 003998 ** 003999 ** Developers using SQLite on an ARM7 should compile and run their 004000 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 004001 ** enabled, some asserts below will ensure that the byte order of 004002 ** floating point values is correct. 004003 ** 004004 ** (2007-08-30) Frank van Vugt has studied this problem closely 004005 ** and has send his findings to the SQLite developers. Frank 004006 ** writes that some Linux kernels offer floating point hardware 004007 ** emulation that uses only 32-bit mantissas instead of a full 004008 ** 48-bits as required by the IEEE standard. (This is the 004009 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 004010 ** byte swapping becomes very complicated. To avoid problems, 004011 ** the necessary byte swapping is carried out using a 64-bit integer 004012 ** rather than a 64-bit float. Frank assures us that the code here 004013 ** works for him. We, the developers, have no way to independently 004014 ** verify this, but Frank seems to know what he is talking about 004015 ** so we trust him. 004016 */ 004017 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 004018 u64 sqlite3FloatSwap(u64 in){ 004019 union { 004020 u64 r; 004021 u32 i[2]; 004022 } u; 004023 u32 t; 004024 004025 u.r = in; 004026 t = u.i[0]; 004027 u.i[0] = u.i[1]; 004028 u.i[1] = t; 004029 return u.r; 004030 } 004031 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 004032 004033 004034 /* Input "x" is a sequence of unsigned characters that represent a 004035 ** big-endian integer. Return the equivalent native integer 004036 */ 004037 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 004038 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 004039 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 004040 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 004041 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 004042 004043 /* 004044 ** Deserialize the data blob pointed to by buf as serial type serial_type 004045 ** and store the result in pMem. 004046 ** 004047 ** This function is implemented as two separate routines for performance. 004048 ** The few cases that require local variables are broken out into a separate 004049 ** routine so that in most cases the overhead of moving the stack pointer 004050 ** is avoided. 004051 */ 004052 static void serialGet( 004053 const unsigned char *buf, /* Buffer to deserialize from */ 004054 u32 serial_type, /* Serial type to deserialize */ 004055 Mem *pMem /* Memory cell to write value into */ 004056 ){ 004057 u64 x = FOUR_BYTE_UINT(buf); 004058 u32 y = FOUR_BYTE_UINT(buf+4); 004059 x = (x<<32) + y; 004060 if( serial_type==6 ){ 004061 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 004062 ** twos-complement integer. */ 004063 pMem->u.i = *(i64*)&x; 004064 pMem->flags = MEM_Int; 004065 testcase( pMem->u.i<0 ); 004066 }else{ 004067 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 004068 ** floating point number. */ 004069 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 004070 /* Verify that integers and floating point values use the same 004071 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 004072 ** defined that 64-bit floating point values really are mixed 004073 ** endian. 004074 */ 004075 static const u64 t1 = ((u64)0x3ff00000)<<32; 004076 static const double r1 = 1.0; 004077 u64 t2 = t1; 004078 swapMixedEndianFloat(t2); 004079 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 004080 #endif 004081 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 004082 swapMixedEndianFloat(x); 004083 memcpy(&pMem->u.r, &x, sizeof(x)); 004084 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 004085 } 004086 } 004087 static int serialGet7( 004088 const unsigned char *buf, /* Buffer to deserialize from */ 004089 Mem *pMem /* Memory cell to write value into */ 004090 ){ 004091 u64 x = FOUR_BYTE_UINT(buf); 004092 u32 y = FOUR_BYTE_UINT(buf+4); 004093 x = (x<<32) + y; 004094 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 004095 swapMixedEndianFloat(x); 004096 memcpy(&pMem->u.r, &x, sizeof(x)); 004097 if( IsNaN(x) ){ 004098 pMem->flags = MEM_Null; 004099 return 1; 004100 } 004101 pMem->flags = MEM_Real; 004102 return 0; 004103 } 004104 void sqlite3VdbeSerialGet( 004105 const unsigned char *buf, /* Buffer to deserialize from */ 004106 u32 serial_type, /* Serial type to deserialize */ 004107 Mem *pMem /* Memory cell to write value into */ 004108 ){ 004109 switch( serial_type ){ 004110 case 10: { /* Internal use only: NULL with virtual table 004111 ** UPDATE no-change flag set */ 004112 pMem->flags = MEM_Null|MEM_Zero; 004113 pMem->n = 0; 004114 pMem->u.nZero = 0; 004115 return; 004116 } 004117 case 11: /* Reserved for future use */ 004118 case 0: { /* Null */ 004119 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 004120 pMem->flags = MEM_Null; 004121 return; 004122 } 004123 case 1: { 004124 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 004125 ** integer. */ 004126 pMem->u.i = ONE_BYTE_INT(buf); 004127 pMem->flags = MEM_Int; 004128 testcase( pMem->u.i<0 ); 004129 return; 004130 } 004131 case 2: { /* 2-byte signed integer */ 004132 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 004133 ** twos-complement integer. */ 004134 pMem->u.i = TWO_BYTE_INT(buf); 004135 pMem->flags = MEM_Int; 004136 testcase( pMem->u.i<0 ); 004137 return; 004138 } 004139 case 3: { /* 3-byte signed integer */ 004140 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 004141 ** twos-complement integer. */ 004142 pMem->u.i = THREE_BYTE_INT(buf); 004143 pMem->flags = MEM_Int; 004144 testcase( pMem->u.i<0 ); 004145 return; 004146 } 004147 case 4: { /* 4-byte signed integer */ 004148 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 004149 ** twos-complement integer. */ 004150 pMem->u.i = FOUR_BYTE_INT(buf); 004151 #ifdef __HP_cc 004152 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 004153 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 004154 #endif 004155 pMem->flags = MEM_Int; 004156 testcase( pMem->u.i<0 ); 004157 return; 004158 } 004159 case 5: { /* 6-byte signed integer */ 004160 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 004161 ** twos-complement integer. */ 004162 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 004163 pMem->flags = MEM_Int; 004164 testcase( pMem->u.i<0 ); 004165 return; 004166 } 004167 case 6: /* 8-byte signed integer */ 004168 case 7: { /* IEEE floating point */ 004169 /* These use local variables, so do them in a separate routine 004170 ** to avoid having to move the frame pointer in the common case */ 004171 serialGet(buf,serial_type,pMem); 004172 return; 004173 } 004174 case 8: /* Integer 0 */ 004175 case 9: { /* Integer 1 */ 004176 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 004177 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 004178 pMem->u.i = serial_type-8; 004179 pMem->flags = MEM_Int; 004180 return; 004181 } 004182 default: { 004183 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 004184 ** length. 004185 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 004186 ** (N-13)/2 bytes in length. */ 004187 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 004188 pMem->z = (char *)buf; 004189 pMem->n = (serial_type-12)/2; 004190 pMem->flags = aFlag[serial_type&1]; 004191 return; 004192 } 004193 } 004194 return; 004195 } 004196 /* 004197 ** This routine is used to allocate sufficient space for an UnpackedRecord 004198 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 004199 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 004200 ** 004201 ** The space is either allocated using sqlite3DbMallocRaw() or from within 004202 ** the unaligned buffer passed via the second and third arguments (presumably 004203 ** stack space). If the former, then *ppFree is set to a pointer that should 004204 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 004205 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 004206 ** before returning. 004207 ** 004208 ** If an OOM error occurs, NULL is returned. 004209 */ 004210 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 004211 KeyInfo *pKeyInfo /* Description of the record */ 004212 ){ 004213 UnpackedRecord *p; /* Unpacked record to return */ 004214 int nByte; /* Number of bytes required for *p */ 004215 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 004216 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 004217 if( !p ) return 0; 004218 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 004219 assert( pKeyInfo->aSortFlags!=0 ); 004220 p->pKeyInfo = pKeyInfo; 004221 p->nField = pKeyInfo->nKeyField + 1; 004222 return p; 004223 } 004224 004225 /* 004226 ** Given the nKey-byte encoding of a record in pKey[], populate the 004227 ** UnpackedRecord structure indicated by the fourth argument with the 004228 ** contents of the decoded record. 004229 */ 004230 void sqlite3VdbeRecordUnpack( 004231 KeyInfo *pKeyInfo, /* Information about the record format */ 004232 int nKey, /* Size of the binary record */ 004233 const void *pKey, /* The binary record */ 004234 UnpackedRecord *p /* Populate this structure before returning. */ 004235 ){ 004236 const unsigned char *aKey = (const unsigned char *)pKey; 004237 u32 d; 004238 u32 idx; /* Offset in aKey[] to read from */ 004239 u16 u; /* Unsigned loop counter */ 004240 u32 szHdr; 004241 Mem *pMem = p->aMem; 004242 004243 p->default_rc = 0; 004244 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 004245 idx = getVarint32(aKey, szHdr); 004246 d = szHdr; 004247 u = 0; 004248 while( idx<szHdr && d<=(u32)nKey ){ 004249 u32 serial_type; 004250 004251 idx += getVarint32(&aKey[idx], serial_type); 004252 pMem->enc = pKeyInfo->enc; 004253 pMem->db = pKeyInfo->db; 004254 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 004255 pMem->szMalloc = 0; 004256 pMem->z = 0; 004257 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 004258 d += sqlite3VdbeSerialTypeLen(serial_type); 004259 pMem++; 004260 if( (++u)>=p->nField ) break; 004261 } 004262 if( d>(u32)nKey && u ){ 004263 assert( CORRUPT_DB ); 004264 /* In a corrupt record entry, the last pMem might have been set up using 004265 ** uninitialized memory. Overwrite its value with NULL, to prevent 004266 ** warnings from MSAN. */ 004267 sqlite3VdbeMemSetNull(pMem-1); 004268 } 004269 assert( u<=pKeyInfo->nKeyField + 1 ); 004270 p->nField = u; 004271 } 004272 004273 #ifdef SQLITE_DEBUG 004274 /* 004275 ** This function compares two index or table record keys in the same way 004276 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 004277 ** this function deserializes and compares values using the 004278 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 004279 ** in assert() statements to ensure that the optimized code in 004280 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 004281 ** 004282 ** Return true if the result of comparison is equivalent to desiredResult. 004283 ** Return false if there is a disagreement. 004284 */ 004285 static int vdbeRecordCompareDebug( 004286 int nKey1, const void *pKey1, /* Left key */ 004287 const UnpackedRecord *pPKey2, /* Right key */ 004288 int desiredResult /* Correct answer */ 004289 ){ 004290 u32 d1; /* Offset into aKey[] of next data element */ 004291 u32 idx1; /* Offset into aKey[] of next header element */ 004292 u32 szHdr1; /* Number of bytes in header */ 004293 int i = 0; 004294 int rc = 0; 004295 const unsigned char *aKey1 = (const unsigned char *)pKey1; 004296 KeyInfo *pKeyInfo; 004297 Mem mem1; 004298 004299 pKeyInfo = pPKey2->pKeyInfo; 004300 if( pKeyInfo->db==0 ) return 1; 004301 mem1.enc = pKeyInfo->enc; 004302 mem1.db = pKeyInfo->db; 004303 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 004304 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 004305 004306 /* Compilers may complain that mem1.u.i is potentially uninitialized. 004307 ** We could initialize it, as shown here, to silence those complaints. 004308 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 004309 ** the unnecessary initialization has a measurable negative performance 004310 ** impact, since this routine is a very high runner. And so, we choose 004311 ** to ignore the compiler warnings and leave this variable uninitialized. 004312 */ 004313 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 004314 004315 idx1 = getVarint32(aKey1, szHdr1); 004316 if( szHdr1>98307 ) return SQLITE_CORRUPT; 004317 d1 = szHdr1; 004318 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 004319 assert( pKeyInfo->aSortFlags!=0 ); 004320 assert( pKeyInfo->nKeyField>0 ); 004321 assert( idx1<=szHdr1 || CORRUPT_DB ); 004322 do{ 004323 u32 serial_type1; 004324 004325 /* Read the serial types for the next element in each key. */ 004326 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 004327 004328 /* Verify that there is enough key space remaining to avoid 004329 ** a buffer overread. The "d1+serial_type1+2" subexpression will 004330 ** always be greater than or equal to the amount of required key space. 004331 ** Use that approximation to avoid the more expensive call to 004332 ** sqlite3VdbeSerialTypeLen() in the common case. 004333 */ 004334 if( d1+(u64)serial_type1+2>(u64)nKey1 004335 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 004336 ){ 004337 if( serial_type1>=1 004338 && serial_type1<=7 004339 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8 004340 && CORRUPT_DB 004341 ){ 004342 return 1; /* corrupt record not detected by 004343 ** sqlite3VdbeRecordCompareWithSkip(). Return true 004344 ** to avoid firing the assert() */ 004345 } 004346 break; 004347 } 004348 004349 /* Extract the values to be compared. 004350 */ 004351 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 004352 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 004353 004354 /* Do the comparison 004355 */ 004356 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 004357 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 004358 if( rc!=0 ){ 004359 assert( mem1.szMalloc==0 ); /* See comment below */ 004360 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 004361 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 004362 ){ 004363 rc = -rc; 004364 } 004365 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 004366 rc = -rc; /* Invert the result for DESC sort order. */ 004367 } 004368 goto debugCompareEnd; 004369 } 004370 i++; 004371 }while( idx1<szHdr1 && i<pPKey2->nField ); 004372 004373 /* No memory allocation is ever used on mem1. Prove this using 004374 ** the following assert(). If the assert() fails, it indicates a 004375 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 004376 */ 004377 assert( mem1.szMalloc==0 ); 004378 004379 /* rc==0 here means that one of the keys ran out of fields and 004380 ** all the fields up to that point were equal. Return the default_rc 004381 ** value. */ 004382 rc = pPKey2->default_rc; 004383 004384 debugCompareEnd: 004385 if( desiredResult==0 && rc==0 ) return 1; 004386 if( desiredResult<0 && rc<0 ) return 1; 004387 if( desiredResult>0 && rc>0 ) return 1; 004388 if( CORRUPT_DB ) return 1; 004389 if( pKeyInfo->db->mallocFailed ) return 1; 004390 return 0; 004391 } 004392 #endif 004393 004394 #ifdef SQLITE_DEBUG 004395 /* 004396 ** Count the number of fields (a.k.a. columns) in the record given by 004397 ** pKey,nKey. The verify that this count is less than or equal to the 004398 ** limit given by pKeyInfo->nAllField. 004399 ** 004400 ** If this constraint is not satisfied, it means that the high-speed 004401 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 004402 ** not work correctly. If this assert() ever fires, it probably means 004403 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 004404 ** incorrectly. 004405 */ 004406 static void vdbeAssertFieldCountWithinLimits( 004407 int nKey, const void *pKey, /* The record to verify */ 004408 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 004409 ){ 004410 int nField = 0; 004411 u32 szHdr; 004412 u32 idx; 004413 u32 notUsed; 004414 const unsigned char *aKey = (const unsigned char*)pKey; 004415 004416 if( CORRUPT_DB ) return; 004417 idx = getVarint32(aKey, szHdr); 004418 assert( nKey>=0 ); 004419 assert( szHdr<=(u32)nKey ); 004420 while( idx<szHdr ){ 004421 idx += getVarint32(aKey+idx, notUsed); 004422 nField++; 004423 } 004424 assert( nField <= pKeyInfo->nAllField ); 004425 } 004426 #else 004427 # define vdbeAssertFieldCountWithinLimits(A,B,C) 004428 #endif 004429 004430 /* 004431 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 004432 ** using the collation sequence pColl. As usual, return a negative , zero 004433 ** or positive value if *pMem1 is less than, equal to or greater than 004434 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 004435 */ 004436 static int vdbeCompareMemString( 004437 const Mem *pMem1, 004438 const Mem *pMem2, 004439 const CollSeq *pColl, 004440 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 004441 ){ 004442 if( pMem1->enc==pColl->enc ){ 004443 /* The strings are already in the correct encoding. Call the 004444 ** comparison function directly */ 004445 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 004446 }else{ 004447 int rc; 004448 const void *v1, *v2; 004449 Mem c1; 004450 Mem c2; 004451 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 004452 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 004453 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 004454 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 004455 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 004456 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 004457 if( (v1==0 || v2==0) ){ 004458 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 004459 rc = 0; 004460 }else{ 004461 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 004462 } 004463 sqlite3VdbeMemReleaseMalloc(&c1); 004464 sqlite3VdbeMemReleaseMalloc(&c2); 004465 return rc; 004466 } 004467 } 004468 004469 /* 004470 ** The input pBlob is guaranteed to be a Blob that is not marked 004471 ** with MEM_Zero. Return true if it could be a zero-blob. 004472 */ 004473 static int isAllZero(const char *z, int n){ 004474 int i; 004475 for(i=0; i<n; i++){ 004476 if( z[i] ) return 0; 004477 } 004478 return 1; 004479 } 004480 004481 /* 004482 ** Compare two blobs. Return negative, zero, or positive if the first 004483 ** is less than, equal to, or greater than the second, respectively. 004484 ** If one blob is a prefix of the other, then the shorter is the lessor. 004485 */ 004486 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 004487 int c; 004488 int n1 = pB1->n; 004489 int n2 = pB2->n; 004490 004491 /* It is possible to have a Blob value that has some non-zero content 004492 ** followed by zero content. But that only comes up for Blobs formed 004493 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 004494 ** sqlite3MemCompare(). */ 004495 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 004496 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 004497 004498 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 004499 if( pB1->flags & pB2->flags & MEM_Zero ){ 004500 return pB1->u.nZero - pB2->u.nZero; 004501 }else if( pB1->flags & MEM_Zero ){ 004502 if( !isAllZero(pB2->z, pB2->n) ) return -1; 004503 return pB1->u.nZero - n2; 004504 }else{ 004505 if( !isAllZero(pB1->z, pB1->n) ) return +1; 004506 return n1 - pB2->u.nZero; 004507 } 004508 } 004509 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 004510 if( c ) return c; 004511 return n1 - n2; 004512 } 004513 004514 /* The following two functions are used only within testcase() to prove 004515 ** test coverage. These functions do no exist for production builds. 004516 ** We must use separate SQLITE_NOINLINE functions here, since otherwise 004517 ** optimizer code movement causes gcov to become very confused. 004518 */ 004519 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) 004520 static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; } 004521 static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; } 004522 #endif 004523 004524 /* 004525 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 004526 ** number. Return negative, zero, or positive if the first (i64) is less than, 004527 ** equal to, or greater than the second (double). 004528 */ 004529 int sqlite3IntFloatCompare(i64 i, double r){ 004530 if( sqlite3IsNaN(r) ){ 004531 /* SQLite considers NaN to be a NULL. And all integer values are greater 004532 ** than NULL */ 004533 return 1; 004534 }else{ 004535 i64 y; 004536 if( r<-9223372036854775808.0 ) return +1; 004537 if( r>=9223372036854775808.0 ) return -1; 004538 y = (i64)r; 004539 if( i<y ) return -1; 004540 if( i>y ) return +1; 004541 testcase( doubleLt(((double)i),r) ); 004542 testcase( doubleLt(r,((double)i)) ); 004543 testcase( doubleEq(r,((double)i)) ); 004544 return (((double)i)<r) ? -1 : (((double)i)>r); 004545 } 004546 } 004547 004548 /* 004549 ** Compare the values contained by the two memory cells, returning 004550 ** negative, zero or positive if pMem1 is less than, equal to, or greater 004551 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 004552 ** and reals) sorted numerically, followed by text ordered by the collating 004553 ** sequence pColl and finally blob's ordered by memcmp(). 004554 ** 004555 ** Two NULL values are considered equal by this function. 004556 */ 004557 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 004558 int f1, f2; 004559 int combined_flags; 004560 004561 f1 = pMem1->flags; 004562 f2 = pMem2->flags; 004563 combined_flags = f1|f2; 004564 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 004565 004566 /* If one value is NULL, it is less than the other. If both values 004567 ** are NULL, return 0. 004568 */ 004569 if( combined_flags&MEM_Null ){ 004570 return (f2&MEM_Null) - (f1&MEM_Null); 004571 } 004572 004573 /* At least one of the two values is a number 004574 */ 004575 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 004576 testcase( combined_flags & MEM_Int ); 004577 testcase( combined_flags & MEM_Real ); 004578 testcase( combined_flags & MEM_IntReal ); 004579 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 004580 testcase( f1 & f2 & MEM_Int ); 004581 testcase( f1 & f2 & MEM_IntReal ); 004582 if( pMem1->u.i < pMem2->u.i ) return -1; 004583 if( pMem1->u.i > pMem2->u.i ) return +1; 004584 return 0; 004585 } 004586 if( (f1 & f2 & MEM_Real)!=0 ){ 004587 if( pMem1->u.r < pMem2->u.r ) return -1; 004588 if( pMem1->u.r > pMem2->u.r ) return +1; 004589 return 0; 004590 } 004591 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 004592 testcase( f1 & MEM_Int ); 004593 testcase( f1 & MEM_IntReal ); 004594 if( (f2&MEM_Real)!=0 ){ 004595 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 004596 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 004597 if( pMem1->u.i < pMem2->u.i ) return -1; 004598 if( pMem1->u.i > pMem2->u.i ) return +1; 004599 return 0; 004600 }else{ 004601 return -1; 004602 } 004603 } 004604 if( (f1&MEM_Real)!=0 ){ 004605 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 004606 testcase( f2 & MEM_Int ); 004607 testcase( f2 & MEM_IntReal ); 004608 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 004609 }else{ 004610 return -1; 004611 } 004612 } 004613 return +1; 004614 } 004615 004616 /* If one value is a string and the other is a blob, the string is less. 004617 ** If both are strings, compare using the collating functions. 004618 */ 004619 if( combined_flags&MEM_Str ){ 004620 if( (f1 & MEM_Str)==0 ){ 004621 return 1; 004622 } 004623 if( (f2 & MEM_Str)==0 ){ 004624 return -1; 004625 } 004626 004627 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 004628 assert( pMem1->enc==SQLITE_UTF8 || 004629 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 004630 004631 /* The collation sequence must be defined at this point, even if 004632 ** the user deletes the collation sequence after the vdbe program is 004633 ** compiled (this was not always the case). 004634 */ 004635 assert( !pColl || pColl->xCmp ); 004636 004637 if( pColl ){ 004638 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 004639 } 004640 /* If a NULL pointer was passed as the collate function, fall through 004641 ** to the blob case and use memcmp(). */ 004642 } 004643 004644 /* Both values must be blobs. Compare using memcmp(). */ 004645 return sqlite3BlobCompare(pMem1, pMem2); 004646 } 004647 004648 004649 /* 004650 ** The first argument passed to this function is a serial-type that 004651 ** corresponds to an integer - all values between 1 and 9 inclusive 004652 ** except 7. The second points to a buffer containing an integer value 004653 ** serialized according to serial_type. This function deserializes 004654 ** and returns the value. 004655 */ 004656 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 004657 u32 y; 004658 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 004659 switch( serial_type ){ 004660 case 0: 004661 case 1: 004662 testcase( aKey[0]&0x80 ); 004663 return ONE_BYTE_INT(aKey); 004664 case 2: 004665 testcase( aKey[0]&0x80 ); 004666 return TWO_BYTE_INT(aKey); 004667 case 3: 004668 testcase( aKey[0]&0x80 ); 004669 return THREE_BYTE_INT(aKey); 004670 case 4: { 004671 testcase( aKey[0]&0x80 ); 004672 y = FOUR_BYTE_UINT(aKey); 004673 return (i64)*(int*)&y; 004674 } 004675 case 5: { 004676 testcase( aKey[0]&0x80 ); 004677 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 004678 } 004679 case 6: { 004680 u64 x = FOUR_BYTE_UINT(aKey); 004681 testcase( aKey[0]&0x80 ); 004682 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 004683 return (i64)*(i64*)&x; 004684 } 004685 } 004686 004687 return (serial_type - 8); 004688 } 004689 004690 /* 004691 ** This function compares the two table rows or index records 004692 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 004693 ** or positive integer if key1 is less than, equal to or 004694 ** greater than key2. The {nKey1, pKey1} key must be a blob 004695 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 004696 ** key must be a parsed key such as obtained from 004697 ** sqlite3VdbeParseRecord. 004698 ** 004699 ** If argument bSkip is non-zero, it is assumed that the caller has already 004700 ** determined that the first fields of the keys are equal. 004701 ** 004702 ** Key1 and Key2 do not have to contain the same number of fields. If all 004703 ** fields that appear in both keys are equal, then pPKey2->default_rc is 004704 ** returned. 004705 ** 004706 ** If database corruption is discovered, set pPKey2->errCode to 004707 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 004708 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 004709 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 004710 */ 004711 int sqlite3VdbeRecordCompareWithSkip( 004712 int nKey1, const void *pKey1, /* Left key */ 004713 UnpackedRecord *pPKey2, /* Right key */ 004714 int bSkip /* If true, skip the first field */ 004715 ){ 004716 u32 d1; /* Offset into aKey[] of next data element */ 004717 int i; /* Index of next field to compare */ 004718 u32 szHdr1; /* Size of record header in bytes */ 004719 u32 idx1; /* Offset of first type in header */ 004720 int rc = 0; /* Return value */ 004721 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 004722 KeyInfo *pKeyInfo; 004723 const unsigned char *aKey1 = (const unsigned char *)pKey1; 004724 Mem mem1; 004725 004726 /* If bSkip is true, then the caller has already determined that the first 004727 ** two elements in the keys are equal. Fix the various stack variables so 004728 ** that this routine begins comparing at the second field. */ 004729 if( bSkip ){ 004730 u32 s1 = aKey1[1]; 004731 if( s1<0x80 ){ 004732 idx1 = 2; 004733 }else{ 004734 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 004735 } 004736 szHdr1 = aKey1[0]; 004737 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 004738 i = 1; 004739 pRhs++; 004740 }else{ 004741 if( (szHdr1 = aKey1[0])<0x80 ){ 004742 idx1 = 1; 004743 }else{ 004744 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 004745 } 004746 d1 = szHdr1; 004747 i = 0; 004748 } 004749 if( d1>(unsigned)nKey1 ){ 004750 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004751 return 0; /* Corruption */ 004752 } 004753 004754 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 004755 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 004756 || CORRUPT_DB ); 004757 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 004758 assert( pPKey2->pKeyInfo->nKeyField>0 ); 004759 assert( idx1<=szHdr1 || CORRUPT_DB ); 004760 while( 1 /*exit-by-break*/ ){ 004761 u32 serial_type; 004762 004763 /* RHS is an integer */ 004764 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 004765 testcase( pRhs->flags & MEM_Int ); 004766 testcase( pRhs->flags & MEM_IntReal ); 004767 serial_type = aKey1[idx1]; 004768 testcase( serial_type==12 ); 004769 if( serial_type>=10 ){ 004770 rc = serial_type==10 ? -1 : +1; 004771 }else if( serial_type==0 ){ 004772 rc = -1; 004773 }else if( serial_type==7 ){ 004774 serialGet7(&aKey1[d1], &mem1); 004775 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 004776 }else{ 004777 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 004778 i64 rhs = pRhs->u.i; 004779 if( lhs<rhs ){ 004780 rc = -1; 004781 }else if( lhs>rhs ){ 004782 rc = +1; 004783 } 004784 } 004785 } 004786 004787 /* RHS is real */ 004788 else if( pRhs->flags & MEM_Real ){ 004789 serial_type = aKey1[idx1]; 004790 if( serial_type>=10 ){ 004791 /* Serial types 12 or greater are strings and blobs (greater than 004792 ** numbers). Types 10 and 11 are currently "reserved for future 004793 ** use", so it doesn't really matter what the results of comparing 004794 ** them to numeric values are. */ 004795 rc = serial_type==10 ? -1 : +1; 004796 }else if( serial_type==0 ){ 004797 rc = -1; 004798 }else{ 004799 if( serial_type==7 ){ 004800 if( serialGet7(&aKey1[d1], &mem1) ){ 004801 rc = -1; /* mem1 is a NaN */ 004802 }else if( mem1.u.r<pRhs->u.r ){ 004803 rc = -1; 004804 }else if( mem1.u.r>pRhs->u.r ){ 004805 rc = +1; 004806 }else{ 004807 assert( rc==0 ); 004808 } 004809 }else{ 004810 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 004811 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 004812 } 004813 } 004814 } 004815 004816 /* RHS is a string */ 004817 else if( pRhs->flags & MEM_Str ){ 004818 getVarint32NR(&aKey1[idx1], serial_type); 004819 testcase( serial_type==12 ); 004820 if( serial_type<12 ){ 004821 rc = -1; 004822 }else if( !(serial_type & 0x01) ){ 004823 rc = +1; 004824 }else{ 004825 mem1.n = (serial_type - 12) / 2; 004826 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 004827 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 004828 if( (d1+mem1.n) > (unsigned)nKey1 004829 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 004830 ){ 004831 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004832 return 0; /* Corruption */ 004833 }else if( pKeyInfo->aColl[i] ){ 004834 mem1.enc = pKeyInfo->enc; 004835 mem1.db = pKeyInfo->db; 004836 mem1.flags = MEM_Str; 004837 mem1.z = (char*)&aKey1[d1]; 004838 rc = vdbeCompareMemString( 004839 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 004840 ); 004841 }else{ 004842 int nCmp = MIN(mem1.n, pRhs->n); 004843 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 004844 if( rc==0 ) rc = mem1.n - pRhs->n; 004845 } 004846 } 004847 } 004848 004849 /* RHS is a blob */ 004850 else if( pRhs->flags & MEM_Blob ){ 004851 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 004852 getVarint32NR(&aKey1[idx1], serial_type); 004853 testcase( serial_type==12 ); 004854 if( serial_type<12 || (serial_type & 0x01) ){ 004855 rc = -1; 004856 }else{ 004857 int nStr = (serial_type - 12) / 2; 004858 testcase( (d1+nStr)==(unsigned)nKey1 ); 004859 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 004860 if( (d1+nStr) > (unsigned)nKey1 ){ 004861 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004862 return 0; /* Corruption */ 004863 }else if( pRhs->flags & MEM_Zero ){ 004864 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 004865 rc = 1; 004866 }else{ 004867 rc = nStr - pRhs->u.nZero; 004868 } 004869 }else{ 004870 int nCmp = MIN(nStr, pRhs->n); 004871 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 004872 if( rc==0 ) rc = nStr - pRhs->n; 004873 } 004874 } 004875 } 004876 004877 /* RHS is null */ 004878 else{ 004879 serial_type = aKey1[idx1]; 004880 if( serial_type==0 004881 || serial_type==10 004882 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0) 004883 ){ 004884 assert( rc==0 ); 004885 }else{ 004886 rc = 1; 004887 } 004888 } 004889 004890 if( rc!=0 ){ 004891 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 004892 if( sortFlags ){ 004893 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 004894 || ((sortFlags & KEYINFO_ORDER_DESC) 004895 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 004896 ){ 004897 rc = -rc; 004898 } 004899 } 004900 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 004901 assert( mem1.szMalloc==0 ); /* See comment below */ 004902 return rc; 004903 } 004904 004905 i++; 004906 if( i==pPKey2->nField ) break; 004907 pRhs++; 004908 d1 += sqlite3VdbeSerialTypeLen(serial_type); 004909 if( d1>(unsigned)nKey1 ) break; 004910 idx1 += sqlite3VarintLen(serial_type); 004911 if( idx1>=(unsigned)szHdr1 ){ 004912 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004913 return 0; /* Corrupt index */ 004914 } 004915 } 004916 004917 /* No memory allocation is ever used on mem1. Prove this using 004918 ** the following assert(). If the assert() fails, it indicates a 004919 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 004920 assert( mem1.szMalloc==0 ); 004921 004922 /* rc==0 here means that one or both of the keys ran out of fields and 004923 ** all the fields up to that point were equal. Return the default_rc 004924 ** value. */ 004925 assert( CORRUPT_DB 004926 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 004927 || pPKey2->pKeyInfo->db->mallocFailed 004928 ); 004929 pPKey2->eqSeen = 1; 004930 return pPKey2->default_rc; 004931 } 004932 int sqlite3VdbeRecordCompare( 004933 int nKey1, const void *pKey1, /* Left key */ 004934 UnpackedRecord *pPKey2 /* Right key */ 004935 ){ 004936 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 004937 } 004938 004939 004940 /* 004941 ** This function is an optimized version of sqlite3VdbeRecordCompare() 004942 ** that (a) the first field of pPKey2 is an integer, and (b) the 004943 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 004944 ** byte (i.e. is less than 128). 004945 ** 004946 ** To avoid concerns about buffer overreads, this routine is only used 004947 ** on schemas where the maximum valid header size is 63 bytes or less. 004948 */ 004949 static int vdbeRecordCompareInt( 004950 int nKey1, const void *pKey1, /* Left key */ 004951 UnpackedRecord *pPKey2 /* Right key */ 004952 ){ 004953 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 004954 int serial_type = ((const u8*)pKey1)[1]; 004955 int res; 004956 u32 y; 004957 u64 x; 004958 i64 v; 004959 i64 lhs; 004960 004961 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 004962 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 004963 switch( serial_type ){ 004964 case 1: { /* 1-byte signed integer */ 004965 lhs = ONE_BYTE_INT(aKey); 004966 testcase( lhs<0 ); 004967 break; 004968 } 004969 case 2: { /* 2-byte signed integer */ 004970 lhs = TWO_BYTE_INT(aKey); 004971 testcase( lhs<0 ); 004972 break; 004973 } 004974 case 3: { /* 3-byte signed integer */ 004975 lhs = THREE_BYTE_INT(aKey); 004976 testcase( lhs<0 ); 004977 break; 004978 } 004979 case 4: { /* 4-byte signed integer */ 004980 y = FOUR_BYTE_UINT(aKey); 004981 lhs = (i64)*(int*)&y; 004982 testcase( lhs<0 ); 004983 break; 004984 } 004985 case 5: { /* 6-byte signed integer */ 004986 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 004987 testcase( lhs<0 ); 004988 break; 004989 } 004990 case 6: { /* 8-byte signed integer */ 004991 x = FOUR_BYTE_UINT(aKey); 004992 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 004993 lhs = *(i64*)&x; 004994 testcase( lhs<0 ); 004995 break; 004996 } 004997 case 8: 004998 lhs = 0; 004999 break; 005000 case 9: 005001 lhs = 1; 005002 break; 005003 005004 /* This case could be removed without changing the results of running 005005 ** this code. Including it causes gcc to generate a faster switch 005006 ** statement (since the range of switch targets now starts at zero and 005007 ** is contiguous) but does not cause any duplicate code to be generated 005008 ** (as gcc is clever enough to combine the two like cases). Other 005009 ** compilers might be similar. */ 005010 case 0: case 7: 005011 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 005012 005013 default: 005014 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 005015 } 005016 005017 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 005018 v = pPKey2->u.i; 005019 if( v>lhs ){ 005020 res = pPKey2->r1; 005021 }else if( v<lhs ){ 005022 res = pPKey2->r2; 005023 }else if( pPKey2->nField>1 ){ 005024 /* The first fields of the two keys are equal. Compare the trailing 005025 ** fields. */ 005026 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 005027 }else{ 005028 /* The first fields of the two keys are equal and there are no trailing 005029 ** fields. Return pPKey2->default_rc in this case. */ 005030 res = pPKey2->default_rc; 005031 pPKey2->eqSeen = 1; 005032 } 005033 005034 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 005035 return res; 005036 } 005037 005038 /* 005039 ** This function is an optimized version of sqlite3VdbeRecordCompare() 005040 ** that (a) the first field of pPKey2 is a string, that (b) the first field 005041 ** uses the collation sequence BINARY and (c) that the size-of-header varint 005042 ** at the start of (pKey1/nKey1) fits in a single byte. 005043 */ 005044 static int vdbeRecordCompareString( 005045 int nKey1, const void *pKey1, /* Left key */ 005046 UnpackedRecord *pPKey2 /* Right key */ 005047 ){ 005048 const u8 *aKey1 = (const u8*)pKey1; 005049 int serial_type; 005050 int res; 005051 005052 assert( pPKey2->aMem[0].flags & MEM_Str ); 005053 assert( pPKey2->aMem[0].n == pPKey2->n ); 005054 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 005055 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 005056 serial_type = (signed char)(aKey1[1]); 005057 005058 vrcs_restart: 005059 if( serial_type<12 ){ 005060 if( serial_type<0 ){ 005061 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 005062 if( serial_type>=12 ) goto vrcs_restart; 005063 assert( CORRUPT_DB ); 005064 } 005065 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 005066 }else if( !(serial_type & 0x01) ){ 005067 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 005068 }else{ 005069 int nCmp; 005070 int nStr; 005071 int szHdr = aKey1[0]; 005072 005073 nStr = (serial_type-12) / 2; 005074 if( (szHdr + nStr) > nKey1 ){ 005075 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 005076 return 0; /* Corruption */ 005077 } 005078 nCmp = MIN( pPKey2->n, nStr ); 005079 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 005080 005081 if( res>0 ){ 005082 res = pPKey2->r2; 005083 }else if( res<0 ){ 005084 res = pPKey2->r1; 005085 }else{ 005086 res = nStr - pPKey2->n; 005087 if( res==0 ){ 005088 if( pPKey2->nField>1 ){ 005089 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 005090 }else{ 005091 res = pPKey2->default_rc; 005092 pPKey2->eqSeen = 1; 005093 } 005094 }else if( res>0 ){ 005095 res = pPKey2->r2; 005096 }else{ 005097 res = pPKey2->r1; 005098 } 005099 } 005100 } 005101 005102 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 005103 || CORRUPT_DB 005104 || pPKey2->pKeyInfo->db->mallocFailed 005105 ); 005106 return res; 005107 } 005108 005109 /* 005110 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 005111 ** suitable for comparing serialized records to the unpacked record passed 005112 ** as the only argument. 005113 */ 005114 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 005115 /* varintRecordCompareInt() and varintRecordCompareString() both assume 005116 ** that the size-of-header varint that occurs at the start of each record 005117 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 005118 ** also assumes that it is safe to overread a buffer by at least the 005119 ** maximum possible legal header size plus 8 bytes. Because there is 005120 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 005121 ** buffer passed to varintRecordCompareInt() this makes it convenient to 005122 ** limit the size of the header to 64 bytes in cases where the first field 005123 ** is an integer. 005124 ** 005125 ** The easiest way to enforce this limit is to consider only records with 005126 ** 13 fields or less. If the first field is an integer, the maximum legal 005127 ** header size is (12*5 + 1 + 1) bytes. */ 005128 if( p->pKeyInfo->nAllField<=13 ){ 005129 int flags = p->aMem[0].flags; 005130 if( p->pKeyInfo->aSortFlags[0] ){ 005131 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 005132 return sqlite3VdbeRecordCompare; 005133 } 005134 p->r1 = 1; 005135 p->r2 = -1; 005136 }else{ 005137 p->r1 = -1; 005138 p->r2 = 1; 005139 } 005140 if( (flags & MEM_Int) ){ 005141 p->u.i = p->aMem[0].u.i; 005142 return vdbeRecordCompareInt; 005143 } 005144 testcase( flags & MEM_Real ); 005145 testcase( flags & MEM_Null ); 005146 testcase( flags & MEM_Blob ); 005147 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 005148 && p->pKeyInfo->aColl[0]==0 005149 ){ 005150 assert( flags & MEM_Str ); 005151 p->u.z = p->aMem[0].z; 005152 p->n = p->aMem[0].n; 005153 return vdbeRecordCompareString; 005154 } 005155 } 005156 005157 return sqlite3VdbeRecordCompare; 005158 } 005159 005160 /* 005161 ** pCur points at an index entry created using the OP_MakeRecord opcode. 005162 ** Read the rowid (the last field in the record) and store it in *rowid. 005163 ** Return SQLITE_OK if everything works, or an error code otherwise. 005164 ** 005165 ** pCur might be pointing to text obtained from a corrupt database file. 005166 ** So the content cannot be trusted. Do appropriate checks on the content. 005167 */ 005168 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 005169 i64 nCellKey = 0; 005170 int rc; 005171 u32 szHdr; /* Size of the header */ 005172 u32 typeRowid; /* Serial type of the rowid */ 005173 u32 lenRowid; /* Size of the rowid */ 005174 Mem m, v; 005175 005176 /* Get the size of the index entry. Only indices entries of less 005177 ** than 2GiB are support - anything large must be database corruption. 005178 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 005179 ** this code can safely assume that nCellKey is 32-bits 005180 */ 005181 assert( sqlite3BtreeCursorIsValid(pCur) ); 005182 nCellKey = sqlite3BtreePayloadSize(pCur); 005183 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 005184 005185 /* Read in the complete content of the index entry */ 005186 sqlite3VdbeMemInit(&m, db, 0); 005187 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 005188 if( rc ){ 005189 return rc; 005190 } 005191 005192 /* The index entry must begin with a header size */ 005193 getVarint32NR((u8*)m.z, szHdr); 005194 testcase( szHdr==3 ); 005195 testcase( szHdr==(u32)m.n ); 005196 testcase( szHdr>0x7fffffff ); 005197 assert( m.n>=0 ); 005198 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 005199 goto idx_rowid_corruption; 005200 } 005201 005202 /* The last field of the index should be an integer - the ROWID. 005203 ** Verify that the last entry really is an integer. */ 005204 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 005205 testcase( typeRowid==1 ); 005206 testcase( typeRowid==2 ); 005207 testcase( typeRowid==3 ); 005208 testcase( typeRowid==4 ); 005209 testcase( typeRowid==5 ); 005210 testcase( typeRowid==6 ); 005211 testcase( typeRowid==8 ); 005212 testcase( typeRowid==9 ); 005213 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 005214 goto idx_rowid_corruption; 005215 } 005216 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 005217 testcase( (u32)m.n==szHdr+lenRowid ); 005218 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 005219 goto idx_rowid_corruption; 005220 } 005221 005222 /* Fetch the integer off the end of the index record */ 005223 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 005224 *rowid = v.u.i; 005225 sqlite3VdbeMemReleaseMalloc(&m); 005226 return SQLITE_OK; 005227 005228 /* Jump here if database corruption is detected after m has been 005229 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 005230 idx_rowid_corruption: 005231 testcase( m.szMalloc!=0 ); 005232 sqlite3VdbeMemReleaseMalloc(&m); 005233 return SQLITE_CORRUPT_BKPT; 005234 } 005235 005236 /* 005237 ** Compare the key of the index entry that cursor pC is pointing to against 005238 ** the key string in pUnpacked. Write into *pRes a number 005239 ** that is negative, zero, or positive if pC is less than, equal to, 005240 ** or greater than pUnpacked. Return SQLITE_OK on success. 005241 ** 005242 ** pUnpacked is either created without a rowid or is truncated so that it 005243 ** omits the rowid at the end. The rowid at the end of the index entry 005244 ** is ignored as well. Hence, this routine only compares the prefixes 005245 ** of the keys prior to the final rowid, not the entire key. 005246 */ 005247 int sqlite3VdbeIdxKeyCompare( 005248 sqlite3 *db, /* Database connection */ 005249 VdbeCursor *pC, /* The cursor to compare against */ 005250 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 005251 int *res /* Write the comparison result here */ 005252 ){ 005253 i64 nCellKey = 0; 005254 int rc; 005255 BtCursor *pCur; 005256 Mem m; 005257 005258 assert( pC->eCurType==CURTYPE_BTREE ); 005259 pCur = pC->uc.pCursor; 005260 assert( sqlite3BtreeCursorIsValid(pCur) ); 005261 nCellKey = sqlite3BtreePayloadSize(pCur); 005262 /* nCellKey will always be between 0 and 0xffffffff because of the way 005263 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 005264 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 005265 *res = 0; 005266 return SQLITE_CORRUPT_BKPT; 005267 } 005268 sqlite3VdbeMemInit(&m, db, 0); 005269 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 005270 if( rc ){ 005271 return rc; 005272 } 005273 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 005274 sqlite3VdbeMemReleaseMalloc(&m); 005275 return SQLITE_OK; 005276 } 005277 005278 /* 005279 ** This routine sets the value to be returned by subsequent calls to 005280 ** sqlite3_changes() on the database handle 'db'. 005281 */ 005282 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 005283 assert( sqlite3_mutex_held(db->mutex) ); 005284 db->nChange = nChange; 005285 db->nTotalChange += nChange; 005286 } 005287 005288 /* 005289 ** Set a flag in the vdbe to update the change counter when it is finalised 005290 ** or reset. 005291 */ 005292 void sqlite3VdbeCountChanges(Vdbe *v){ 005293 v->changeCntOn = 1; 005294 } 005295 005296 /* 005297 ** Mark every prepared statement associated with a database connection 005298 ** as expired. 005299 ** 005300 ** An expired statement means that recompilation of the statement is 005301 ** recommend. Statements expire when things happen that make their 005302 ** programs obsolete. Removing user-defined functions or collating 005303 ** sequences, or changing an authorization function are the types of 005304 ** things that make prepared statements obsolete. 005305 ** 005306 ** If iCode is 1, then expiration is advisory. The statement should 005307 ** be reprepared before being restarted, but if it is already running 005308 ** it is allowed to run to completion. 005309 ** 005310 ** Internally, this function just sets the Vdbe.expired flag on all 005311 ** prepared statements. The flag is set to 1 for an immediate expiration 005312 ** and set to 2 for an advisory expiration. 005313 */ 005314 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 005315 Vdbe *p; 005316 for(p = db->pVdbe; p; p=p->pVNext){ 005317 p->expired = iCode+1; 005318 } 005319 } 005320 005321 /* 005322 ** Return the database associated with the Vdbe. 005323 */ 005324 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 005325 return v->db; 005326 } 005327 005328 /* 005329 ** Return the SQLITE_PREPARE flags for a Vdbe. 005330 */ 005331 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 005332 return v->prepFlags; 005333 } 005334 005335 /* 005336 ** Return a pointer to an sqlite3_value structure containing the value bound 005337 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 005338 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 005339 ** constants) to the value before returning it. 005340 ** 005341 ** The returned value must be freed by the caller using sqlite3ValueFree(). 005342 */ 005343 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 005344 assert( iVar>0 ); 005345 if( v ){ 005346 Mem *pMem = &v->aVar[iVar-1]; 005347 assert( (v->db->flags & SQLITE_EnableQPSG)==0 005348 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 ); 005349 if( 0==(pMem->flags & MEM_Null) ){ 005350 sqlite3_value *pRet = sqlite3ValueNew(v->db); 005351 if( pRet ){ 005352 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 005353 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 005354 } 005355 return pRet; 005356 } 005357 } 005358 return 0; 005359 } 005360 005361 /* 005362 ** Configure SQL variable iVar so that binding a new value to it signals 005363 ** to sqlite3_reoptimize() that re-preparing the statement may result 005364 ** in a better query plan. 005365 */ 005366 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 005367 assert( iVar>0 ); 005368 assert( (v->db->flags & SQLITE_EnableQPSG)==0 005369 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 ); 005370 if( iVar>=32 ){ 005371 v->expmask |= 0x80000000; 005372 }else{ 005373 v->expmask |= ((u32)1 << (iVar-1)); 005374 } 005375 } 005376 005377 /* 005378 ** Cause a function to throw an error if it was call from OP_PureFunc 005379 ** rather than OP_Function. 005380 ** 005381 ** OP_PureFunc means that the function must be deterministic, and should 005382 ** throw an error if it is given inputs that would make it non-deterministic. 005383 ** This routine is invoked by date/time functions that use non-deterministic 005384 ** features such as 'now'. 005385 */ 005386 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 005387 const VdbeOp *pOp; 005388 #ifdef SQLITE_ENABLE_STAT4 005389 if( pCtx->pVdbe==0 ) return 1; 005390 #endif 005391 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 005392 if( pOp->opcode==OP_PureFunc ){ 005393 const char *zContext; 005394 char *zMsg; 005395 if( pOp->p5 & NC_IsCheck ){ 005396 zContext = "a CHECK constraint"; 005397 }else if( pOp->p5 & NC_GenCol ){ 005398 zContext = "a generated column"; 005399 }else{ 005400 zContext = "an index"; 005401 } 005402 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 005403 pCtx->pFunc->zName, zContext); 005404 sqlite3_result_error(pCtx, zMsg, -1); 005405 sqlite3_free(zMsg); 005406 return 0; 005407 } 005408 return 1; 005409 } 005410 005411 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) 005412 /* 005413 ** This Walker callback is used to help verify that calls to 005414 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have 005415 ** byte-code register values correctly initialized. 005416 */ 005417 int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){ 005418 if( pExpr->op==TK_REGISTER ){ 005419 assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 ); 005420 } 005421 return WRC_Continue; 005422 } 005423 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */ 005424 005425 #ifndef SQLITE_OMIT_VIRTUALTABLE 005426 /* 005427 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 005428 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 005429 ** in memory obtained from sqlite3DbMalloc). 005430 */ 005431 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 005432 if( pVtab->zErrMsg ){ 005433 sqlite3 *db = p->db; 005434 sqlite3DbFree(db, p->zErrMsg); 005435 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 005436 sqlite3_free(pVtab->zErrMsg); 005437 pVtab->zErrMsg = 0; 005438 } 005439 } 005440 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 005441 005442 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005443 005444 /* 005445 ** If the second argument is not NULL, release any allocations associated 005446 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 005447 ** structure itself, using sqlite3DbFree(). 005448 ** 005449 ** This function is used to free UnpackedRecord structures allocated by 005450 ** the vdbeUnpackRecord() function found in vdbeapi.c. 005451 */ 005452 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 005453 assert( db!=0 ); 005454 if( p ){ 005455 int i; 005456 for(i=0; i<nField; i++){ 005457 Mem *pMem = &p->aMem[i]; 005458 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 005459 } 005460 sqlite3DbNNFreeNN(db, p); 005461 } 005462 } 005463 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 005464 005465 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005466 /* 005467 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 005468 ** then cursor passed as the second argument should point to the row about 005469 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 005470 ** the required value will be read from the row the cursor points to. 005471 */ 005472 void sqlite3VdbePreUpdateHook( 005473 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 005474 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 005475 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 005476 const char *zDb, /* Database name */ 005477 Table *pTab, /* Modified table */ 005478 i64 iKey1, /* Initial key value */ 005479 int iReg, /* Register for new.* record */ 005480 int iBlobWrite 005481 ){ 005482 sqlite3 *db = v->db; 005483 i64 iKey2; 005484 PreUpdate preupdate; 005485 const char *zTbl = pTab->zName; 005486 static const u8 fakeSortOrder = 0; 005487 #ifdef SQLITE_DEBUG 005488 int nRealCol; 005489 if( pTab->tabFlags & TF_WithoutRowid ){ 005490 nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn; 005491 }else if( pTab->tabFlags & TF_HasVirtual ){ 005492 nRealCol = pTab->nNVCol; 005493 }else{ 005494 nRealCol = pTab->nCol; 005495 } 005496 #endif 005497 005498 assert( db->pPreUpdate==0 ); 005499 memset(&preupdate, 0, sizeof(PreUpdate)); 005500 if( HasRowid(pTab)==0 ){ 005501 iKey1 = iKey2 = 0; 005502 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 005503 }else{ 005504 if( op==SQLITE_UPDATE ){ 005505 iKey2 = v->aMem[iReg].u.i; 005506 }else{ 005507 iKey2 = iKey1; 005508 } 005509 } 005510 005511 assert( pCsr!=0 ); 005512 assert( pCsr->eCurType==CURTYPE_BTREE ); 005513 assert( pCsr->nField==nRealCol 005514 || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1) 005515 ); 005516 005517 preupdate.v = v; 005518 preupdate.pCsr = pCsr; 005519 preupdate.op = op; 005520 preupdate.iNewReg = iReg; 005521 preupdate.keyinfo.db = db; 005522 preupdate.keyinfo.enc = ENC(db); 005523 preupdate.keyinfo.nKeyField = pTab->nCol; 005524 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 005525 preupdate.iKey1 = iKey1; 005526 preupdate.iKey2 = iKey2; 005527 preupdate.pTab = pTab; 005528 preupdate.iBlobWrite = iBlobWrite; 005529 005530 db->pPreUpdate = &preupdate; 005531 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 005532 db->pPreUpdate = 0; 005533 sqlite3DbFree(db, preupdate.aRecord); 005534 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 005535 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 005536 sqlite3VdbeMemRelease(&preupdate.oldipk); 005537 if( preupdate.aNew ){ 005538 int i; 005539 for(i=0; i<pCsr->nField; i++){ 005540 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 005541 } 005542 sqlite3DbNNFreeNN(db, preupdate.aNew); 005543 } 005544 if( preupdate.apDflt ){ 005545 int i; 005546 for(i=0; i<pTab->nCol; i++){ 005547 sqlite3ValueFree(preupdate.apDflt[i]); 005548 } 005549 sqlite3DbFree(db, preupdate.apDflt); 005550 } 005551 } 005552 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */